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Abstract 
Updating the velocity in particle swarm optimization (PSO) consists of three terms: 
the inertia term, the cognitive term and the social term. The balance of these terms 
determines the balance of the global and local search abilities, and therefore the per-
formance of PSO. In this work, an adaptive parallel PSO algorithm, which is based 
on the dynamic exchange of control parameters between adjacent swarms, has been 
developed. The proposed PSO algorithm enables us to adaptively optimize inertia 
factors, learning factors and swarm activity. By performing simulations of a search 
for the global minimum of a benchmark multimodal function, we have found that 
the proposed PSO successfully provides appropriate control parameter values, and 
thus good global optimization performance. 
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1. Introduction 

In the various aspects of optimization, there are cases where a globally optimal solution 
is not necessarily obtainable. In such cases, it is desirable to find instead a semi-optimal 
solution that can be computed within a practical timeframe. To achieve this goal, heu-
ristic optimization techniques are popularly studied and used, typified by genetic algo-
rithms (GA), simulated annealing (SA) and particle swarm optimization [1] (PSO). In 
addition, since multipoint search algorithms like GAs and PSO can determine a Pareto- 
optimal solution based on a one-time calculation, they are actively employed in applied 
research to handle multipurpose optimization problems. 
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If the objective function under consideration is multimodal, then heuristic optimiza-
tion techniques are desired to have qualities including a global solution search ability, 
maintained by preservation of solution diversity; a local solution search ability, main-
tained conversely by centralization of the solution search; and a balance between these 
two. Solution diversification and centralization strategies are factors universally shared 
by heuristic optimization techniques, and influence their performance. However, there 
are few precise and universal guidelines for configuring the values of the parameters 
that control these strategies: their configuration is problem-specific. Additionally, tun-
ing of these parameters is not simple, and generally requires many preliminary calcula-
tions. Furthermore, which parameter values are suitable may vary at every stage of the 
solution search; pertinent examples include the configuration of crossover rate and 
spontaneous mutation rate in GAs and the temperature cooling schedule in SA. 

Focusing on PSO, a kind of multipoint search heuristic optimization technique, in 
this study we propose several parallel PSO algorithms in which control parameters are 
dynamically exchanged between a number of swarms and are adaptively adjusted dur-
ing the solution search process. We also share our findings from an evaluation of algo-
rithm performance on a minimum search problem for a multimodal objective function. 

2. Particle Swarm Optimization 

PSO is an evolutionary optimization calculation technique based on the concept of 
swarm intelligence. In PSO, the hypersurface of an objective function is searched as in-
formation is exchanged between swarms of search points, which simulate animals or 
insects. The next state of each individual is generated based on the optimal solution in 
its search history (“personal best”; pbest), the optimal solution in the combined search 
history of all individuals in the swarm (“global best”; gbest), and the current velocity 
vector. Briefly, assuming a population size Np and problem dimension Nd, the position 
and velocity of an individual i (where 1, , pi N= � ) at the t + 1th step of the search, re-
spectively ( )1t

i
+x  and ( )1t

i
+v , are: 

( ) ( ) ( ) ( )( )1 1 1 1
,1 , ,, , , ,

d

t t t t
i i i j i Nx x x+ + + +=x � �                     (1) 

( ) ( ) ( ) ( )( )1 1 1 1
,1 , ,, , , ,

d

t t t t
i i i j i Nv v v+ + + +=v � �                     (2) 

These two variables can be updated by means of the following equation, using the 
position and velocity at the tth step, ( )t

ix  and ( )t
iv : 

( ) ( ) ( ) ( )( ) ( ) ( )( )1
, , 1 , , , 2 , ,1 2t t t t t t

i j i j i j i j i j i j j i jv v c rand pbest x c rand gbest xγ+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −      (3) 

( ) ( ) ( )1 1
, , ,
t t t

i j i j i jx x v+ += +                           (4) 

