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Abstract 
A control problem containing support functions in the integrand of the objective of the functional 
as well as in the inequality constraint function is considered. For this problem, Fritz John and Ka-
rush-Kuhn-Tucker type necessary optimality conditions are derived. Using Karush-Kuhn-Tucker 
type optimality conditions, Wolfe type dual is formulated and usual duality theorems are estab-
lished under generalized convexity conditions. Special cases are generated. It is also shown that 
our duality results have linkage with those of nonlinear programming problems involving support 
functions. 

 
Keywords 
Control Problem, Support Function, Optimality Conditions, Generalized Convexity, Wolfe Type 
Duality, Nonlinear Programming Problem 

 
 

1. Introduction 
Optimal control theory, which is an extension of calculus of variations is a mathematical optimization method 
for deriving control policies. In essence, an optimal control is set of differential equations describing the path of 
the control variables that minimize the cost functional. Mond and Hanson [1] were the first to formulate a con-
trol problem as a mathematical programming problem and studied Wolfe type duality for the same under con-
vexity of the function involved in the formulation. Subsequently a number of duality results for a control prob-
lem involving differentiable functions were obtained, for example, in the references [2]-[5]. There exist applica-
tions of optimal control with nondifferentiable terms which appear in the problem of friction. This motivated 
Chandra et al. [2] to study optimality and duality for a class of nondifferentiable control problem containing the 
square root of certain quadratic form in the integrand of the objective functional. The popularity of this type of 
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mathematical programming problem seems to originate from the fact that even though the objective functions 
and/or constraint functions are nonsmooth, a simple representation for the dual may be found. Non smooth ma-
thematical programming theory deals with much more general functions by means of generalized subdifferential 
[6] and quasidifferential [7]. However, the square root of a positive semidefinite quadratic form and support 
function are of the few cases of a nondifferentiable function for which subdifferentials can explicitly be written. 

In this research we introduce a control problem with a support function in the integrand of the objective func-
tional and each inequality constraint function. Optimality conditions for this nondifferentiable control problem 
are derived and Wolfe type duality is investigated under pseudoconvexity. Special cases are generated. The lin-
kage between our results and those of nonlinear programming problem containing support function is also indi-
cated. 

2. Control Problem and Preliminaries 
We introduce the following control problem involving support functions: 

(CP): Minimize: ( ) ( )( ){ }, , d .
I

f t x u s u t K t+∫  

Subject to 

( ) ( ),   x a bα α β= =                                   (1) 

( ) ( ), , ,     x t h t x u t I= ∈                                  (2) 

( ) ( )( ), , 0,     ,   1, 2, ,j jg t x u s x t C t I j m+ ≤ ∈ = 
                       (3) 

where 
1) : nx I R→  is a differentiable state vector function with its derivative x  and : mu I R→  is a smooth 

control vector function.
 
 

2) nR  denotes an n -dimensional Euclidean space and [ ],I a b=  is a real interval, and 
3) : n mf I R R R× × → , : ,  1, 2, ,j n mg I R R R j m× × → =   and : n m nh I R R R× × →  are continuously 

differentiable. 
4) ( )( )s x t K  and ( )( ) ,  1, 2, ,js x t C j m= 

 are the support function of the compact set K  and 

( )1,2, ,jC j m=   respectively.  
Denote the partial derivatives of f  by tf , xf  and yf ,

 
1 2 1 2,   , , , ,   , , , ,t x un m

f f f f f f ff f f
t x x x u u u

∂ ∂ ∂ ∂ ∂ ∂ ∂   = = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
   

where superscript denote the vector components. Further X  represents the space of continuously differentiable  
state functions : nx I R→  such that ( ) 0x a =  and ( ) 0x b =  and is equipped with the norm xx x D

∞ ∞
= + , 

and U , the space of piecewise continuous control vector functions : mu I R→  having the uniform norm .
∞

. 

