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Abstract 
We note that the Single Stage Single Period Multi Commodity Warehouse Location Problem 
(SSSPMCWLP) has been first attempted by Geoffrion and Graves [1], and that they use the weak 
formulation (in context of contribution of this paper). We give for the first time “strong” formula-
tion of SSSPMCWLP. We notice advantages of strong formulation over weak formulation in terms 
of better bounds for yielding efficient Branch and Bound solutions. However, the computation time 
of “strong” formulation was discovered to be higher than that of the “weak” formulation, which 
was a major drawback in solving large size problems. To overcome this, we develop the hybrid 
strong formulation by adding only a few most promising demand and supply side strong constraints 
to the weak formulation of SSSPMCWLP. So, the formulations developed were put to test on vari-
ous large size problems. Hybrid formulation is able to give better bound than the weak and takes 
much less CPU time than the strong formulation. So, a kind of trade off is achieved allowing effi-
ciently solving large sized SSSPMCWLP in real times using hybrid formulation. 
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1. Introduction and Literature Survey 
Warehousing is a key component of today’s business supply chain. It is not just a place to store finished goods but 
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involves various value added functions like consolidation, packing and shipment of orders to customers. Organ-
izations produce several commodities at various manufacturing sites, and generally it is not economical to get 
these commodities directly from plants to markets owing to distant market locations, associated demand dispari-
ties and uncertainties. Therefore, warehouses are installed at various locations between plants and markets to 
consolidate the localized customer demand. There can be more than one stage of the warehouse located between 
plants and the markets (Multistage Warehouse Location Problem). Among all considerations for securing a ware-
house premise, the most important features are the space the warehouse can offer and its location. Generally, the 
sole objective in warehouse allocation problem is to minimize the total cost of transporting the goods from the 
manufacturing sites to the end customers via these warehouses. 

We develop in this work the strong constraints for the multi-commodity case of Single Stage Single Period 
Capacitated Warehouse Location Problem (SSSPMCWLP). Here, “Capacitated” means that the capacity of a 
warehouse at a particular location is fixed and limited. This problem can be compared with a real life problem 
faced by Food Corporation of India (FCI) [2]. In India, FCI distributes a variety of food grains (wheat, rice, etc.) 
all over the country on a massive scale, purchasing them from various assigned locations called “MANDIS” di-
rectly from the farmers. FCI has a central office and five zones (North, South, East, North-East, and West). Each 
zone is further divided into regions, and each region is divided into several states and each state has several dis-
tricts in it. From “MANDIS”, these grains are taken to central warehouses of each region and then transported to 
district warehouse as per the demand. From district warehouse, food grains are moved to depots, which distri-
bute food grains directly to the public at a fair price. So, the MANDIS acts as plants or sources of food grain and 
district warehouses as demand points. Regional warehouses serve the intermediate transhipment points. The 
problem faced by FCI is to choose an optimum number of regional warehouse locations with sufficient capacity 
so as to minimize the sum of location and transportation costs of distributing food grains from MANDIS to these 
large Regional warehouses, and subsequently to smaller warehouses or district distribution centres. This results 
in SSSPMCWLP. 

The importance of allocation of warehouses/facility between the production sites and the market can be de-
picted from the fact that this has been studied in its variant forms by long lists of researchers from last four dec-
ades and still remains the crucial decision of today’s supply chain design. Researchers have used several me-
thods/approaches to reach the optimal solution. Warehouse allocation problem can be classified as:  

1.1. Uncapacitated (SPLP) or Capacitated (CPLP)  
Uncapacitated or Simple Plant Location Problems are those where it is assumed that facility has infinite storage 
space/handling capacity while the Capacitated Plant Location Problem implies that the capacity of the ware-
house is limited and known in advance. 

1.2. Single Commodity or Multi-Commodity  
Single commodity means that there is only a single type of commodity and multi-commodity problems dealing 
with more than one type of commodities to be distributed.  

1.3. Single Stage or Multi-Stage 
Single stage refers to the real life problems where commodities are stored at one intermediate stage between 
plants and markets, while in the multi-stage problems, food grain distribution system commodities are stored at 
multiple stages (Figure 1 shows the schematic representation of single stage). 

Our problem is multi-commodity single stage single period capacitated warehouse location problem 
(SSSPMCWLP), whose variants have been attempted by many researchers. An overview of the work done in 
the field of facility allocation can be found in review work of ReVelle and Eiselt [3]. Geoffrion and Graves [1], 
Sharma [4] [5], Drezner et al. [6] and Kouvelis et al. [7] have used weak formulation to address single stage ca-
pacitated ware house location problem (SSCWLP). Keskin and Uster [8] have attempted to solve SSCWLP prob-
lem with capacity limit at the manufacturing plant, and not on the warehouse. Geoffrion and Graves [1] and 
Sharma [4] have attempted the SSUWLP and have given completely different formulations considering two dif-
ferent real life problems. Geoffrion and Graves [1] gave a formulation for multi-commodity capacitated single- 
period version and successfully applied it to a real problem for a food firm using solution technique based on 
bender decomposition. Hindi and Basta [9] and Hindi et al. [10] solved the similar production-distribution pro- 
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Figure 1. Multi-commodity distribution from plants to markets via warehouses. 