Here, ( )t
ipbest  represents the optimal solution discovered during the search 

through the tth step by individual i itself, while ( )tgbest  represents the optimal solution 
discovered during the search through the tth step by the swarm to which individual i 
belongs. The term γ  represents inertia, and takes a value between [0, 1] (inertia fac-
tor); c1 and c2 are weighting factors, respectively called the cognitive learning factor and 
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the social learning factor (learning factors); and rand1 and rand2 are uniform random 
numbers in [0, 1]. The PSO solution search procedure is described below: 

1. Decide population size and maximum number of search steps. 
2. Set initial position and velocity of each individual. 
3. Calculate objective function value for each individual. 
4. Determine the optimal individual solution pbest for each individual and the op-

timal swarm solution gbest, and update these values. 
5. Update the position and velocity of each individual according to Equation (3) and 

(4). 
6. End search if desired solution accuracy is obtained or if maximum number of steps 

is reached. 
The algorithm behind PSO is simpler than a GA, another multipoint search heuristic 

optimization technique, making it easier to code and tending to lead to faster solution 
convergence. On the other hand, PSO sometimes loses solution diversity during the 
search, which readily invites excessive convergence. In response, improved PSO tech-
niques have begun to be proposed around the world. Examples include distributed PSO 
and hierarchical PSO, which search the solution space with multiple different swarms 
[2] [3]; a method that performs a global search for its initial calculations but intensively 
searches the area of suboptimal solutions thereafter similar to SA [4]; a technique that 
incorporates bounded rational randomness thereafter, like the “lazy ant” in ant colony 
optimization; and a method that avoids local solutions if the algorithm become caught 
in them for a while. As with many other heuristic optimization techniques, PSO in-
cludes several option control parameters that analysts can set. Because these settings 
can greatly influence search performance, theoretical research on stability and conver-
gence due to parameter values [5] [6] and research and development on PSO with 
adaptive parameter tuning functions (e.g., [7] [8]) are underway. The tuning of the 
quantum PSO (QPSO) [9] is simpler compared to standard PSO since QPSO has only a 
single control parameter. 

3. Proposed Method 

In this study, we focus on several parameters to control diversification and centrali-
zation in solution search: the inertia factor γ , learning factors c1 and c2, and swarm 
activity (described in Section 3.3). Introducing concepts similar to those employed in 
the replica-exchange method [10] and parallel SA method, we propose parallel PSO 
algorithms in which parameter values are adaptively adjusted via dynamic exchange 
of the above control parameters between multiple swarms during the solution search 
process. 

The replica-exchange method was developed in response to problems like spin glass 
and protein folding, in which it is difficult to find the ground-energy state (a global op-
timum solution) because several semi-stable states (local optimum solutions) exist in 
the system. In the replica-exchange method, several replicas of the original system are 
prepared, which have different temperatures and never interact with each other. We 
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encourage readers to imagine “temperature” here as the temperature parameter in Me-
tropolis Monte Carlo simulations, i.e., it indicates the degree to which deterioration is 
permitted when making the decision to transition to a candidate in the next state. Solu-
tion searches in high-temperature systems exhibit behavior close to a random search, 
whereas solution searches in low-temperature systems exhibit behavior close to the 
steepest descent method. Solution search calculations are run independently and si-
multaneously for each replica, each at its respective constant temperature. At the same 
time, temperature is exchanged periodically after a certain number of search steps ac-
cording to the exchange probability w in the following equations between a given rep-
lica pair (with respective states 

kT TX =  and 
1+=′ kT TX ) having adjacent temperatures (Tk 

and Tk+1). 

{ } { }( ) ( )1 1

1 for Δ 0
, ,

exp Δ for Δ 0k k k kT T T T T T T Tw X X X X
+ += = = =

≤′ ′→ =  − >
        (5) 

( ) ( ){ }1
1

1 1
k kT T T T

k k

E X E X
T T += =

+

 
′∆ ≡ − − 

 
                  (6) 

Here, E(X) represents the energy of a replica at state X (i.e., the objective function 
value). Figure 1 shows a schematic diagram of the replica-exchange method. In the 
replica-exchange method, high-temperature calculations correspond to retention of 
solution diversity, while low-temperature calculations correspond to a local solution 
search. Moreover, we can argue that it has some qualities of heuristic optimization al-
gorithms for multimodal objective functions, in that its calculations are repeated as 
temperatures are probabilistically exchanged. Unlike SA, in which temperature falls 
monotonically, in this technique the temperature meanders if we focus on a single giv-
en replica. Thus, one can use this method to search a large solution space without be-
coming caught in a semi-s state. 