The differential Equation (2) with initial conditions expressed as ( ) ( ) ( ) ( )( ), , d
b

a

x t x a h s x s y s s= + ∫  t I∈  may  

be written as ( ),xH H x y= , where ( ) ( ): , , ,n nH X U C I R C I R× →  being the space of continuous function 
from I  to nR  defined as ( )( ) ( ) ( )( ), , ,H x y t h t x t y t= . In the derivation of these optimality condition, some 
constraint qualification to make the equality constraint locally solvable [2] is needed for this and hence, the 
Fréchet derivative of ( ) ( ), ,xD H x u Q x u− = , (say) with respect to ( ),x u , namely  

( ) ( ) ( ), , , ,x uQ Q x u D H x u H x u′ ′= = − −    are required to be subjective. We review some well known facts 
about a support function for easy reference. Let Γ  be a compact convex set in nR . Then the support function  

of Γ  denoted by ( )( )s x t Γ  is defined as, ( )( ) ( ) ( ) ( ){ }TMax : ,  .s x t x t t t t Iυ υΓ = ∈Γ ∈

 A support function, being convex and everywhere finite, has a subdifferential in the sense of convex analysis, 
that is, there exists z  such that ( )( ) ( )( ) ( ) ( ) ( )( )Ts y t s x t z t y t x tΓ ≥ Γ + −  for all .x
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As in [8] the subdifferential of ( )( )s x t Γ  is given by ( )( ) ( ) ( ) ( ) ( )( ){ }T:s x t z t z t x t s x tΓ = ∈Γ = Γ . Let 

( )( )N x tΓ  be normal cone at a point ( )x t ∈Γ . Then ( ) ( )y t N xΓ∈  if and only if ( )( ) ( ) ( )Ts y t x t y tΓ =  or 

equivalently, ( )x t  is in the subdifferential of s  at ( ).y t  

3. Optimality Conditions 
In this section, we derive necessary optimality conditions of both Fritz John and Karush-Kuhn-Tucker type for 
the control problem (CP) stated in the preceding section. 

Theorem 1. (Fritz John Conditions): If ( ),x u  is an optimal solution of (CP) and the Fréchet derivative 
Q′  is surjective, then there exist Langrange multipliers Rα ∈  and piecewise smooth  

: ,  : ,  :m n mI R I R z I Rλ µ→ → →  and :j nI Rω →  such that  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )T

1
, , , , , , 0,    

m
j j j

x x x
j

f t x u t g t x u t t h t x u t t Iα λ ω µ µ
=

+ + + + = ∈∑             (4) 

( ) ( ) ( ) ( ) ( )TT, , , , , , 0,   u u uf t x u t g t x u t h t x u t Iα λ µ+ + = ∈                    (5) 

( ) ( ) ( ) ( )( )T

1
, , 0,    

m
j j j

x
j

t g t x u x t t t Iλ ω
=

+ = ∈∑                         (6) 

( ) ( ) ( )( )T ,    t z t s x t K t Iµ = ∈                               (7) 

( ) ( ) ( )( ) ,     1, 2, , ,    j jx t t s x t C j m t Iω = = ∈
                       (8) 

( ) ( ),  ,     1, 2, ,j jz t K t C j mω∈ ∈ =                             (9) 

( )( ), 0,    t t Iα λ ≥ ∈                                  (10) 

( ) ( )( ), , 0,    .t t t Iα λ µ ≠ ∈                                (11) 

Proof: The problem (CP) may be expressed in its abstract version as 
(ECD): 

( )
( ) ( ) ( )

,
Minimize , ,

x u
x u F x u xφ ψ= +  

subject to 
( )

( )
,

,
xD H x u

G x u S

=

∈
 

where ( ) ( ) ( ) ( )( ), , , ,  d ,
I I

F x u f t x u u s u t K tψ= =∫ ∫  ( ) ( ): , mG X U C I R× →  is given by ( )for all t I∈ , 

( )( ) ( ) ( )( ), , , ,  1, 2, ,j j jG x u t g t x u s x t C j m= + = 
 and ( ), mS C I R+= ; the nonnegative orthant of ( ), .nC I R  

By the result of [9] it follows that there exist Langrange multipliers ,  R Sα ρ ∗∈ ∈  (the dual of S ) and υ  
in the dual space of ( ), mC I R+  satisfying 

( ) ( )( ) ( )( )T T0 , , ,x u G x u Dx H x uα φ ρ υ∈ ∂ + ∂ + ∂ −                      (12) 

( )T , 0,G x uρ =                                     (13) 

( ), 0α ρ ≥                                       (14) 

( ), , 0.α ρ υ ≠                                      (15) 

The condition (12) reduces to  

( ){ } ( ){ } ( ) ( )( ){ }T 1 T 2 T0 , , , ,x x x xF x u G x u G x u D H x uα ρ ρ υ∈ + + ∂ + −               (16) 
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( ){ } ( )( ) ( ) ( ){ }T 1 T0 , , , .u u uF x u u G x u H x uα αψ ρ υ∈ + ∂ + +                   (17) 