 
blem by a branch-and-bound algorithm. Sharma [4] formulated a fertilizer production-distribution system prob-
lem as a mixed zero-one integer linear programming problem (MILP).Sharma and Verma [11] gave strong and 
weak formulation for SSUWLP considering single commodity; they also gave hybrid formulation to get a better 
bound than the weak formulation along with lesser CPU time than the strong formulation. Montoya-Torres et al. 
[12] developed three-echelon un-capacitated facility location problem (TUFLP) where they minimized the total 
cost of warehouse location, production, and distribution of products and proposed a greedy randomized adaptive 
search procedure (GRASP) to solve the multi-item version of the TUFLP. Elson [13] proposed a different multi- 
commodity version of the plant-warehouse facility logistics problem, concentrating on a single echelon of 
transshipment/stocking points. Many researchers have worked on developing both heuristic solution methods 
and exact algorithms to solve capacitated plant location problem. Pirkul and Jayaraman [14] proposed a heuristic 
based on the Lagrangian relaxation of the model to solve the two-stage production-distribution system design 
problem (TSPDSDP) with multi-commodity. Keskin and Üster [8] proposed a scatter search algorithm with hy-
brid improvements including local search and path-relinking to solve a TSPDSDP in which a fixed number of 
intermediate facilities points are to be located between the plants and customer locations. Verma and Sharma [15] 
applied vertical decomposition and Lagrangian relaxation approach to solve SSCWLP. Sharma and Aggarwal 
[16] solved two-stage capacitated warehouse location problem (TSCWLP) by vertical decomposition method, 
which was attained by relaxing the associated flow balance constraints. 

It may be noted that Sharma [17], Sharma and Murali [18], Sharma and Berry [3] and Sharma and Verma [12] 
have attempted single commodity problem and have used “Normalized” variables for developing their strong 
formulation. We attempt for the first time to give strong formulation for multi-commodity version of the loca-
tion-distribution problem (SSSCPMCWLP) and have not used ‘Normalized’ variables due to obvious difficulty. 

The remainder of this paper is organized as follows. Section 2 gives mathematical formulation of the 
SSSCPMCWLP based on the existing literature and our modifications. Section 3 provides theoretical framework 
for using strong formulation, followed by empirical justification of hybrid formulation trade off in relaxed bound 
values versus computation time. The results from empirical investigation are followed by conclusions in Section 
4. 

2. Mathematical Formulation of SSSCPMCWLP 
2.1. Indices Used  

i : Set of the supply points (plants);  
j : Set of the potential warehouse points; 
k : Set of the markets;   
m : Set of the commodities. 

2.2. Definition of Constants 

jF : Fixed cost of establishing and maintaining the warehouse at location “ j ”; 

imS : Supply capacity of plant “ i ” for commodity “ m ”; 

kmD : Demand for commodity “ m ” at market “ k ” ; 
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CAPj : Capacity of the warehouse at location “ j ” for all commodities (assumed that all the commodity are of 
same density and occupy same space**); 

M : A very large number, here taken as two times the maximumsupplyor maximum warehouse capacity; 
CPWijm : Cost of shipping one unit from plant “ i ” to warehouse “ j ” of the commodity “ m ”; 
CWM jkm : Cost of shipping one unit from warehouse “ j ” to market “ k ” for commodity “ m ”; 

**: Even if the volume or density are different for commodities a conversion factor can be introduced to ac-
count for them in warehouse capacity constraint (say mv  for commodity “ m ”). 

2.3. Definition of Decision Variables 

XPWijm : Number of units shipped from plant “ i ” to warehouse “ j ” of the commodity type “ m ”; 
XWM jkm : Number of units shipped from warehouse “ j ” to market “ k ” of commodity type “ m ”; 

jY : Binary variable which is 1 if it is decided to locate a warehouse at location “ j ” and 0 otherwise; 
Z : Total cost of transporting commodities from plants to warehouses, warehouses to demand points or mar-

kets and fixed cost of locating the warehouses. 

2.4. Mathematical Model 
Minimize  

( ) ( ), , , , , , , ,, , , ,XPW CPW XWM CWMi j m i j m j k m j k m j ji j m j k m jZ Y F= ∗ + ∗ + ∗∑ ∑ ∑            (1) 

Subjected to: 

( ), , , ,    ,   Supply ConstrainX tsPWi j m i mj mS i∀≤∑                           (2) 

( ), , , , ,    , ,    Flow balance constraXPW X intWMi j m j k mi k j m∀=∑ ∑                   (3) 

( ), , , ,    , ,    Demand ConstraintsXWM j k m k mj k mD ∀=∑                        (4) 

( ), ,, ,    ,    CapacXPM CAP ity Constraintsi j m ji m j∀≤∑                         (5) 

Linking constraints 

( ), ,, ,    ,    Weak linking constXP rai tW ni j m ji m M Y j≤ ∗ ∀∑                      (6) 

( )
( ) ( ), , ,

, , ,

, ,  ,  ;    7
Strong Linking Constraints

, ,  ,  .    8
XPW
XWM

i j m i m j

j k m k m j

i j mS Y
mD Y i j

∀ 


≤ ∗
≤ ∀ ∗

 

Positive and binary constraints on decision variables: 

, , ,    W  ,XP 0 ,  i j m i j m∀≥                                     (9)  

, ,  ,    X  ,0 ,WM  j k m j k m∀≥                                   (10) 

{ } ,   0,1  jY j∈ ∀                                        (11) 

Relaxed binary constraints 

,0    1jY j≤ ≤ ∀                                        (12) 

Formulation I: Min (1); s.t. (2) - (5); (6); (9) - (11); 
Formulation II: Min (1); s.t. (2) - (5); (7) - (8); (9) - (11).  

3. Theoretical Framework and Empirical Verification 
Theorem 1: LP relaxation of strong formulation (formulation II) gives superior bounds than the LP relaxation of 
weak formulation (formulation I) of SSSPMCWLP. 
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Proof: we see the feasible region of LP relaxation of formulation II is much smaller than feasible region of LP 
relaxation of formulation I, since all  and im kmM S s D s′ ′� . Tighter feasible region for a minimization problem 
obviously result in higher objective function value i.e. formulation II objective function value will be higher 
(proved). 