3.1. Inertia-Factor Parallel PSO 

Here, we first propose a technique focusing on the inertia factor γ , a control parameter 
in Equation (3). The search trajectories of individuals with large γ  are more curved,  
 

 
Figure 1. Schematic illustration of the replica-exchange method, with four replicas. 
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whereas those of individuals with small γ  converge to an intermediate point between 
pbest and gbest (dependent on c1 and c2). Thus, efficient optimization should be 
achievable if, in the initial search, individuals are given large γ  values and the solu-
tion search space is wide, while in its final stages, individuals are instead given small γ  
values and a solution is searched for intensively at pbest, gbest, and the area between 
them. For this reason, each individual’s γ  is typically reduced linearly with increasing 
search step t, according to the following equation: 

( ) max min
max

max

t t
t

γ γγ γ −
= − ⋅                       (7) 

Here, maxγ  and minγ  respectively represent the maximum and minimum inertia 
factors, and tmax is the maximum number of search steps. Note that there is no single 
optimal reduction schedule one can choose for inertia factor γ : in truth, multiple 
techniques have been proposed besides the linear reduction described above [11], in-
cluding exponential reduction [12] and stepwise reduction methods [13]. 

We consider Ns swarms with various different γ  values in the Inertia-factor Parallel 
PSO (IP-PSO) proposed in this section. We assign ( )1, ,k sk Nγ = �  in this paper us-
ing the following equation: 

( )max min
min1

1k
s

k
N

γ γγ γ−
= ⋅ − +

−
                    (8) 

In IP-PSO, each swarm has its own gbest, the optimal solution found across all indi-
viduals in the swarm. Periodically, after a certain number of search steps, the objective 
function f(gbest) values of two swarms (

k
Sγ γ=  and 

1k
Sγ γ +=′ ) having adjacent kγ  values 

are compared. Each kγ  value is then probabilistically exchanged (or not) according to 
the Metropolis decisions in Equations (9) and (10). 

{ } { }( ) ( )1 1

1 for Δ 0
, ,

exp Δ for Δ 0k k k k
w S S S Sγ γ γ γ γ γ γ γ+ += = = =

≤
′ ′→ =  − >

        (9) 

( ) ( ){ }1
1

1 1Δ
k k

k k

f fγ γ γ γγ γ += =
+

 
≡ − − 
 

gbest gbest             (10) 

Figure 2 shows a schematic diagram of IP-PSO. The IP-PSO (and also the other 
proposed adaptive parallel PSOs described in Sections 3.2 - 3.4) employs the Metropolis 
criterion to determine the exchange acceptance of the control parameter rather than the 
move acceptance of each solution. The Metropolis decision will assign smaller kγ  val-
ue to the swarm having the superior f(gbest) value with higher probability. (Note: “su-
perior” here means “smaller”, since this paper is concerned with minimum search 
problems.) As a result, a more intensive search can be performed in the vicinity of 
gbest. On the other hand, it is also possible to escape local optimum solutions by a 
global search, because larger kγ  value is assigned to the swarm having the inferior 
f(gbest) value with higher probability. In addition, unlike the related methods men-
tioned above in which γ  decreases monotonically, this method can escape local op-
timum solutions, even if it becomes stuck during a search with a small γ  value, be- 
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Figure 2. Schematic illustration of the Inertia-factor Parallel PSO (IP-PSO), with four swarms. 
 
cause a larger γ  value could be probabilistically assigned. The dynamic assignment of 
appropriate inertia factor γ  values to each swarm according to the search conditions 
makes it unnecessary to configure a γ  reduction schedule before carrying out opti-
mization. The IP-PSO solution search procedure is described below: 