Since f  is continuously differentiable function of x  and u , ( ),F x u  is Fréchet differentiable with re-
spect to ( ),x u . The partial derivatives of F  with respect to x  and u , denoted by ( ),xF x u  and ( ),uF x u  
respectively, are given by  

( ) ( ) ( ) ( ) ( ) ( ) , , , , , dx x x
I

p X F x u p f t x u p t f t x u p t t∀ ∈ = +∫ 

                  (18) 

( ) ( ) ( ) ( ) , , , d .u u
I

q X F x u q f t x u q t t∀ ∈ = ∫                          (19) 

Similar results for g  and h  as for f  can be given. Assume now subject to later validation that, Sρ ∗∈  
can be represented by measurable function : mI Rλ →  with ( )1 2, , , mλ λ λ λ=   satisfying 

( )( ) ( ) ( )T
, ,  , d .m

I

C I R t t tξ ρ ξ λ ξ∀ ∈ = ∫                          (20) 

Define the convex function : n
t R Rη →  by ( ) ( )( )t u s u t Kη = . From [2] its subdifferential, 

( ) ( ){ }T,  .t tz z K u u zη υ η∂ = ∈ =  

Now ( ) ( )dt
I

Q x u tη= ∫ . From ([6], Theorem 3), we have 

( ) ( ) ( ) ( ) ( ) ( )T, , , dt
I

y Q u t I t u y t u t tσ η υ σ
 

∈∂ ⇔ ∀ ∈ ∈∂ = 
 

∫                 (21) 

with : nI Rσ →  measurable, namely ( ) ( )T ,  t z t t Iσ = ∈  from (16). 
Let ( )( ) ( ) ( )( ).,t x t s x t Cξ = , where ( ) ( )( ).s x t C  denotes the vector support function whose thj  compo-

nent is ( ) ( )( )js x t C . Then 

( ) ( ) ( )( )TT ., , d .
I

x t t x t tρ ξ λ ξ= ∫                              (22) 

Denoted by c∂  the Clarke generalized gradient [6] with respect to x . Then 

( ) ( )( )( ) ( ) ( )( )( )( ) ( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )

T

1 1

1

, , sgn ,

                                                                               sgn , .

m m
j j j j j

c c c
j j

m
j j j

c
j

t t x t t t x t t t t x t

t t t x t

λ ξ λ ξ λ λ ξ

λ λ ξ

= =

=

∂ ⊂ ∂ = ∂

= ∂

∑ ∑

∑
      (23) 

The above is possible by using the representation of ( ).c∂  as the convex hull of limit of points of gradients 
at smooth points near x . Here ∑ denotes the algebraic sum of sets. Since ( ) ( )( ),. .j jt s Cξ =  is convex, we 
have for each { }1,2, , ,j m∈   

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ){ }. , , , , ,  .j j j j j j j
c ct x t t x t t t C t x t x t t t Iξ ξ ω ω ξ ω∂ = ∂ = ∈ = ∈         (24) 

From [10], it implies that ( )( )T .,q xρ ξ∈∂  if and only if these exists a measurable function : mI Rρ →  
such that  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )T,  , ;   ,  , d .c
I

t I q t t x t p X q p t t t p t tξ λ ρ∀ ∈ ∈∂ ∀ ∈ = ∫  

Now 

( )( ) ( )( ){ }
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

T T T

T

1

,

                         , , , , d .

x

m
j j j j

x x
j I

G x u p G x

t g t x t x t p t g t x t x t p t t p t t

ρ θ θ ρ

λ ω
=

∂ = ∈∂

 = + + ∑∫ 

 



    (25) 

Consider, 
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( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

T

T

d d d

                    d     using 0 .

b
x x x a

I I I

x
I

H D p t h p t p t t h p t t p t p t

t h t p t a b

υ µ µ µ µ µ

µ µ µ µ

− = − = − +

= + = =

∫ ∫ ∫

∫

 



           (26) 

Using (18), (25), (26), we have 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )T

1
, , , , , , d 0.

m
j j j

x x
jI

f t x u t g t x u t t h t x u t p t tα λ ω µ µ
=

 
+ + + + = 

 
∑∫           (27) 

Since the integral values for any Xυ ∈ , by Lemma 2 ([11], p. 500), it follows that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )T

1
, , , , , , 0   .

m
j j j

x x x
j

f t x u t g t x u t t h t x u t t Iα λ ω µ µ
=

+ + + + = ∈∑            (28) 

The cited lemma assumes that the expression in the square bracket of (27) is piecewise continuous, but this 
readily extends to measurable. This validates (4). On the basis of analysis needed to validate (28), we can easily 
establish  

( ) ( ) ( ) ( ) ( ) ( )T T, , , , 0,    .x u uf t x u z t t g t x u t h t t Iλ µ+ + + = ∈  

Also ( )
1

0
m

j j

j
G xρ

=

=∑  along with ( ) ( ) ( )( )T j jx t t x t Cω =  of (24) yields 

( ) ( ) ( )( ) ( ) ( ) ( )T

1
, , d 0.

m
j j j

j I

t g t x t x t x t t t tλ ω υ
=

 + = ∑∫   

By the application of the above-cited lemma, this gives (6) i.e. 

