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Abstract 
This paper presents a new heuristic to linearise the convex quadratic programming problem. The 
usual Karush-Kuhn-Tucker conditions are used but in this case a linear objective function is also 
formulated from the set of linear equations and complementarity slackness conditions. An un-
boundedness challenge arises in the proposed formulation and this challenge is alleviated by con-
struction of an additional constraint. The formulated linear programming problem can be solved 
efficiently by the available simplex or interior point algorithms. There is no restricted base entry 
in this new formulation. Some computational experiments were carried out and results are pro-
vided. 
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1. Introduction 
There are so many real life applications for the convex quadratic programming (QP) problem. The applications 
include portfolio analysis, structural analysis, discrete-time stabilisation, optimal control, economic dispatch and 
finite impulse design; see [1]-[3]. Some of the methods for solving the convex quadratic problem are active set, 
interior point, branch and bound, gradient projection, and Lagrangian methods, see [4]-[9] for more information 
on these methods. 

In this paper we present a new heuristic to linearise the convex quadratic programming problem. The usual 
Karush-Kuhn-Tucker conditions are still used but in this case a linear objective function is also formulated from 
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the set of linear objective function equations and the complementary slackness conditions. There is an unboun-
dedness challenge that is associated with the proposed linear formulation. To alleviate this challenge, an addi-
tional constraint is constructed and added to the linear formulation. The new linear formulation can be solved 
efficiently by the available simplex and interior point algorithms. There is no restricted base entry in the pro-
posed approach. The time consuming complementarity pivoting is no longer necessary. Some computational 
experiments have been carried out and the objective of the computational experiments was to determine CPU 
times of the: 

1) Proposed heuristic; 
2) Regularised Active Set Method Mae and Saunders [10]; 
3) Primal-Dual Interior Point Algorithm. 
It may be noted that the proposed method is suitable only if the quadratic programming problem satisfies 

conditions (1) to (5) mentioned in Section 2.1. 

2 Mathematical Background 
2.1 The Quadratic Programming Problem 
Let a quadratic programming (QP) problem be represented by (1). 

Minimize ( ) T T1
2

f X CX XQX= +  

Subject to: 
T T T, 0AX B X≤ ≥                                  (1) 

where 
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It is assumed that: 
1) Matrix Q  is a n n×  symmetric and positive definite, 
2) Function ( )f X  is strictly convex, 
3) The conditions T 0YX =  and T 0Sλ =  hold. Here Y  and S  are dual and primal slack variables, re-

spectively. 
4) Since constraints are linear then the solution space is convex, and 
5) Any maximization quadratic problem can be changed into a minimization and vice versa. 
When the function ( )f X  is strictly convex for all points in the convex region then the quadratic problem 

has a unique local minimum which is also the global minimum [11]. 

2.2. Karush-Kuhn-Tucker Conditions 
The convex quadratic programming problem has special features that we can capitalize on when solving. All 
constraints are linear and the only nonlinear expression is the objective function. Let the Lagrangian function for 
the QP problem be L  and in this case 

( )T T T T1
2

L CX XQX AX Bλ= + + −                           (2) 

where ( )1 2, , , mλ λ λ λ=   and T 0λ ≥ . In this case we exclude the non-negativity conditions T 0X ≥ . If 
( ) T

1 2, , , , 0nY y y y Y= ≥  and ( )1 2, , , , 0mS s s s S= ≥  then the Karush-Kuhn-Tucker conditions as given in 
[11] for a local minimum are: 
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T T T T TQX A Y Cλ+ − = −                                  (3) 
T T T ,AX S B+ =                                    (4) 
T T, 0.Y S ≥  

Complementary slackness conditions are given in (5) and are only satisfied at the optimal point. These condi-
tions are: 

T T0 and 0YX Sλ= =                                   (5) 

Note Y  and S  are n  and m  dimensional vectors representing the slack variables. At this stage, we are 
unable to apply the simplex algorithm due to restricted base entry and this makes the simplex method approx-
imately 8 times slower than its full speed compared to its unrestricted basis version. 