1. Decide total population size, number of swarms, and maximum number of search 
steps. 

2. Assign initial inertia factor values to each swarm according to Equation (8). 
3. Set initial position and velocity of each individual. 
4. Calculate objective function value for each individual. 
5. Determine the optimal individual solution pbest for each individual and the op-

timal swarm solution gbest, and update these values. 
6. Update the position and velocity of each individual according to Equation (3) and 

(4). 
7. Periodically, after a certain number of search steps, compare objective function 

values between two swarms having adjacent inertia factor values; make the decision to 
exchange inertia factors according to Equations (9) and (10). 

8. End search if desired solution accuracy is obtained or if maximum number of 
search steps is reached. 

Because each swarm can be simulated independently and simultaneously with only a 
slight communication cost, the IP-PSO (and also the other proposed adaptive parallel 
PSOs described in Sections 3.2 - 3.4) are well suited for and very efficiently runs on 
massively parallel computers. 

3.2. Learning-Factor Parallel PSO 

Here, we propose a technique focusing on learning factors c1 and c2, control parameters 
in Equation (3). For individuals with relatively large c1, PSO searches in the vicinity of 
the optimal solution in that individual’s search history, pbest, whereas for individuals 
with large c2, it searches in the vicinity of the optimal solution in the search history of 
the swarm, gbest. Thus, efficient optimization should be realizable if, in the initial 
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search, individuals are given large c1 and small c2 values to ensure solution diversity, 
while in its final stages, individuals are instead given small c1 and large c2 values in an 
attempt to centralize the search in the vicinity of gbest. Some time-change schedules 
have learning factors c1 and c2 decrease (or increase) linearly with increasing number of 
search steps [14]. 

For the Learning-factor Parallel PSO (LP-PSO) proposed in this section, we intro-
duce the allocation parameter ( )0 1α α≤ ≤ , which regulates the balance between 
learning factors c1 and c2, and define the LP-PSO learning factors 1c′  and 2c′  accord-
ing to the following equation: 

( )
1 0

2 0

2
2 1

c c
c c

α
α

′ =
 ′ = −

                          (11) 

Here, c0 is a constant. This paper uses c0 = 1.4955, a learning factor determined to be 
stable in a PSO stability analysis run by Clerc et al. [5]. When 1α =  in Equation (11), 

2 0c′ =  and the search is run in the vicinity of pbest; when 0α = , 1 0c′ =  and the 
search is run in the vicinity of gbest. Similar to IP-PSO in Section 3.1, we consider Ns 
swarms having various different α  values. We determine ( )1, ,k sk Nα = �  in this 
paper using the following equation: 

( )max min
min1

1k
s

k
N

α αα α−
= ⋅ − +

−
                    (12) 

Thereafter, as in IP-PSO, each swarm has its own gbest, the optimal solution found 
across all individuals in the swarm. Periodically, after a certain number of search steps, 
the objective function f(gbest) values of two swarms having adjacent kα  values are 
compared. Each kα  value is then probabilistically exchanged (or not) according to the 
Metropolis decisions in the same manner as Equations (9) and (10). The decision will 
assign smaller kα  value to the swarm having the superior f(gbest) value (i.e., small 

1c′  and large 2c′ ) with higher probability. As a result, a more-intensive search can be 
performed in the vicinity of gbest. On the other hand, it is also possible to escape local 
optimum solutions using a global search based on the pbest of each individual, because 
larger kα  value (i.e., large 1c′  and small 2c′ ) is assigned to the swarm having the in-
ferior f(gbest) value with higher probability. The assignment of appropriate learning 
factor 1c′  and 2c′  values to each swarm according to the search conditions actually 
makes it unnecessary to configure a time-change schedule before carrying out optimi-
zation. 