( ) ( ) ( )( ) ( ) ( )T

1
, , 0,    .

m
j j j

j
t g t x t x t x t t t Iλ ω

=

 + = ∈ ∑   

The remaining proof of the theorem easily follow on the lines of the proof of Theorem 4.1 of [2]. 
Hence the above analysis established the theorem fully. 
Chandra et al. [2] pointed out if the optimal solution for (CP) is normal, then the Fritz John type optimal con-

ditions reduce to the following Karush-Kuhn-Tucker optimal conditions: 
Theorem 2: If ( ),x u  is an optimal solution and is normal and Q′  is surjective, there exist piecewise 

smooth :j mI Rλ → , 1, 2, ,j m=   with ( )T
1 2, , , mλ λ λ λ=  , : nI Rµ → , : nz I R→  and :j nI Rω → , 

1, 2, , .j m=   
Such that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )T

1
, , , , , ,

m
j j j

x x x
j

f t x u t g t x u t t h t x u tλ ω µ µ
=

+ + + =∑                 (29) 

( ) ( ) ( ) ( ) ( )TT, , , , , , 0,    u u uf t x u t g t x u t h t x u t Iλ µ+ + = ∈                   (30) 

( ) ( ) ( ) ( )( )T

1
, , 0,    

m
j j j

x
j

t g t x u x t t t Iλ ω
=

+ = ∈∑                        (31) 

( ) ( ) ( )( )Tu t z t s x t K=                                  (32) 

( ) ( ) ( )( )T ,    1, 2, ,j jx t t s x t C j mω = = 
                         (33) 

( ) 0,    ,   1, 2, ,j t t I j mλ ≥ ∈ =                               (34) 

( ) ( ),  ,   1, 2, , .j jz t K t C j mω∈ ∈ =                             (35) 
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4. Wolfe Type Duality 
We propose the following dual as the Wolfe type dual and validate duality results amongst (CP) and (WCD). 

(WCD): Maximize  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )T T T

1
, , , , , , d

m
i j j

jI

f t x u u t z t t g t x u x t t t h t x u x t tλ ω µ
=

 
+ + + + − 

 
∑∫   

subject to  

( ) ( )0,   0x a bα= =                                   (36) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )T

1
, , , , , , 0,    

m
i j j

x x
j

f t x u t g t x u t t h t x u t t Iλ ω µ µ
=

+ + + + = ∈∑             (37) 

( ) ( ) ( ) ( ) ( )TT, , , , , , 0,    u uf t x u t g t x u t h t x u t Iλ µ+ + = ∈                    (38) 

( ) 0,    ,   1, 2, ,i t t I i mλ ≥ ∈ =                               (39) 

( ) ( ),  ,   1, 2, , .j jz t K t C j mω∈ ∈ =                             (40) 

Theorem 3 (Weak Duality): Assume that 
1) ( ),x u  is feasibility for (CP) 
2) ( )1 2, , , , , , , , mx u u zλ ω ω ω  is feasible for (CD) and 

3) for all feasible, ( )1 2, , , , , , , , , , mx u x u u zλ ω ω ω  

( ) ( ) ( ) ( )( ) ( ) ( )( )T T

1
.,. . . d

m
i j j

jI

f t g t h x t tλ ω µ
=

 
+ + + − 

 
∑∫   

is pseudo convex in ( ),x u  for all ( ) mz t R∈  and ( )j nt Rω ∈ , 1, 2, , .j m=   
Then 

( ) ( )inf CP Sup WCD .≥  

Proof: Combining (37) and (38), we have 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }T T T T

1
d 0.

m
j j j

x x x u u u
jI

x x f t g t t h t u u f z t t g t h tλ ω µ µ λ µ
=

  
− + + + − + − + + + =  

   
∑∫   

By the pseudoconvexity hypothesis 3), this yields 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

T T

1

T T

1

, , , , , , d

  , , , , , , d .