2.3. Some Matrix Operations 
Suppose ( )1 2, , , mD d d d=   and ( )1 2, , , mE e e e=   are single row matrices of the same dimension m  and 

( ) ( ), 1, 2, , and 1,2, ,ijH h i m j m= = =   is an m m×  dimensional matrix, the following must hold. 
T TDE ED=                                          (6) 

T TDHE EHD=                                         (7) 
Equations (6) and (7) can be easily verified. These simple results are used to eliminate the complementary 

slackness conditions. 

3. Elimination of Complementary Slackness Conditions 

3.1. Elimination of T 0YX =  
Pre-multiply (3) by X, we have: 

( ) ( )T T T T TX QX A Y X Cλ+ − = −                                  (8) 

T T T T TXQX XA XY XCλ+ − = −                                   (9) 

From (6) T TYX XY=  and from (5) T 0XY = , then 
T T T TXQX XA XCλ+ = −                                   (10) 

By rearranging, we have 
T T T T 0XQX XA XCλ+ + =                                   (11) 

3.2. Elimination of T 0S =λ  
Pre-multiply (4) by λ , we have 

( )T T TAX S Bλ λ λ+ =                                     (12) 

( )T T TAX S Bλ λ λ+ =                                     (13) 

Since from (4) T 0Sλ = , then 
T T 0AX Bλ λ− =                                        (14) 

3.3. Elimination of AX Tλ  or XAT Tλ  
From (7), we have: T T TAX XAλ λ=  , hence we can replace T TXA λ  by TAXλ  in relations (11) to get t(15): 

T T T 0XQX AX XCλ+ + =                                   (15) 
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Subtracting (14) from (15), we obtain (16): 
T T T 0XQX XC Bλ+ + =                                    (16) 

3.4. Linear Objective Function for the Quadratic Programming Problem 
Note that the expression in relation (13) is nonlinear but it can be rearranged so that the original quadratic pro-
gramming objective function becomes a linear quantity. This can be achieved as follows: 

Divide relation (16) by two, one obtains: 

T T1 1 1 0
2 2 2

XQX XC Bλ+ + =                                  (17) 

Rearranging (17), we obtain (18): 

T T T1 1 1 0
2 2 2

XQX XC XC Bλ+ − + =                               (18) 

From (1) ( ) T T1
2

f X CX XQX= + , then, (18) becomes (19) or equivalently (20): 

( ) T1 1 0
2 2

f X CX Bλ− + =                                  (19) 

( ) T1 1
2 2

f X CX Bλ= −                                   (20) 

Thus the nonlinear objective function of the QP problem is now linearised but it creates a new challenge. We 
will discuss this in the next section. 

3.5. LP Equivalent to the Given QP 
From (1), (3) and (20), we have the following LP problem: 

Minimize T1 1
2 2

CX Bλ−  

Subject to: 
T T T T T T T T T T T T, , , , , 0QX A Y C AX S B X Y Sλ λ+ − = − + = ≥                   (21) 

The minimisation problem (21) will have an unbounded solution due to negative coefficient of λ  in the ob-
jective function and negative coefficients of the slack variable TY  in the constraints. These are the only source  

of unboundedness in the LP (21). Here, we let: 
1
2

Bω λ=  and TYφ µ=  where ( )1,1, ,1µ =   a row vec- 

tor of dimension n . The objective function is now modified as : 

Minimize T
1 2

1 1
2 2

CX B l lλ ω φ− + + , where 1l  and 2l  are very large constants relative to all other objective  

coefficients. Both of these constants do not have to assume the same large values. A large number of experi-
ments were done on a large number of quadratic programming problems and and it was observed that 1 2l l  
seems to work well. These experiments have been recorded later in this paper. In these experiments, it was noted 
that values of 1l  and 2l  on higher side can be as much as ( )1 1 21000 nl c c c= + + +  and 

( )2 1 250000 nl c c c= + + + . 

3.6. Existence of a Linear Objective Function and Verification of Optimality 
The optimal solution of a convex quadratic programming model is unique and it satisfies the complementary 
conditions T 0YX =  and T 0Sλ = . The unique optimal solution to the convex quadratic programming is a 
corner point QP . Since the KKT conditions can be expressed as a linear objective function that can make QP  
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exist. 