3.3. Activity Parallel PSO 

Here, we propose a technique focusing on the control parameter for swarm activity. 
Yasuda et al. [15] used molecular motion as an analogy for the movement of each indi-
vidual in PSO, and defined the activity of a swarm Act as an index of the diversifica-
tion/centralization of a solution search according to the following equation: 

1 2

2
,1 1

1 p dN N
i ji j

p d

Act v
N N = =

 
=   ⋅ 

∑ ∑                     (13) 
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Swarms with high activity have many individuals with high velocities, and search 
over a wide solution space. Swarms with low activity, on the other hand, have many in-
dividuals with low velocities, and so search intensively for local solutions. Activity is 
observed moment-to-moment, because searches in which activity decreases gradually 
and continually can yield favorable solutions. In the event that measured activity is 
lower than the preset baseline activity, increasing the inertia factor γ  of each individ-
ual promotes global searches; in the event that measured activity is higher than the 
preset baseline activity, decreasing the inertia factor promotes local searches. These be-
haviors thus constitute adaptive parameter regulation (of the inertia factor). However, 
the baseline activity reduction schedule must be set appropriately in advance, such that 
it decreases gradually with increasing search steps. 

For the Activity Parallel PSO (AP-PSO) proposed in this section, we directly control 
swarm activity (i.e., what was measured in [15], the past study mentioned above) in a 
manner similar to temperature control methods in molecular dynamics applications. 
Each individual’s velocity should be appropriately scaled at each search step in order to 
control the measured, actual activity Act (defined by Equation (13)) at the target activi-
ty Act0. Briefly, the scaling factor s is calculated according to the following equation, 
where the velocity vi of each individual is converted to i is′ = ⋅v v : 

1 2

0 2
,1 1

p d

p d
N N

i ji j

N N
s Act

v
= =

 ⋅ = ⋅
 
 ∑ ∑

                        (14) 

We consider Ns swarms controlled by various different target activity Act0 values. We 
determine Act0,k ( 1, , sk N= � ) in this paper using the following equation: 

( )0,max 0,min
0, 0,min1

1k
s

Act Act
Act k Act

N
−

= ⋅ − +
−

               (15) 

Thereafter, as in IP-PSO and LP-PSO, each swarm has its own gbest, the optimal so-
lution found across all individuals in the population. Periodically, after a certain num-
ber of search steps, the objective function f(gbest) values of two swarms having adja-
cent Act0,k values are compared. Each Act0,k value is then probabilistically exchanged (or 
not) according to the Metropolis decisions in the same manner as Equations (9) and 
(10). The decision will assign smaller Act0,k value to the swarm having the superior 
f(gbest) value with higher probability. As a result, a more-intensive search can be per-
formed in the vicinity of gbest. On the other hand, it is also possible to escape local op-
timum solutions using a global search, because larger Act0,k value is assigned to the 
swarm having the inferior f(gbest) value with higher-probability. Assigning an appro-
priate activity value to each swarm according to the search conditions makes it unne-
cessary to configure an activity reduction schedule in advance. 

3.4. PSO with Simultaneous Exchange of Multiple Control Parameters 

The proposed PSO techniques in Sections 3.1 - 3.3 above focus on only one kind of 
control parameter at a time, and assign parameter values that differ between each 
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swarm. Nonetheless, adaptive control is possible if several control parameters are si-
multaneously and dynamically exchanged between swarms. For example, we can con-
sider Ns swarms each having a different inertia factor γ  and target activity Act0: we 
call this technique the Inertia-factor and Activity Parallel PSO (IAP-PSO). For IP-PSO 
in Section 3.1, a given kγ  value corresponds one-to-one with a given swarm; however, 
with IAP-PSO, a given ( )0,,k kActγ  pair corresponds one-to-one with a given swarm. 
These control parameter pairs are exchanged between swarms. Figure 3 shows a sche-
matic diagram of IAP-PSO. We can consider an Inertia-factor and Learning-factor Pa-
rallel PSO (ILP-PSO) the same way: in it, the inertia factor and learning factors are si-
multaneously exchanged. 