m
j j j

jI

m
j j j

jI

f t x u x t z t t g t x u x t t t h t x u x t t

f t x u x t z t t g t x u x t t t h t x u x t t

λ ω µ

λ ω µ

=

=

 
+ + + + − 

 
 

≥ + + + + − 
 

∑∫

∑∫





    (41) 

Since ( ),x u  is feasible for (CP), we have 
( ), ,h t x u x=  , t I∈  

implying 

( ) ( ) ( )( )T , , 0t h t x u x tµ − = , t I∈  

and 

( ) ( )( ), , 0i jg t x u s x t C+ ≤ , t I∈  

implying 
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( ) ( ) ( )( )( ), , 0,  ,   .j jt g t x u s x t C t I t Iλ⇒ + ≤ ∈ ∈∑    

Since ( ) ( ) ( )( )T j jx t t s x t Cω ≤ , t I∈ , we have  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )T

1 1
, , , , 0,    .

m m
j j j j j j

j j
t g t x u x t t t g t x u s x t C t Iλ ω λ

= =

+ ≤ + ≤ ∈∑ ∑  

From (41), we have 

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

1

T

1

, , , , , , d

  , , , , , , d .

m
j j j

jI

m
j j j

jI

f t x u s u t K t g t x u s x t C t h t x u x t

f t x u t g t x u x t t t h t x u x t t

λ µ

λ ω µ

=

=

 
+ + + + − 

 
 

≥ + + + − 
 

∑∫

∑∫





 

This implies 

( ) ( )( ){ } ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )T

1
, , d , , , , , , d .

m
j j j

jI I

f t x u S x t K t f t x u t g t x u x t t t h t x u x t tλ ω µ
=

 
+ ≥ + + + − 

 
∑∫ ∫   

That is, 

( ) ( )inf CP Sup CD .≥  

Theorem 4 (Strong duality): If ( ),x u  is an optimal solution of (CP) and is normal, there exist piecewise 
smooth : mI Rλ →  where ( )1 2, , , mλ λ λ λ=  , : nz I R→ , : nI Rµ →  and :j nI Rω → , ( )1,2, , .j m=   
such that ( )1, , , , , , , mx u z λ µ ω ω  is feasible for (WCD) and the optimal values of the problem (CP) and 
(WCD) are equal. If also the hypotheses of Theorem1 hold, then ( )1, , , , , , , mx u z λ µ ω ω  is an optimal solu-
tion of the problem (WCD). 

Proof: Since ( ),x u  is an optimal solution of (CP) and is normal, by Theorem 1, it implies that there exist 
piecewise smooth :j I Rλ → , 1, 2, ,j m=  , : nu I R→ , : nz I R→  and :j nI Rω →  ( )1,2, , .j m=   
such that conditions (4)-(10) of the theorem are satisfied. The conditions (4)-(6) together with (9) and (10) imply 
the feasibility of ( )1, , , , , , , mx u z λ µ ω ω  for (WCD). The condition (6)-(8) yield the equality of objective 
functionals of the two problem. In view of this equality and the hypotheses of Theorem 3, the optimality of 
( )1, , , , , , , mx u z λ µ ω ω  for (WCD) is obtained. 

Theorem 5: (Strict Converse Duality): Assume 
(H1): ( ),x u  is an optimal solution and is normal; 
(H2): ( )1ˆ ˆ ˆˆ ˆ ˆˆ, , , , , , ,mx u zλ ω ω µ

 is an optimal solution; 

(H3): ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )T

1

ˆ ˆ ˆ,.,. . ,.,. d
m

j j j

jI

t g t t u t h t x t tλ ω
=

 
+ + = 

 
∑∫  is strictly pseudo convex. 

then ( ) ( )ˆ ˆ, ,x u x u= , i.e. û  is an optimal solution of (CP). 
Proof: Assume that ( ) ( )ˆ ˆ, ,x u x u≠ . By Theorem 4, there exist piecewise smooth : mI Rλ →  with, 

( ) ( ) ( )( )1 , , mt t tλ λ λ=  , ( )z t K∈ , t I∈ , ( ) nt Rµ ∈  and
 ( )j j tω ω= , t I∈ , 1, 2, ,j m=   such that

( )1, , , , , , , mx u u zλ ω ω  is an optimal to (CD) and  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

T T

1

T T

1

ˆ , , , , d

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ  , , , , d .

m
i j i

jI
m

i j i

jI

t g t x u x t t t h t x u x t t

t g t x u x t t t h t x u x t t

λ ω µ

λ ω µ

=

=

+ + −

= + + −

∑∫

∑∫





 