Though LP relaxation of weak formulation gives inferior bounds but are computed very fast (as it has linear 
number of linking constraints). LP relaxation of strong formulation gives superior bounds but it takes more time 
(as number of linking constraints are of order ( )j m k m∗ + ∗ ). Therefore computational time of LP relaxation 
of strong formulation is much higher than the LP relaxation of weak formulation of SSSPMCWLP. 

The hybrid formulation is developed to take advantage of both (better bound of strong formulation and better 
computation time of weak formulation) by adding most promising constraints of the strong formulation to the 
weak formulation of the SSSPMCWLP. Those few ‘strong’ constraints added may be binding in strong formula-
tion, and can carefully be obtained by sorting the demand and supply values and gradually iterating to get the 
desired result. We started with 20% of strong constraints then reduced to5%, by step size of 5% and later re-
duced with step size of 1%. In each step, we observed decrease in the bounds obtained by LP relaxation but also 
simultaneous significant improvement in computational time. After some iteration we arrived at desired/satis- 
factory level and decided that the top 2% of total “strong” demand and supply constraints were to be added to 
the “weak” formulation of SSSPMCWLP to get the required hybrid formulation. At this level, the bounds were 
only a little inferior from weak bounds, but took substantially less computational time compared to strong com-
putational time; significantly improving the overall computational times for solving original SSSPMCWLP. 
This motivated us to develop the following procedure. 

Procedure to build hybrid formulation constraints 
Step 1: Sort demand points values in increasing order of demand ,k mD  for each m . 
Set cut off number ( )INT 0.02N K= ∗ , where K is number of demand points. 

Let the demand associated with this number N and given m be: ( ),2%  cut offk mD  

Prepare a set of most promising demand points ( ) ( ){ }, ,2%  cut offMP for eaDP : ch k m k mD D mk ≤=  

Now,  

{ }, , ,MPDP_constr ;  , , ;  where MPM DPXW j k m k m j j m kD Y k≤ ∗= ∀ ∈                 (13) 

Step 2: Sort supply points values in increasing order of demand ,i mS  for each m . 
Set cut off number ( )INT 0.02N K= ∗ , where S is the number of supply points. 
Let the Supply capacity associated with this number N and given m be: ( ),2%  cut offi mS  

Prepare a set of most promising supply points ( ) ( ){ }, ,2%  cut offMP for eaSP : ch i m i mS S mi ≤=  

Now,  

{ }, , ,MPSP_constr ;  , , ;  where MPW SPXP i j m i m j i m jS Y i≤ ∗= ∀ ∈                   (14) 

Hybrid formulation (HF) and its relaxation (HFR) 
HF: Minimize (1); subject to (2) - (6); (9) - (11); (13); (14);  
HFR: Minimize (1); subject to (2) - (6); (9); (10); (12); (13); (14).  

3.1. Empirical Investigation 
GAMS programming is used to show the superiority of formulation (II) over formulation (I) and t-test has been 
conducted for the statistical significance of the results. To overcome the drawback of higher CPU time for 
strong formulation (Formulation II), a hybrid formulation is developed by adding the most promising supply and 
demand side strong linking constraint to the weak formulation. Here we have included 2% of the demand and 
strong side linking constraints to the weak formulation for which demand and supply are least.  

Problem instances of the size 50 × 50 × 50 and 100 × 100 × 100 are solved in GAMS for the following four 
categories (Table 1) and as per assumptions given below: 

1) In each problem instance demand for each commodity in each market is taken as uniformly distributed with 
lower bound of 100 units and upper bound of 150 units; 
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Table 1. Problem categories for SSSPMCWLP.                                                                

Category Average warehouse capacity Average supply capacity 

A. 30% more than the average demand 30% more than the average warehouse capacity 

B. 30% more than the average demand 125% more than the average warehouse capacity 

C. 125% more than the average demand 30% more than the average warehouse capacity 

D. 125% more than the average demand 125% more than the average warehouse capacity 

 
2) Total Supply Capacity of each commodity at any plant and Warehouse Capacity at any location is more 

than any market average demand and taken as per the above four categories in Table 1; 
3) Warehouse Capacity and Supply Capacity of plants are also uniformly distributed;  
4) Cost of carrying one unit from plant to warehouse is normally distributed with mean of 4000 and standard 

deviation of 300; 
5) Cost of carrying one unit from warehouse to market is normally distributed with mean of 5000 and stan-

dard deviation of 400; 
6) Fixed Cost of locating a warehouse is normally distributed with a mean of 10,000 and standard deviation of 

1500. 
Samples problems are solved by relaxing the 0 - 1 constraints for the location variable Yj (constraint (12) in 

place of constraint (11) in formulation I and formulation II). 
GAMS code is written to generate the random values for supply capacity, warehouse capacity, demand, costs 

of transportation and fixed cost of warehouse location as per the above specified criteria. The same code solves 
both the formulation (I) and formulation (II) with the same input data. Same data is used to solve hybrid formu-
lation, so that we can compare the objective function values and CPU time values for these three formulations. 
30 Problems are solved for each of the four categories for each problem size (total number of problem instances 
solved = 240, 120 of each of the size 50 × 50 × 50 and 100 × 100 × 100) using a Intel (R) Core (TM) i7-4770S 
CPU @ 3.10GHz. 