4. Numerical Simulation and Discussion 

We evaluate the performance of the proposed techniques using a minimum search 
problem for a Rastrigin function, a representative multimodal function. Our Rastrigin 
function is represented by the following equation: 

( ) ( )2
1 10cos 2π 10dN

j jjf x x
=
 = − + ∑x                 (14) 

The Rastrigin function is multimodal, its variables are completely independent of 
each other, and it has a minimum value of ( )* 0f =x  for ( )* 0,0, , 0=x � . In the 
performance evaluation experiments, the number of dimensions was set at Nd = 100, 
and the initial coordinates and initial velocity of each individual were set according to 
uniform random numbers in the respective ranges ( )0

,100 100i jx− ≤ ≤  and ( )0
,0 100i jv≤ ≤ . 

We first evaluated the proposed PSO techniques, in which only a single control pa-
rameter is exchanged in the search process. We observed the relationship between suc-
cessful transitions in control parameter value and changes in objective function value, 
and compared its performance with other techniques. Specifically, we compared a Li-
nearly decreasing Inertia factor PSO (LDI-PSO), in which the inertia factor linearly and 
continually decreases according to Equation (7) with increasing search step t, with the 
proposed techniques IP-PSO, LP-PSO, and AP-PSO. Table 1 shows the major simula-
tion conditions for each technique. 
 

 
Figure 3. Schematic illustration of the Inertia-factor and Activity Parallel PSO (IAP-PSO), with 
four swarms. 
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Table 1. Summary of simulation conditions for performance evaluation of the proposed PSOs 
which exchange a single control parameter. 

 LDI-PSO IP-PSO LP-PSO AP-PSO 

Dimension Nd 100 

Total number  
of individuals Np 

6400 

Number of swarms Ns 1 8 8 8 

Inertia factor 
γ = [0.4, 0.9] 

Linearly decreasing Dynamic exchange Linearly decreasing Linearly decreasing 

Allocation factor 
α = [0, 1] 

0.5 0.5 Dynamic exchange 0.5 

Target activity 
Act0 = [1, 50] 

- - - Dynamic exchange 

Maximum  
number of steps tmax 

3000 

 
Figure 4 shows time series data for the objective function f(gbest) and the control 

parameter values obtained via each technique. The time series shown for LDI-PSO is 
data for the best of eight search attempts, assuming 6400 individuals × 1 swarm. The 
time series shown for IP-PSO, LP-PSO, and AP-PSO are respective data for the best 
swarm within a representative search attempt (eight search attempts in total), assuming 
800 individuals × 8 swarms. In IP-PSO, adaptive control is realized through the dy-
namic exchange of inertia factor values, which occurs spontaneously without the need 
to configure a stepwise reduction schedule for the inertia factor, a condition seen in the 
aforementioned [13]. Compared with LDI-PSO, which also uses the inertia factor as a 
control parameter and has a linear reduction schedule for the inertia factor, IP-PSO 
achieves lower objective function values. Looking at LP-PSO, on the other hand, small 

kα  (i.e., small 1c′  and large 2c′ ) values are assigned from around the 350th search 
step onward, in response to the relatively small objective function values obtained in 
the initial search around that step number. The solution ceases to improve for a while 
thereafter, but large kα  (i.e., large 1c′  and small 2c′ ) values were assigned from step 
1150 to around step 1700; as a result, the trajectory escapes the local optimum solution, 
and the solution continues to improve from around step 1400 onwards. After around 
the 1700th search step, small kα  values are assigned once more; as a result of this 
search centralization, the objective function continues to drop until the maximum (i.e., 
final) search step. For AP-PSO, the solution continually improves as activity frequently 
fluctuates. The above results obtained with each proposed PSO technique show that the 
observed diverse shifts in control parameters depend on the search conditions. LP-PSO 
and AP-PSO achieved superior results to LDI-PSO and IP-PSO, with final objective 
function values of, respectively, 24.5 and 25.0 versus 135.3 and 80.6. 