From the feasibility of ( )1ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , , mx u u zλ ω ω
 for (WCD), we have 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

T T

1

T T

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ, , , , , , d 0.    

m
j i j

x x x
jI

u u u

x x f t x u t g t x u t t h t x u t

u u f t x u t z t t g t x u t h t x u t

λ ω µ µ

µ λ µ

=

   − + + + −  
  

+ − + + + =


∑∫
 

This by strict pseudoconvexity hypothesis (H3) yields, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

T T

1

T T

1

T T T

1

ˆ ˆ ˆˆ, , , , , , d

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ  , , , , , , d

ˆ  , , , , , , d .

m
j j j

jI

m
j j j

jI

m
j j j

jI

f t x u u t z t t g t x u x t t t h t x u x t t

f t x u u t z t t g t x u x t t t h t x u x t t

f t x u u t z t t g t x u x t t t h t x u x t t

λ ω µ

λ ω µ

λ ω µ

=

=

=

 
+ + + + − 

 
 

≥ + + + + − 
 
 

= + + + + − 
 

∑∫

∑∫

∑∫







 

Since ( ) ( ) ( ) ( )( )T

1
, , 0

m
i j j

j
t g t x u x t tλ ω

=

+ =∑ , and ( ) ( ) ( )( )T ˆ jx t t s x t Cω ≤ , this yields, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( )

T Tˆ, , d , , d

ˆ                                            d d

                                            d d .

I I

I I

I I

f t x u u t z t t f t x u u t z t t

u t z t t u t z t t

s u t K t s u t K t

   + > +   

⇒ >

⇒ >

∫ ∫

∫ ∫

∫ ∫

 

This is absurd. Hence ( ),x u  is an optimal solution of (CP). 

5. Converse Duality 
The problem (WCD) can be written as the follows: 

Maximize: ( )1 1, , , , , , , , .m mx zψ µ λ λ ω ω    

Subject to ( ) ( )0,   0x a x b= =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 2, , , , , , , , , 0,    .m mt x t u t t t t t t t t Iθ λ λ µ ω ω ω = ∈   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 1 1 2, , , , , , , , , , 0,    m mt x t u t z t t t t t t t t Iθ λ λ µ ω ω ω = ∈   

( ) ,    z t K t I∈ ∈  

( ) ,    ,   1, 2, ,j jt C t I j mω ∈ ∈ =   

( ) 0,    ,   1, 2, ,t t I j mλ ≥ ∈ =   

where 

( ) ( ) ( )( ) ( ) ( )T1 2

1
, , , , , ,

m
j j j

x x x
j

t x u z f t g t t h tθ θ λ µ λ ω µ µ
=

= = + + + +∑   

( )2 2 T T, , , , , .u x ut x u z f z g hθ θ λ µ λ µ= = + + +  

Consider ( ) ( ) ( ) ( ) ( ) ( )( )1 1
2., . , . , . , . , , . , .mx uθ λ ω ω µ  and ( ) ( ) ( ) ( ) ( )( )2 , . , . , . , . .t x u zθ λ µ  as defining a map-  

pings 1 1 2 1: mQ X u W W W V B× ×Λ× × × × × →  and 2 2:Q X u Z V B× × ×Λ× →  respectively where Λ  is 
the space of piecewise smooth λ , V  is space of piecewise smooth µ , jW  is the space of piecewise of 
smooth jW , 1, 2, ,j m=  , 1B  and 2B  are Banach spaces. ( )1 1 2, , , , , , , mx uθ λ µ ω ω ω=   and  

( )2 , , , ,x u zθ λ µ=  with ( )1, , mλ λ λ=  . Here some restrictions are required on the equality constraints. For 
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this it suffices that if the Fréchet derivatives  

( ) ( ) ( ) ( ) ( ) ( )( )1
1 1 1 1 1 1 1, , , , , , mx uQ λ µ ω ω

θ θ θ θ θ θ′ = 
 

and  

( ) ( ) ( ) ( ) ( ) ( )( )1
2 2 2 2 2 2 2, , , , , , ,mx uQ λ µ ω ω

θ θ θ θ θ θ′ = 
 

have weak ∗  closed range. 
Theorem 6. (Converse Duality): Assume 
(A1): f , g  and h  are twice continuously differentiable. 
(A2): ( )1, , , , , , , mx u zλ µ ω ω  is an optimal solution of (CP). 