4. Numerical Illustrations 
4.1. Example 1 
Minimize 2 2

1 2 1 28 16 4x x x x− − + +  
Subject to: 

1 2 1 1 25, 3, , 0x x x x x+ ≤ ≤ ≥                                (22) 

This example was taken from Jensen and Bard (2012) without any modifications. 
Linear formulation of the above QP 
In this case we took 1 1000l =  and 2 50000l =  which are very large compared to coefficients 4; 8; 2.5; and 

1.5. The LP problem is given by: 
Maximize 1 2 1 24 8 2.5 1.5 1000 50000x x λ λ ω φ+ + + − −  
Subject to 

1 1 2 12 8,x yλ λ+ + − =  

2 1 2 1 2 18 16, 5,x y x x sλ+ − = + + =  

1 2 3,x s+ =  

1 22.5 1.5 ,λ λ ω+ =  

1 2y y φ+ =  

1 2 1 2 1 2 1 2, , , , , , , , , 0x x y y s sλ λ ω φ ≥                               (23) 

The solution of (23) by the simplex method is given by: 

1 2 2 1 1 2 1 23, 2, 2, 3, 0.x x y y s sλ ω λ φ= = = = = = = = = =                  (24) 

From the original QP objective function, we have the objective value given in (25). 

( )3,2 31f = −                                       (25) 

Verification of optimality 
The solution is optimal because complementary slackness conditions are satisfied as given in (26). 

1 1 2 2 1 1 2 2 0s s y x y xλ λ= = = =                                  (26) 

4.2. Two More Examples 
Two more examples are solved to illustrate how the large constants are selected. Example 2 is taken from [12] 
and example 3 is from [13]. 

Example 2 from [12] 
Minimize ( ) ( )2 2

1 21 2.5x x− + −  
Subject to: 

1 2 1 2 1 2 1 22 2, 2 6, 2 2, , 0x x x x x x x x− + ≤ + ≤ − ≤ ≥                  (27) 

The linear formulation of (27) becomes as given in (28). 
Maximize 1 2 1 2 32 5 2 6 2 1000 300000x x λ λ λ ω φ+ + + + − −  
Such that: 

1 1 2 3 12 2x yλ λ λ− + + − = , 

2 1 2 3 22 2 2 2 5x yλ λ λ+ + − − = , 

1 2 12 2x x s− + + = , 

1 2 22 6x x s+ + = , 
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1 2 32 2,x x s− + =  

1 22 5λ λ ω+ = , 

1 2 ,y y φ+ =  

1 2 1 2 3 1 2 1 2 3, , , , , , , , , , , 0x x y y s s sλ λ λ ω φ ≥                     (28) 

The solution of (28) is as given in (29) and once again it is optimal as all complementary slackness conditions 
are satisfied. 

1 2 1 2 3 2 3 1 2 11.4, 1.7, 0.8, 1.2, 4, 1.8, 0x x s s y y sλ ω λ λ φ= = = = = = = = = = = =           (29) 

Example 3 from [13] 

Minimize 2 2
1 2 1 2 1 2

1
2

x x x x x x− − + + −  

Subject to: 1 2 1 2 1 23, 2 3 6; , 0.x x x x x x− + ≤ − − ≤ − ≥  
The linear formulation of the above example is given by (30). 

Maximize 1 2 1 2
1 1 1.5 3 500 80000
2 2

x x λ λ ω φ+ + − − −  

Subject to: 

1 2 1 2 12 1x x yλ λ− + − − = ; 1 2 1 2 22 3 1;x x yλ λ− + + − − =  1 2 1 3;x x s+ + =  

1 2 2 1 2 1 2 1 2 1 2 1 2 1 22 3 6;1.5 3 ; ; where , , , , , , , , , 0.x x s y y x x y y s sλ λ ω φ λ λ ω φ+ + = − = + = ≥       (30) 

The solution is given by: 1 2 1 2 3 2 1 2 11.8, 1.2, 0.4, 1.2, 4, 0.6, 0.x x s s y y sλ ω λ φ= = = = = = = = = = =  This 
solution is once again optimal as all complementary slackness conditions are satisfied. 