We next evaluated the proposed PSO techniques in which multiple parameters are 
exchanged simultaneously. The four techniques compared were (1) linearly decreasing 
inertia-factor and learning-factor PSO (LDIL-PSO), in which the inertia factor γ  and  
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(a)                                          (b) 

  
(c)                                          (d) 

Figure 4. Performance evaluation of IP-PSO, LP-PSO, and AP-PSO: Time series of f(gbest) and 
control parameter value ( )0, or Actγ α . (a) LDI-PSO; (b) IP-PSO; (c) LP-PSO; (d) AP-PSO. 

 
the allocation parameter for learning factors α  both linearly decrease with increasing 
step number t; (2) ILP-PSO, in which ( ),k kγ α  pairs are simultaneously and dynami-
cally exchanged between swarms; (3) linearly decreasing inertia-factor and activity PSO 
(LDIA-PSO), in which the inertia factor γ  and target activity Act0 both linearly de-
crease with increasing step number t; and(4) IAP-PSO, in which ( )0,,k kActγ  pairs are 
simultaneously and dynamically exchanged between swarms. Table 2 shows the major 
simulation conditions for each technique. 

Figure 5 shows time series plots for the objective function f(gbest) obtained via each 
technique. The time series shown for LDIL-PSO and LDIA-PSO are the data for the 
best of eight search attempts, assuming 6400 individuals × 1 swarm. The time series 
shown for ILP-PSO and IAP-PSO are the data for the best swarm within a representa-
tive search attempt (eight search attempts in total), assuming 800 individuals × 8 
swarms. We can see that the simultaneous adjustment of multiple control parameters 
improves search performance compared with Figure 4. This is true if we compare those 
techniques in which control parameters are linearly reduced (LDI-PSO vs. LDIL-PSO, 
LDIA-PSO) with one another, as well as if we compare those techniques in which con-
trol parameters are dynamically exchanged (LP-PSO and AP-PSO vs. ILP-PSO and 
IAP-PSO). This is because the simultaneous adjustment of multiple control parameters 
enables each swarm to approach the equilibrium state corresponding to the parameter 
values at the time more rapidly. ILP-PSO and IAP-PSO yielded mean final objective 
function values of 2.6 and 20.6, respectively. Performance enhancement was particular-
ly pronounced in ILP-PSO, which achieved the best objective function value of all tech-
niques. 
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(a)                                           (b) 

Figure 5. Performance evaluation of ILP-PSO and IAP-PSO: Time series of f(gbest). (a) 
LDIL-PSO vs. ILP-PSO; (b) LDIA-PSO vs. IAP-PSO. 
 
Table 2. Summary of simulation conditions for performance evaluation of the proposed PSOs 
which exchange multiple control parameters. 

 LDIL-PSO ILP-PSO LDIA-PSO IAP-PSO 

Dimension Nd 100 

Total number of  
individuals Np 

6400 

Number of swarms Ns 1 8 1 8 

Inertia factor 
γ = [0.4, 0.9] 

Linearly decreasing Dynamic exchange Linearly decreasing Dynamic exchange 

Allocation factor 
α = [0, 1] 

Linearly decreasing Dynamic exchange 0.5 0.5 

Target activity 
Act0 = [1, 50] 

- - Linearly decreasing Dynamic exchange 

Maximum number  
of steps tmax 

3000 

5. Conclusion 

We proposed five types of adaptive parallel PSO algorithms that employed the dynamic 
exchange of control parameters between multiple swarms-IP-PSO, LP-PSO, AP-PSO, 
ILP-PSO and IAP-PSO while focusing on the PSO control parameters of inertia factor, 
learning factors and swarm activity. The proposed algorithms were adopted to adap-
tively regulate control parameters at each step of the search in an experiment consisting 
of a minimum search problem for a multimodal function. The results show the systems 
transition appropriately between global and local solution search phases, meaning that 
efficient searches that do not stall at local optimum solutions are possible. Superior ob-
jective function values were obtained by ILP-PSO in particular: this method achieves 
adaptive regulation through the simultaneous exchange of the inertia factor and learn-
ing factors. Additional numerical experiments and assessments of the performance 
characteristics with a larger set of testing pool such as CEC benchmark are important 
topics for future research. 
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