(A3): 1Q′  and 2Q′  have weak ∗  closed range.  

(A4): The matrix 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

TT T T

T TT T

xx xx xx ux ux ux

ux ux ux uu uu uu

f t g t h f t g t h

f t g t h f t g t h

λ µ λ µ

λ µ λ µ

 + + + +
 
 + + + + 

 is nonsingular. 

Then x  is an optimal solution of (CP) and the optimal values of (CP) and (WCD) are equal.  
Proof: Since ( )1, , , , , , , mx u zλ µ ω ω  is an optimal solution of (WCD), by Theorem 1 there exists 0 Rλ ∈ ,  

and piecewise smooth functions : mI Rθ → , : mI Rφ → , and : mI Rη →  such that 

( ) ( )( ) ( ) ( ){ } ( ) ( ) ( )( )
( ) ( ) ( )( )

T T T T

TT    0,    .

j j j
x x x xx xx xx

ux ux ux

f t g t t h u t t f t g t h

t f t g t h t I

α λ ω µ θ λ µ

φ λ µ

+ + + + + + +

+ + + = ∈

∑ 

        (42) 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

TT T T T

T T T    0,    .

u u u xu xu xu

uu uu uu

f z t t g t h t f t g t h

t f t g t h t I

α λ µ θ λ µ

φ λ µ

+ + + + + +

+ + + = ∈
             (43) 

( ) ( )( ) ( ) ( )( ) ( ) ( )T T 0,    .j j j j j j
x ug x t t t g t t g t t Iα ω θ ω φ η+ + + + + = ∈              (44) 

( )( ) ( ) ( ) ( )T T 0,    x uh x t t h t h t t Iα θ φ θ− + + + = ∈

                       (45) 

( ) ( ) ( ) ( ) ( )( )T ,     1, 2, , .j
j j j

c
t x t t t N t j mαλ θ λ ω+ + ∈ =                     (46) 

( ) ( ) ( )Kt t N zαµ φ+ ∈                                  (47) 

( ) ( )T 0,    t t t Iη λ = ∈                                  (48) 

( ) ( ) ( )( ), , , 0,     t t t t Iα θ φ η ≥ ∈                              (49) 

( ) ( ) ( )( ), , , 0,    .t t t t Iα θ φ η ≠ ∈                              (50) 

Using (36) and (37) in (42) and (43) respectively, we obtain 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

T T T TT

T TT T T T

0,

0.

xx xx xx ux ux ux

xu xu xu uu uu uu

t f t g t h t f t g t h

t f t g t h t f t g t h

θ λ µ φ λ µ

θ λ µ φ λ µ

+ + + + + =

+ + + + + =
 

The equations can be combined in the matrix form as, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

TT T T

T TT T
0,     .xx xx xx ux ux ux

ux ux ux uu uu uu

tf t g t h f t g t h
t I

tf t g t h f t g t h

θλ µ λ µ

φλ µ λ µ

  + + + +
  = ∈   + + + +   

 

This, due to the hypothesis (A4) yields 
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( ) ( )0 ,    .t t t Iθ φ= = ∈                                  (51) 

Let 0α = , then (44) implies ( ) 0tη = , t I∈ , consequently we get
 

( ) ( ) ( )( ), , , 0 , ,t t t t Iα η θ φ = ∈
 

contra-
dicting (50), hence 0.α >   

The relations (44) together with (48) and (45) respectively imply  

( ) ( ) ( )T ,    
j

j j t
g x t t t I

η
ω

α
−

+ = ∈                             (52) 

( ) 0,    .h x t t I′ − = ∈                                   (53) 

From (52) and ( ) 0j tλ ≥ , t I∈ , we have 

( ) ( ) ( )( )T

1
0,    .

m
j j j

j
t g x t t t Iλ ω

=

+ = ∈∑                           (54) 

From (53) along with ( ) 0tµ ≥ , t I∈ , we obtain
 ( ) ( )( )T 0,    .t h x t t Iµ − = ∈                                (55) 

In view of (51) and definition of a normal cone (50) and (51), we have ( ) ( )( )j
j

c
x t N tω∈ , t I∈ , 

1, 2, ,j m=   and ( ) ( )( )Ku t N z t∈
 

implying 

( ) ( ) ( )( )T j jx t t s x t Cω = , 1, 2, ,j m=   

and  

( ) ( ) ( )( )T .u t z t s u t K=                                (56) 

From (52) together with (56) and  

( ) 0j tη ≥ , t I∈ , 1, 2, ,i m=                              (57) 

imply 

( )( ) 0,    .j jg s x t C t I+ ≤ ∈                                (58) 

From (53) and (57), the feasibility of x  for (CP) follows. 
Consider  

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

TT T

1

T

, , , , , , d

  , , d , , d

m
j j j

jI

I I

f t x u u z g t x u x t h t x u x t

f t x u u t z t t f t x u s u t K t

λ ω µ
=

 
+ + + + − 

 

= + = +

∑∫

∫ ∫
 

(by using (54), (55) and (56). 
This implies that the values of objective functionals of the problem are equal. Consequently in view of the 

hypothesis of Theorem 1 it implies that ( ),x u  is an optimal solution of (CP). 