Objective function values and CPU time for each and every problem instance is recorded and statistical anal-
ysis (t-test) is done to check the superiority of formulation (II) over formulation (I) and superiority of hybrid 
formulation over other formulations with a confidence level of 99.5% (Tables 2-13). 

3.1.1. Statistical Analysis 
Hypothesis tests are conducted as follows:  
I. To check improvement in objective function values of LP relaxed Strong Bound (formulation II) from LP 

relaxed Weak Formulation (formulation I) 
µ1: Percentage increase in objective function value of LP relaxed formulation (II) over LP relaxed formulation 

(I). 
Null hypothesis, 0 1: 0H µ = ; 
Alternate hypothesis, 1: 0aH µ > . 
From the statistical t-tables we have the critical value for t-stats at 0.005α =  as 2.68 for d.o.f. = 49 and 

2.6264 for 0.005α =  and d.o.f. = 99, thus we can easily reject null hypothesis 1 0µ = . 
II. To check improvement in objective function values of LP relaxed Hybrid formulation vs. LP relaxed Weak 

Formulation (formulation I). 
µ2: Percentage increase in objective function value of LP relaxed Hybrid formulation over LP relaxed Weak 

formulation (formulation I). 
Null hypothesis, 2: 0aH µ = ; 
Alternate hypothesis, 2: 0aH µ > . 
Result: Comparing the calculated t-values with critical t-values, the null hypothesis µ2 = 0 is rejected. 
III. To check deterioration in CPU time values of LP relaxed Strong bound (formulation (II)) vs. LP relaxed 

Weak bound (formulation (I)). 
t1: Percentage deterioration in CPU time for Strong formulation (II) over weak formulation (I). 
Null hypothesis, 1: 0aH t = ; 
Alternate hypothesis, 1: 0aH t > . 
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Table 2. Problem size 50 × 50 × 50 of Category A.                                                             

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 464761657.8 0.172 464,856,004 0.193 465252234.1 0.203 

P2 465982540.6 0.141 466,077,974 0.160 466,479,602 0.203 

P3 463307328.6 0.141 463,406,152 0.153 463794110.6 0.203 

P4 463827848.1 0.14 463,921,356 0.159 464328797.5 0.187 

P5 462125994.6 0.141 462,227,246 0.156 462614855.4 0.203 

P6 464303782.3 0.141 464,405,186 0.158 464812299.2 0.203 

P7 466278050.8 0.140 466,375,689 0.158 466787603.6 0.203 

P8 463635528.2 0.141 463,730,203 0.152 464,121,359 0.187 

P9 463313848.7 0.141 463,413,322 0.156 463809058.1 0.187 

P10 464,843,759 0.109 464,937,239 0.120 465335659.3 0.187 

P11 464899247.3 0.110 464,993,389 0.119 465404355.6 0.203 

P12 463364638.6 0.109 463,457,636 0.122 463851905.1 0.203 

P13 464718283.4 0.125 464,815,642 0.135 465205666.3 0.203 

P14 461971206.5 0.125 462,068,220 0.142 462461413.5 0.203 

P15 466460412.4 0.109 466,557,763 0.124 466968490.2 0.187 

P16 466,121,646 0.125 466,215,197 0.140 466623984.1 0.203 

P17 466,613,596 0.109 466,708,832 0.118 467117668.5 0.187 

P18 457,455,118 0.125 457,547,981 0.141 457,942,972 0.203 

P19 465677481.6 0.125 465,778,580 0.141 466196407.9 0.203 

P20 464276924.6 0.125 464,370,012 0.142 464,767,951 0.203 

P21 462941205.5 0.125 463,035,738 0.140 463438858.3 0.203 

P22 461101747.4 0.125 461,195,628 0.136 461599000.9 0.203 

P23 465161010.4 0.125 465,258,415 0.135 465650542.7 0.203 

P24 461900311.9 0.125 461,998,743 0.135 462396333.7 0.203 

P25 463755031.4 0.125 463,856,362 0.141 464258661.5 0.203 

P26 459684460.9 0.125 459,780,121 0.134 460163496.2 0.235 

P27 466716094.5 0.110 466,811,865 0.125 467213751.9 0.219 

P28 465410474.9 0.109 465,503,929 0.123 465913015.5 0.203 

P29 465,546,559 0.125 465,645,488 0.141 466045992.9 0.219 

P30 459281474.2 0.141 459,377,556 0.156 459785502.4 0.203 



R. R. K. Sharma et al. 
 

 
119 

Table 3. Problem size 50 × 50 × 50 of Category B.                                                             

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 462154595.8 0.125 462,252,526 0.168 462647776.5 0.203 