5. Computational Experiments 
A set of convex quadratic programming test problems are given in [14]. All these test problems were used in 
testing the proposed approach. The objective of the computational experiments was: 

1) To determine that the LP optimal solution is also optimal to the given QP. 
2) Compare CPU times of the proposed heuristics with Regularized Active Set Method and Primal-Dual Inte-

rior Point Method 
The results are tabulated in Table 1. MATLAB R2013 (version 8.2) running on an Intel Pentium Dual desktop 

 
Table 1. Computational experiments on the set of QP test problems.                                                  

Exp. 
No. 

Prob. 
Name 

No. of 
constraints 

(m) 

No. of 
Variables 

(n) 

CPU secs 
Proposed 
Heuristic 

CPU secs 
Active 

Set 

CPU secs 
Interior 
Point 

1 AUG2D 10,000 20,200 29.34 0.55 15.12 

2 AUG2DC 10,000 20,200 34.39 0.57 14.25 

3 AUG2DCQP 10,000 20,200 21.89 240.73 14.63 

4 AUG2DQP 10,000 20,200 37.19 228.72 14.76 

5 AUG3D 1000 3873 0.29 0.07 1.65 

6 AUG3DC 1000 3873 0.45 0.06 1.69 

7 AUG3DCQP 1000 3873 0.82 3.84 1.39 

8 AUG3DQP 1000 3873 0.53 5.02 1.56 

9 BOYD1 18 93,261 89.67 214.24 107.10 

10 BOYD2 0 93,263 * 4168.93 2245.64 
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Continued  

11 CONT-050 2401 2597 0.31 0.84 3.37 

12 CONT-100 9801 10197 1.88 26.37 19.12 

13 CONT-101 10,098 10197 112.7 35855.97 20.66 

14 CONT-200 39,601 40,397 76.16 277.68 136.22 

15 CONT-201 40,198 40,397 51.12 285.50 143.56 

16 CONT-300 90,298 90,597 219.47 2449.75 721.76 

17 CVXQP1-L 5000 10,000 413.18 4516.19 2488.97 

18 CVXQP1-M 500 1000 0.65 5.94 1.85 

19 CVXQP1-S 50 100 0.01 0.04 0.21 

20 CVXQP2-L 2500 10,000 218.82 670.50 443.34 

21 CVXQP2-M 250 1000 0.63 4.24 1.52 

22 CVXQP2-S 25 100 0.02 0.04 0.26 

23 CVXQP3-L 7500 10,000 76.22 14069.08 736.74 

24 CVXQP3-M 750 1000 0.65 17.10 2.63 

25 CVXQP3-S 75 100 0.02 0.40 0.23 

26 DPKLO1 77 133 0.02 0.01 0.17 

27 DTOC3 9998 1499 74.1 0.32 107.10 

28 DUAL1 1 85 ~0.00 0.03 0.46 

29 DUAL2 1 96 ~0.00 0.01 0.43 

30 DUAL3 1 111 ~0.00 0.03 0.58 

31 DUAL4 1 75 ~0.00 0.01 0.37 

32 DUALC1 215 9 ~0.00 0.02 0.60 

33 DUALC2 229 7 ~0.00 0.01 0.44 

34 DUALC5 278 8 ~0.00 0.01 0.24 

35 DUALC8 503 8 ~0.00 0.02 0.70 

36 EXDATA 3001 3000 154.08 ~0.00 200.08 

37 GENH28 8 10 ~0.00 7.76 0.05 

38 GOULDQP2 349 699 0.31 0.87 0.78 

39 GOULDQP3 349 699 0.08 0.01 0.65 

40 HS118 17 15 ~0.00 ~0.00 0.14 

41 HS21 1 2 ~0.00 ~0.00 0.14 

42 HS268 5 5 ~0.00 0.00 0.16 

43 HS35 1 3 ~0.00 ~0.00 0.05 

44 HS35MOD 1 3 ~0.00 ~0.00 0.08 

45 HS51 3 5 ~0.00 0.00 0.05 

46 HS52 3 5 ~0.00 ~0.00 0.04 
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Continued  

47 HS53 3 5 ~0.00 ~0.00 0.09 

48 HS76 3 4 ~0.00 5.44 0.06 

49 HUES-MOD 2 10,000 2.44 5.32 3.78 

50 HUESTIC 2 10,000 1.15 9.64 3.42 