6. Special Cases 
Let for t I∈ . ( )B t  and ( )jD t , ( )1, 2, ,j m=   be positive semidefinite matrics and continuous on I . 
Then 

( ) ( ) ( )( ) ( )( )
1

T 2 ,   u t B t u t s u t K=  

where 

( ) ( ) ( ) ( ) ( ){ }T 1,  K B t z t z t B t z t t I= ≤ ∈  
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and 

( ) ( ) ( )( ) ( )( )
1

T 2 ,   1, 2, ,j jx t D t x t s x t C j m= =   

where 

( ) ( ) ( ) ( ) ( ){ }T 1,  .j j j j j jC D t t t D t t t Iω ω ω= ≤ ∈

 The control problems of the preceding section becomes as the following: 
(WCD0): Maximize 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )T T T

1
, , , , , , d .

m
j j j j

jI

f t x u u t B t z t t g t x u x t D t t t h t x u x tλ ω µ
=

 
+ + + + − 

 
∑∫   

Subject to 

( ) ( )x a x b=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )T

1
, , , , , , ,    

x

m
j j j j

x
j

f t x u t g t x u D t t t h t x u t t Iλ ω µ µ
=

+ + + = ∈∑ 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T, , , , , , 0,    
u u uf t x u B t z t t g t x u t h t x u t Iλ µ+ + + = ∈  

( ) 0,    ,   1, 2, ,j t t I j mλ ≥ ∈ =   

( ) ( ) and ,   1, 2, , .j jz t K t C j mω∈ ∈ =   

If ( )js x C , 1, 2, ,j m=   are deleted and ( )s u K  is replaced by ( ) ( ) ( )( )
1

T 2u t B t u t , the problem (CP0) 

and (WCD0) reduce to those studied by Chandra et al. [2]. 

7. Related Nonlinear Programming Problems 
If the functions appearing (CP) and (WCD) are independent, of t  then these problems reduce to the following 
nonlinear programming problem with support functions not reported explicitly in the literature. 

(CP0): Minimize ( ) ( ),f x u s u K+  

subject to ( ) ( ), 0,   1, 2, , .j jg x u s x C j m+ ≤ =   

(WCD0): Maximize ( ) ( )( ) ( )T T T

1
, , ,

m
j j j

j
f x u u z g x u h x uλ µ ω µ

=

+ + + +∑  

subject to ( ) ( )( ) ( )T

1
, , , 0

m
j j j

x x x
j

f x u g x u h x uλ ω µ
=

+ + + =∑  

( ) ( ) ( )T T, , , 0u u uf x u z g x u h x uλ µ+ + + =  

0,   1, 2, ,j j mλ ≥ =   

,  ,   1, 2, , .j jz K C j mω∈ ∈ =   

If ( ),f x u  and ( )s u K  are replaced by ( )f x  and ( )s x K  respectively, the above problem reduce to 
the following problem studied by Husain et al. [12]. 

(NP1): Minimize ( ) ( ).f x s x K+  

Subject to ( ) ( ) 0,   1, 2, , .j jg x s x C j m+ ≤ =   

(WNP1): Maximize ( ) ( )( ) ( )T T T

1
.

m
j j j

j
f x x z g x x h xλ ω µ

=

+ + + +∑  
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Subject to ( ) ( )( ) T

1
0

m
j j j

x x x
j

f x z g x hλ ω µ
=

+ + + + =∑  

0,   1, 2, ,j j mλ ≥ =   

,  ,   1, 2, , .j jz K C j mω∈ ∈ =   

8. Conclusion 
Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for class of nondifferentiable control 
problems are derived. As an application of Karush-Kuhn-Tucker type necessary optimality conditions, Wolfe 
type dual is formulated and various duality theorems under generalized convexity conditions are proved. The 
linkage between our duality results and those of a nonlinear programming problem with support functions is in-
dicated.  
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