P2 463922755.7 0.125 464,021,386 0.172 464424535.6 0.219 

P3 454902314.7 0.094 454,995,979 0.130 455391806.2 0.234 

P4 462729689.5 0.11 462,824,549 0.156 463237509.7 0.203 

P5 463264246.2 0.109 463,357,548 0.159 463756427.2 0.203 

P6 459871109.2 0.109 459,967,544 0.149 460359595.1 0.203 

P7 463005259.3 0.109 463,102,583 0.150 463499775.1 0.203 

P8 461,750,540 0.11 461,846,630 0.154 462250609.3 0.203 

P9 462513368.3 0.109 462,607,027 0.142 463008757.8 0.203 

P10 464652116.8 0.109 464,746,116 0.157 465,123,264 0.203 

P11 465,808,805 0.125 465,907,370 0.174 466,306,867 0.25 

P12 466659753.5 0.14 466,754,205 0.181 467165643.8 0.25 

P13 465859563.6 0.141 465,953,947 0.177 466,367,333 0.234 

P14 460683422.9 0.125 460,784,405 0.158 461175212.4 0.234 

P15 459791614.3 0.125 459,888,906 0.174 460282546.8 0.188 

P16 460724495.9 0.109 460,819,912 0.155 461231699.5 0.172 

P17 461385093.5 0.125 461,480,185 0.158 461887513.4 0.203 

P18 463032455.3 0.125 463,126,358 0.173 463528485.4 0.188 

P19 461040271.5 0.109 461,141,147 0.152 461544498.2 0.25 

P20 461,943,881 0.093 462,038,256 0.134 462455999.9 0.187 

P21 461975515.3 0.11 462,077,104 0.139 462458306.3 0.188 

P22 459544615.7 0.109 459,645,210 0.152 460,037,834 0.187 

P23 461886169.8 0.11 461,983,905 0.146 462402129.2 0.203 

P24 459427161.6 0.109 459,522,677 0.147 459,901,863 0.188 

P25 465536812.4 0.125 465,631,596 0.161 466,037,225 0.234 

P26 461721331.5 0.125 461,819,032 0.173 462220540.5 0.25 

P27 460304848.7 0.11 460,396,956 0.148 460808541.2 0.234 

P28 458865037.7 0.125 458,963,051 0.167 459365142.4 0.218 

P29 461224194.5 0.109 461,321,005 0.153 461736086.6 0.203 

P30 462191950.1 0.109 462,287,670 0.149 462677404.9 0.219 
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Table 4. Problem size 50 × 50 × 50 of Category C.                                                              

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 460156810.2 0.125 460,249,210 0.157 460647316.2 0.25 

P2 461928500.6 0.109 462,025,737 0.154 462422695.2 0.187 

P3 460184521.6 0.094 460,277,847 0.118 460670115.5 0.188 

P4 458523854.3 0.109 458,623,812 0.154 459015839.3 0.188 

P5 461210372.4 0.109 461,310,363 0.146 461695917.4 0.172 

P6 466736925.2 0.109 466,839,421 0.134 467227158.5 0.188 

P7 465040652.4 0.109 465,135,474 0.160 465533649.4 0.188 

P8 465,711,634 0.11 465,806,825 0.132 466203952.5 0.188 

P9 462,663,898 0.093 462,758,652 0.118 463143978.5 0.171 

P10 461994675.3 0.11 462,089,430 0.155 462501565.4 0.188 

P11 463137094.7 0.11 463,237,318 0.158 463654765.4 0.187 

P12 460644100.8 0.11 460,736,460 0.149 461147401.4 0.187 

P13 459979852.8 0.109 460,080,404 0.144 460480501.1 0.172 

P14 465645551.9 0.125 465,743,431 0.180 466,147,369 0.171 

P15 459540857.4 0.109 459,641,773 0.143 460034510.6 0.172 

P16 457524145.7 0.094 457,617,435 0.116 458003132.4 0.187 

P17 463560066.4 0.094 463,658,619 0.129 464066716.1 0.172 

P18 461800417.3 0.125 461,896,010 0.169 462290440.1 0.187 

P19 461310140.9 0.094 461,402,864 0.132 461809878.3 0.172 

P20 463826134.1 0.109 463,921,172 0.137 464324355.3 0.188 

P21 461729092.8 0.125 461,826,795 0.158 462207481.3 0.172 

P22 459986245.2 0.109 460,084,636 0.148 460465903.5 0.187 

P23 466476622.5 0.094 466,576,728 0.126 466958243.4 0.219 

P24 461750643.4 0.094 461,844,887 0.114 462241797.1 0.172 

P25 461884416.2 0.11 461,978,687 0.149 462377121.9 0.172 

P26 462809272.1 0.11 462,905,999 0.162 463300162.2 0.188 

P27 462,954,846 0.109 463,050,076 0.140 463446331.4 0.172 

P28 462717628.6 0.11 462,814,105 0.157 463207321.1 0.172 

P29 461110049.8 0.109 461,211,171 0.160 461601038.8 0.187 

P30 461842013.8 0.125 461,938,493 0.170 462355526.8 0.187 
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Table 5. Problem size 50 × 50 × 50 of Category D.                                                             

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 465681644.6 0.109 465,779,158 0.125 466164697.7 0.188 