51 KSIP 1001 20 0.64 6.58 2.55 

52 LASER 1000 1002 0.56 213.02 1.99 

53 LISWET1 10,000 10,002 26.87 215.75 14.89 

54 LISWET10 10,000 10,002 26.12 223.19 15.12 

55 LISWET11 10,000 10,002 24.97 234.96 15.03 

56 LISWET12 10,000 10,002 28.67 223.23 15.01 

57 LISWET2 10,000 10,002 46.96 212.28 135.27 

58 LISWET3 10,000 10,002 33.16 214.23 145.28 

59 LISWET4 10,000 10,002 39.17 212.05 150.86 

60 LISWET5 10,000 10,002 28.18 211.28 153.74 

61 LISWET6 10,000 10,002 40.06 203.76 136.04 

62 LISWET7 10,000 10,002 23.12 217.98 14.63 

63 LISWET8 10,000 10,002 24.05 230.47 14.54 

64 LISWET9 10,000 10,002 35.08 ~0.00 15.05 

65 LOTSCHD 7 12 ~0.00 7.14 0.09 

66 MOSARQP1 700 2500 1.08 3.10 0.57 

67 MOSARQP2 600 900 2.17 190.45 0.47 

68 POWELL 20 10,000 10,000 23.18 0.13 10.88 

69 PRIMAL 1 85 325 0.02 0.25 0.46 

70 PRIMAL 2 96 649 0.03 0.64 0.64 

71 PRIMAL 3 111 745 0.02 0.34 1.23 

72 PRIMAL 4 75 1489 0.02 0.34 1.18 

73 PRIMALC1 9 230 ~0.01 0.34 0.42 

74 PRIMAL C2 7 231 ~0.01 0.36 0.26 

75 PRIMALC5 8 287 ~0.01 0.87 0.20 

76 PRIMALC8 8 520 ~0.02 0.08 0.31 

77 Q25FV47 820 1571 32.16 0.01 11.85 

78 QADLITTL 56 97 0.01 2.18 0.17 

79 QAFIRO 27 32 0.01 0.31 0.14 

80 QBANDM 305 472 0.03 0.36 0.54 

81 QBEACONF 173 262 0.04 0.82 0.35 

82 QBORE3D 233 315 0.06 1.27 0.51 
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Continued  

83 QBRANDY 220 249 0.05 1.86 0.35 

84 QCAPRI 271 353 0.06 4.22 1.18 

85 QE226 223 282 0.04 5.39 0.50 

86 QETAMACR 400 688 0.06 1.26 1.86 

87 QFFFFF80 524 854 0.07 6.24 1.54 

88 QFORPLAN 161 421 0.09 3.77 1.13 

89 QGFRDXPN 616 1092 1.06 8.42 2.04 

90 QGROW15 300 645 0.08 0.84 1.32 

91 QGROW22 440 946 0.05 0.66 2.09 

92 QGROW7 140 301 0.04 0.10 0.81 

93 QISRAEL 174 142 0.02 3.68 0.71 

94 QPCBLEND 74 83 0.01 0.78 0.22 

95 QPCBOE11 351 384 0.02 1.61 1.24 

96 QPCBOE12 166 143 0.05 55.42 0.69 

97 QPCSTAIR 356 467 0.08 ~0.00 0.86 

98 QPILOTNO 975 2172 8.15 0.02 4.76 

99 QPTEST 2 2 ~0.00 0.30 0.08 

100 QRECIPE 91 180 0.08 2.58 0.41 

101 QSC205 205 203 0.09 0.13 0.30 

102 QSCAGR25 471 500 0.05 1.61 0.63 

103 QSCAGR7 129 140 0.08 5.82 0.35 

104 QSEFXM1 330 457 0.08 12.18 0.85 

105 QSEFXM2 660 914 0.13 0.99 1.55 

106 QSEFXM3 990 1371 1.12 5.25 2.38 

107 QSCRPIO 388 358 0.05 0.95 0.35 

108 QSCRS8 490 1169 0.08 4.64 1.14 

109 QSCSD1 77 760 0.87 29.78 6.87 

110 QSCSd6 147 1350 0.09 2,71 0.68 

111 QSCSD8 397 2750 0.04 22.41 1.13 

112 QSETAP1 300 480 0.08 39.33 0.50 

113 QSETAP2 1090 1880 0.23 1.58 1.17 

114 QSETAP3 1480 2480 0.07 0.40 1.51 

115 QSEBA 515 1028 0.06 0.11 1.80 

116 QSHARE1B 117 225 0.04 23.37 0.44 

117 QSHARE2B 96 79 0.02 6.36 0.27 

118 QSHELL 536 1775 0.03 3.55 3.03 
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Continued  

119 QSHIP04L 402 2118 0.08 48.37 1.05 