P2 457544301.9 0.109 457,638,693 0.128 458054151.7 0.203 

P3 459974575.7 0.093 460,067,583 0.106 460478771.5 0.188 

P4 458538365.5 0.094 458,633,100 0.116 459024202.6 0.187 

P5 460692904.2 0.094 460,793,612 0.111 461176844.4 0.203 

P6 459,533,942 0.094 459,626,170 0.124 460005875.9 0.203 

P7 460283567.4 0.109 460,376,361 0.141 460778713.3 0.187 

P8 461,788,231 0.109 461,882,251 0.131 462277760.5 0.188 

P9 456723909.6 0.125 456,816,899 0.150 457209892.4 0.172 

P10 459648712.5 0.125 459,744,963 0.158 460163566.7 0.172 

P11 456480416.3 0.11 456,579,336 0.127 456977922.9 0.188 

P12 465421105.4 0.109 465,520,659 0.127 465917396.2 0.172 

P13 463411618.9 0.109 463,506,016 0.138 463903987.7 0.188 

P14 462087761.9 0.125 462,188,543 0.160 462585844.7 0.172 

P15 464393272.7 0.109 464,494,557 0.135 464873431.8 0.187 

P16 459898122.6 0.125 459,995,391 0.147 460381579.4 0.172 

P17 460720255.7 0.109 460,814,657 0.145 461222610.1 0.187 

P18 460516332.1 0.125 460,613,547 0.153 461019806.6 0.188 

P19 460753982.8 0.109 460,850,649 0.131 461254252.7 0.187 

P20 459873402.2 0.109 459,966,067 0.144 460379360.6 0.172 

P21 461661335.6 0.125 461,757,407 0.149 462144676.9 0.218 

P22 464025496.2 0.109 464,123,545 0.124 464,520,012 0.172 

P23 456996616.6 0.141 457,093,226 0.184 457461190.2 0.172 

P24 463178689.2 0.125 463,280,311 0.156 463674506.7 0.172 

P25 460206278.2 0.11 460,301,633 0.147 460708601.5 0.188 

P26 462363155.8 0.11 462,459,743 0.130 462850313.3 0.172 

P27 464172352.1 0.11 464,268,389 0.137 464682393.6 0.203 

P28 457850163.7 0.11 457,942,192 0.135 458357345.2 0.188 

P29 462003319.6 0.125 462,098,030 0.148 462497026.1 0.172 

P30 460635912.7 0.11 460,733,936 0.133 461120649.7 0.187 
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Table 6. Problem size 100 × 100 × 100 of Category A.                                                          

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 1,365,932,733 0.969 1,366,215,071 1.085 1,366,941,579 1.562 

P2 1,356,964,622 1.062 1,357,249,992 1.144 1,357,960,054 1.572 

P3 1,366,670,095 1.093 1,366,946,572 1.248 1,367,675,025 1.65 

P4 1,364,344,024 1.047 1,364,630,536 1.145 1,365,354,097 1.578 

P5 1,359,252,277 1.109 1,359,550,905 1.265 1,360,243,625 1.578 

P6 1,362,703,027 1.031 1,362,989,604 1.137 1,363,687,229 1.547 

P7 1,357,648,342 1.094 1,357,931,004 1.248 1,358,646,263 1.532 

P8 1,361,734,440 1.078 1,362,015,230 1.234 1,362,771,012 1.578 

P9 1,363,335,394 1.094 1,363,626,057 1.226 1,364,326,431 1.578 

P10 1,354,662,978 1.062 1,354,940,548 1.126 1,355,672,184 1.625 

P11 1,359,010,784 1.031 1,359,297,671 1.111 1,360,015,221 1.578 

P12 1,360,290,820 1.031 1,360,566,551 1.118 1,361,275,760 1.484 

P13 1,359,813,107 1.015 1,360,106,147 1.136 1,360,804,455 1.516 

P14 1,360,229,705 1.094 1,360,524,059 1.190 1,361,194,499 1.563 

P15 1,357,065,375 1 1,357,352,530 1.080 1,358,068,651 1.485 

P16 1,366,116,379 1.063 1,366,414,875 1.185 1,367,101,877 1.797 

P17 1,354,295,387 1.016 1,354,575,049 1.166 1,355,307,736 1.547 

P18 1,362,453,698 1.093 1,362,753,165 1.196 1,363,466,065 1.656 

P19 1,351,212,750 1.047 1,351,506,098 1.133 1,352,228,221 1.594 

P20 1,354,546,726 1.062 1,354,825,085 1.156 1,355,567,185 1.593 

P21 1,361,671,542 1.078 1,361,968,932 1.167 1,362,652,718 1.515 

P22 1,365,090,355 1.031 1,365,366,240 1.125 1,366,081,015 1.531 

P23 1,353,711,255 1.015 1,353,984,975 1.125 1,354,692,174 1.594 

P24 1,359,167,606 1.078 1,359,454,798 1.239 1,360,142,833 1.547 

P25 1,354,759,090 1.078 1,355,052,259 1.185 1,355,756,040 1.546 

P26 1,360,824,145 0.984 1,361,122,302 1.101 1,361,829,294 1.594 

P27 1,357,519,457 1.047 1,357,817,161 1.210 1,358,490,606 1.516 

P28 1,355,437,009 1.047 1,355,724,226 1.148 1,356,416,967 1.562 

P29 1,360,832,833 0.985 1,361,119,561 1.126 1,361,815,955 1.578 

P30 1,349,511,932 1.062 1,349,797,353 1.191 1,350,507,838 1.578 
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Table 7. Problem size 100 × 100 × 100 of Category B.                                                          

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 1,347,812,101 0.984 1,348,043,655 1.099 1,348,824,104 1.437 

P2 1,353,943,093 0.875 1,354,165,275 1.037 1,354,916,518 1.5 

P3 1,353,589,922 0.797 1,353,818,814 0.918 1,354,572,437 1.406 

P4 1,348,651,591 0.875 1,348,874,253 0.988 1,349,651,010 1.438 

P5 1,353,236,978 0.859 1,353,454,443 0.970 1,354,223,675 1.422 

P6 1,345,291,759 0.859 1,345,512,522 0.954 1,346,286,225 1.5 

P7 1,354,089,798 0.875 1,354,306,453 0.976 1,355,101,717 1.578 

P8 1,350,526,131 0.89 1,350,746,131 1.032 1,351,547,781 1.562 

P9 1,347,779,924 0.844 1,348,003,925 0.939 1,348,783,579 1.563 

P10 1,352,052,432 0.968 1,352,282,416 1.141 1,353,075,218 1.547 

P11 1,348,474,977 0.875 1,348,704,892 0.998 1,349,452,863 1.531 

P12 1,358,050,071 0.859 1,358,285,014 1.010 1,358,999,314 1.61 

P13 1,360,492,873 0.875 1,360,727,422 0.989 1,361,471,188 1.563 

P14 1,347,055,192 0.86 1,347,287,155 0.949 1,348,053,275 1.578 

P15 1,346,813,104 0.86 1,347,032,769 0.957 1,347,825,533 1.409 

P16 1,351,598,681 0.859 1,351,818,451 0.990 1,352,597,768 1.556 

P17 1,352,634,141 0.844 1,352,873,693 0.938 1,353,614,996 1.438 

P18 1,347,143,013 0.828 1,347,368,659 0.928 1,348,101,467 1.422 

P19 1,347,578,203 0.844 1,347,811,739 0.996 1,348,549,057 1.375 

P20 1,354,172,979 0.86 1,354,405,219 1.024 1,355,188,299 1.407 

P21 1,353,131,970 0.844 1,353,350,636 0.974 1,354,106,286 1.407 

P22 1,352,195,677 0.875 1,352,423,658 1.000 1,353,198,611 1.437 

P23 1,354,067,995 0.875 1,354,309,967 1.036 1,355,054,115 1.532 

P24 1,348,354,628 0.828 1,348,587,758 0.950 1,349,338,895 1.478 

P25 1,348,863,378 0.86 1,349,093,359 1.030 1,349,868,041 1.578 

P26 1,350,507,863 0.984 1,350,725,025 1.156 1,351,509,090 1.516 

P27 1,351,696,314 1 1,351,938,538 1.191 1,352,686,083 1.453 

P28 1,348,216,115 1 1,348,458,524 1.139 1,349,190,279 1.469 

P29 1,349,155,465 0.969 1,349,378,346 1.123 1,350,167,144 1.406 

P30 1,355,404,108 0.968 1,355,636,560 1.078 1,356,383,297 1.422 
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Table 8. Problem size 100 × 100 × 100 of Category C.                                                          

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 1,356,765,481 1 1,356,988,805 1.028 1,357,747,787 1.375 

P2 1,348,578,687 0.906 1,348,784,480 0.934 1,349,566,313 1.375 

P3 1,350,776,977 0.89 1,351,005,393 0.910 1,351,787,791 1.391 

P4 1,356,692,279 0.89 1,356,918,304 0.913 1,357,678,393 1.337 

P5 1,359,305,911 0.953 1,359,517,283 0.975 1,360,284,488 1.39 

P6 1,349,187,512 0.922 1,349,390,565 0.951 1,350,173,750 1.359 

P7 1,347,497,209 0.953 1,347,721,702 0.979 1,348,495,827 1.406 

P8 1,351,561,595 0.922 1,351,780,684 0.943 1,352,539,359 1.39 

P9 1,352,908,377 0.906 1,353,135,936 0.935 1,353,917,629 1.375 

P10 1,355,180,785 0.906 1,355,411,030 0.928 1,356,176,036 1.359 

P11 1,349,471,170 0.968 1,349,679,258 0.990 1,350,467,442 1.422 

P12 1,347,863,661 0.922 1,348,079,993 0.948 1,348,867,681 1.422 

P13 1,354,473,571 0.922 1,354,688,119 0.947 1,355,463,506 1.359 

P14 1,350,205,726 0.922 1,350,433,235 0.948 1,351,193,519 1.344 

P15 1,349,060,862 0.922 1,349,290,067 0.945 1,350,041,009 1.375 

P16 1,347,587,320 0.859 1,347,789,863 0.886 1,348,577,355 1.453 

P17 1,351,522,612 0.813 1,351,733,179 0.839 1,352,521,657 1.359 

P18 1,348,302,161 0.828 1,348,510,204 0.847 1,349,326,170 1.422 

P19 1,357,334,766 0.828 1,357,545,560 0.852 1,358,323,179 1.406 

P20 1,346,200,443 0.844 1,346,428,489 0.867 1,347,193,192 1.485 

P21 1,356,509,204 0.828 1,356,734,656 0.852 1,357,494,571 1.391 

P22 1,350,745,322 0.829 1,350,970,356 0.852 1,351,735,380 1.438 

P23 1,356,703,210 0.812 1,356,919,469 0.832 1,357,678,909 1.422 

P24 1,357,978,256 0.844 1,358,191,187 0.864 1,358,962,351 1.5 

P25 1,349,813,482 0.828 1,350,026,212 0.848 1,350,818,186 1.422 

P26 1,354,216,441 0.937 1,354,434,470 0.963 1,355,225,303 1.516 

P27 1,354,135,174 0.844 1,354,343,981 0.871 1,355,144,688 1.344 

P28 1,345,665,627 0.844 1,345,879,453 0.869 1,346,652,596 1.407 

P29 1,353,034,625 0.859 1,353,261,123 0.883 1,354,003,682 1.375 

P30 1,352,589,054 0.844 1,352,793,971 0.869 1,353,593,395 1.343 
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Table 9. Problem size 100 × 100 × 100 of Category D.                                                         

Problem  
instance 
number 

Weak bound 
(relaxed formulation I) 

Hybrid formulation bound  
(relaxed weak formulation with most  

promising strong linking constraints added) 

Strong bound 
(relaxed formulation II) 