120 QSHIP04S 402 1458 0.11 13.18 0.72 

121 QSHIP08L 778 4283 1.03 23.35 6.10 

122 QSHIP08S 778 2387 0.79 12.19 1.75 

123 QSHIP12L 1151 5247 1.26 1.90 11.76 

124 QSHIP12S 1151 2763 0.16 2.68 2.24 

125 SIERRA 1227 2036 0.12 ~0.00 3.79 

126 QSTAIR 356 467 0.07 36.94 0.87 

127 QSTANDAT 359 1075 0.05 39.34 0.98 

128 S268 5 5 ~0.00 95.97 0.16 

129 STADAT1 3999 2001 0.08 12.28 6.61 

130 STADAT2 3999 2001 0.13 1.87 8.12 

130 STADAT3 7999 4001 0.09 ~0.00 14.16 

131 STCQP1 2052 4097 0.15 759.14 1.87 

132 STCQP2 2052 4097 0.06 0.61 3.89 

133 TAME 1 2 ~0.00 9.38 0.03 

134 UBH1 12,000 18,009 34.54 ~0.00 62.83 

135 VALUES 1 202 ~0.00 0.55 0.51 

136 YAO 2000 2002 0.08 0.57 3.66 

137 ZECEVIC2 2 2 ~0.00 240.73 0.83 

 
(Dual core G2020 2.9 GHz CPU, 2GB DDR3 1333 RAM) was used in these experiments. There were no ad-
vanced processing techniques embedded within the three methods. The set up time was excluded from the CPU 
times in all three methods. The zero (~0.00) means CPU time is less than 0.01 second. In all the test problems, it 
was found that the LP optimal solution was optimal to the QP problem. However, in the CPU time challenges 
were observed with the BODYD2 for the proposed heuristic and as a result we could not accurately obtain the 
necessary CPU time for these two cases. There was no challenge with the other two methods on the same 
BODYD2 problem. This experiment was conducted twice, but the same observation. We have no reason to 
support this behaviour but we believe it may be due to some local computational environment. 

6. Conclusion 
The convex QP problem can be solved like a linear programming problem efficiently either by the simplex me-
thod or the interior point algorithm. The restricted base entry is not necessary by the proposed approach. Com-
plementary slackness can retard the simplex method, which is roughly eight times slower than the full speed 
simplex method. Taking complementary slackness conditions away itself is a big reduction in the number of 
constraints in the proposed linear formulation of the quadratic programming problem. More experiments are 
likely to give more insight and advantages of the proposed approach. The proposed method is in fact the usual 
simplex method applied to solving an ordinary LP that was obtained from the given convex QP. Also note that a 
large number of Maros-Maszaros test problems are giving rise to small to medium size LPs and therefore the 
proposed method dominates solving a large number of QPs, as is reflected in Table 1. From these results, it may 
be noted that, for example in the case of medium sized problems at serial 118 to 124 and large sized problems at 
serial number 125 to 132, the proposed heuristic outperformed the other two with respect to the cpu time. 
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