Value CPU time Value CPU time Value CPU time 

P1 1,349,044,304 0.953 1,349,310,336 1.076 1,350,052,277 1.328 

P2 1,341,330,308 0.891 1,341,585,965 1.079 1,342,364,193 1.344 

P3 1,357,367,491 0.875 1,357,634,078 1.040 1,358,357,501 1.313 

P4 1,344,761,701 0.907 1,345,022,451 1.072 1,345,749,092 1.312 

P5 1,353,950,432 0.906 1,354,231,377 1.065 1,354,948,263 1.343 

P6 1,345,725,674 0.86 1,345,986,206 1.060 1,346,727,389 1.328 

P7 1,350,064,031 0.875 1,350,340,929 0.991 1,351,070,255 1.344 

P8 1,349,599,349 0.859 1,349,856,043 1.048 1,350,587,142 1.312 

P9 1,347,042,608 0.875 1,347,306,898 1.071 1,348,010,275 1.328 

P10 1,359,202,269 0.891 1,359,485,934 1.034 1,360,184,283 1.313 

P11 1,347,843,751 0.875 1,348,111,163 1.080 1,348,840,103 1.328 

P12 1,347,079,789 0.859 1,347,339,910 0.996 1,348,069,301 1.344 

P13 1,345,959,280 0.875 1,346,232,645 1.005 1,346,948,448 1.36 

P14 1,352,533,674 0.844 1,352,817,571 0.995 1,353,537,564 1.359 

P15 1,344,792,939 0.891 1,345,071,043 1.021 1,345,811,206 1.312 

P16 1,346,897,235 0.828 1,347,173,079 1.006 1,347,857,811 1.344 

P17 1,335,591,579 0.765 1,335,869,115 0.905 1,336,633,363 1.344 

P18 1,352,021,379 0.813 1,352,281,103 0.976 1,353,033,815 1.344 

P19 1,340,538,436 0.828 1,340,813,112 0.994 1,341,534,569 1.375 

P20 1,358,293,736 0.796 1,358,553,985 0.893 1,359,285,053 1.329 

P21 1,349,182,387 0.828 1,349,458,565 0.983 1,350,197,272 1.343 

P22 1,350,465,764 0.844 1,350,736,127 0.978 1,351,464,235 1.328 

P23 1,342,712,142 0.828 1,342,975,448 0.978 1,343,717,026 1.344 

P24 1,349,696,083 0.812 1,349,955,090 0.925 1,350,685,192 1.312 

P25 1,344,666,743 0.813 1,344,942,265 0.967 1,345,654,739 1.281 

P26 1,349,872,300 0.812 1,350,155,773 0.941 1,350,889,585 1.328 

P27 1,346,328,212 0.797 1,346,606,633 0.951 1,347,349,390 1.344 

P28 1,349,420,910 0.812 1,349,697,811 0.919 1,350,411,598 1.359 

P29 1,350,343,978 0.828 1,350,602,029 1.010 1,351,345,376 1.313 

P30 1,358,015,527 0.828 1,358,295,142 0.945 1,359,024,827 1.313 
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Table 10. T-test results of objective function improvement of LP relaxed strong formulation over LP relaxed weak formula-
tion.                                                                                                  

Problem category Problem size (50 × 50 × 50) Problem size (100 × 100 × 100) 

 t-values t-values 

A. 338.16 331.84 

B. 264.68 281.77 

C. 278.69 135.03 

D. 225 289.06 

 
Table 11. T-test results of objective function improvement of LP relaxed hybrid formulation over LP relaxed weak formula-
tion.                                                                                                  

Problem category Problem size (50 × 50 × 50) Problem size (100 × 100 × 100) 

 t-values t-values 

A. 192.01 201.35 

B. 202.02 161.58 

C. 215.59 247.58 

D. 203.49 202.31 

 
Table 12. T-test results for CPU time deterioration of strong formulation (II) over weak formulation (I).                   

Problem Category Problem size (50 × 50 × 50) Problem size (100 × 100 × 100) 

 t-values t-values 

A. 17.11 40.46 

B. 21..74 29.08 

C. 19.85 28.51 

D. 15.55 38.59 

 
Table 13. T-test results for CPU time improvement of hybrid formulation over strong formulation.                       

Problem category Problem size (50 × 50 × 50) Problem size (100 × 100 × 100) 

 t-values t-values 

A. 17.76 37.72 

B. 16.69 29.2 

C. 10.45 41.63 

D. 11.46 31.07 

 
Result: Comparing the calculated t-values with critical t-values, the null hypothesis t1 = 0 is rejected. 
IV. To check improvements in CPU time values of Hybrid Formulation vs. Strong Formulation (Formulation 

I). 
As we have added only 2% most promising demand and supply side strong linking constraint to the weak 

formulation to form hybrid formulation, therefore we expect the improvement in CPU time i.e. CPU time for 
Hybrid Formulation must be less than the CPU time for Strong Formulation. We conduct the following hypo-
thesis test:  
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t2: Percentage improvement in CPU time i.e. decrement in the CPU time for hybrid formulation from Strong 
formulation. 

Null hypothesis, 2: 0aH t = ; 
Alternate hypothesis, 2: 0aH t > . 
Result: Comparing the calculated t-values with critical t-values, the null hypothesis t2 = 0 is rejected. 
Looking at the t-tests done on the empirical results, we see all the null hypotheses have been rejected, imply-

ing differences in relaxed formulations results; strong constraints gave the superior bounds than the weak con-
straints. However, the CPU time for computation for LP relaxed strong formulations were significantly higher 
than the CPU time for LP relaxed weak formulations, which meant that the benefit of better bounds using stronger 
formulations is somewhat compromised by their higher computational time. Hybrid formulation values were in-
termediate between strong and weak formulations with significant improvement in bound values. 

4. Conclusions 
The SSSPMCWLP is often encountered in distribution networks which include cross-docks with known manu-
facturer and customer demand points. We develop strong and hybrid formulation for the SSSPMCWLP for the 
first time and show its merits over prevalent weak formulation in literature. The idea behind the hybrid formula-
tion is to get advantages of both weak and strong formulation in terms of bound and computational time. 

Computational study is done for a variety of problems of different sizes. We find that hybrid formulations of 
SSSPMCWLP is a good compromise, as it gives better bounds while not incurring greater computation burden. 
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