
American Journal of Operations Research, 2013, 3, 187-195 
http://dx.doi.org/10.4236/ajor.2013.31A018 Published Online January 2013 (http://www.scirp.org/journal/ajor) 

Complex Networks: Traffic Dynamics, Network  
Performance, and Network Structure 

Ziping Hu1, Krishnaiyan Thulasiraman2, Pramode K. Verma1 
1School of Electrical & Computer Engineering, The University of Oklahoma, Tulsa, USA 

2Department of Computer Science, The University of Oklahoma, Norman, USA 
Email: ziping.hu@ou.edu, thulasi@ou.edu, pverma@ou.edu 

 
Received December 2, 2012; revised January 8, 2013; accepted January 17, 2013 

ABSTRACT 

This paper explores traffic dynamics and performance of complex networks. Complex networks of various structures 
are studied. We use node betweenness centrality, network polarization, and average path length to capture the structural 
characteristics of a network. Network throughput, delay, and packet loss are used as network performance measures. 
We investigate how internal traffic, through put, delay, and packet loss change as a function of packet generation rate, 
network structure, queue type, and queuing discipline through simulation. Three network states are classified. Further, 
our work reveals that the parameters chosen to reflect network structure, including node betweenness centrality, net- 
work polarization, and average path length, play important roles in different states of the underlying networks. 
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1. Introduction 

In network science, complex systems are described as 
networks consisting of vertices and interactions or con- 
nections among them. Many social, biological, and com- 
munication systems are complex networks. The study of 
structural and dynamical properties of complex networks 
has been receiving a lot of interests. One of the ultimate 
goals of the studies is to understand the influence of to- 
pological structures on the behaviors of various complex 
networks, for instance, how the structure of social net- 
works affects the spread of diseases, information, rumors, 
or other things; how the structure of a food web affects 
population dynamics; how the structure of a communica- 
tion network affects traffic dynamics, and network per- 
formance such as robustness, reliability, traffic capacity, 
and so on. 

There is a wealth of literature focusing on traffic dy- 
namics and different performance aspects of communica- 
tion networks. A basic model, which is aimed at simu- 
lating a general transport process on top of a communi- 
cation network, has been proposed by Ohira and Sawatari 
[1]. It demonstrates that network traffic exhibits a phase 
transition from free flow to congestion as a function of 
packet generation rate. The model has been generalized 
in various ways [2-12] for the study of different commu- 
nication networks. The authors in [2-3] investigate con- 
gestion phenomena in complex communication networks 
by implementing traffic-aware routing schemes in the 

model. Much research has focused on scale-free (SF) 
networks because of the discovery of power-law degree 
distribution of many real-world networks [13-14]. Due to 
the structural properties of SF networks, different routing 
strategies [4-11] are proposed in order to improve traffic 
capacity of these networks. Since lattice networks are 
widely used in distributed parallel computation, distrib- 
uted control, satellite constellations, and sensor networks, 
Barrenetxea, Berefull-Lozano, and Vetterli [12] have stu- 
died the effect of routing on the queue distribution, and 
investigated the routing algorithms in lattice networks 
that achieve the maximum rate per node under different 
communication models. 

The work of Tizghadam and Leon-Garcia [15-17] fo- 
cuses on the robustness of communication networks. 
They introduce the notion of network criticality. They 
find that network criticality directly relates to network 
performance metrics such as average network utilization 
and average network cost. In addition, by minimizing 
network criticality, the robustness of a communication 
network can be improved. In order to measure nodal con- 
tribution to global network robustness, Feyessa and Bik- 
dash [18] have made comparison among different cen- 
trality indices. For the design of reliable communication 
networks, Hu and Verma [19] propose a heuristic topol- 
ogy design algorithm that can effectively improve net- 
work reliability. In [20], we have investigated the latency 
of SF networks and random networks under different 
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routing strategies. In a recent work [21], we have ex- 
plored the influence of network structure on traffic dy- 
namics in complex communication networks. 

In this paper, we investigate how internal traffic, th- 
roughput, delay, and packet loss change as a function of 
packet generation rate, network structure, queue type, 
and queuing discipline through simulation. Four different 
types of networks are chosen as the underlying networks 
because of their distinct structural features. They are the 
SF network, the random network, the ring lattice (RL) 
network, and the square lattice (SL) network. We use 
node betweenness centrality, network polarization, and 
average path length, to capture the structural features of 
the networks.  

Based on observed traffic dynamics in the networks 
studied, we classify three network states: traffic free flow 
state, moderate congestion state, and heavy congestion 
state. Simulation results indicate that during each differ- 
ent state, the structural differences among the underlying 
networks play important roles in the performance of 
these networks. Through the work, we shall gain deep in- 
sights on the dependency of network performance on the 
structural properties of networks, which could help in de- 
signing better network structures and better routing pro- 
tocols. 

The paper is organized as follows. Section II presents 
our network model. Simulation results and analysis are 
provided in Section III. Section IV concludes the work. 

2. Network Model 

Four different types of networks are chosen as the un- 
derlying networks. They are the SF network, the random 
network, the SL network, and the RL network. One of 
their structural differences lies in their distinct nodal de- 
gree distributions. The degree of a node is the total num- 
ber of links connecting it. The SF network is built based 
on the Barabasi-Albert (BA) model proposed in [13]. It 
has a power law degree distribution so that most nodes 
have very low degrees, but a few nodes (called hubs) 
could have extremely high degrees. The random network 
is formed according to the Erdős-Rényi (ER) model pro- 
posed in [22]. The random ER network follows Poisson 
degree distribution when network size is large; therefore, 
the degrees of most nodes are around the mean degree. In 
the SL network, all the nodes except those located on the 
edge of the square have the same degree. The RL net- 
work is constructed by connecting each node on a circle 
to its  nearest neighboring nodes. Apparently, 
all the nodes in the RL network have the same degree.  

 2 1m m 

In the paper, we use node betweenness centrality, net- 
work polarization, and average path length to capture the 
structural characteristics of above networks. The node 
betweenness Bi for a node i is defined here as the total 

number of shortest path routes passing through that node. 
Nodes with high betweenness values participate in a 
large number of shortest paths. Therefore, initial conges- 
tion usually happens at nodes of the highest between- 
ness value. Node betweenness reflects the role of a node 
in a communication network. Normally, high between- 
ness nodes also have high degrees. The node between-
ness distribution of a communication network is demon- 
strated through a measure of the polarization, π, of the 
network [23]. It is defined as: 

maxπ
B B

B




,
ij i

i j i

D B

              (1) 

where Bmax is the maximum betweenness value, <B> is 
the average betweenness value. We find that π as an in- 
dication of node betweenness distribution suits our work 
better than others (e.g. standard deviation). The large po- 
larization value of a network tells us that at least one 
node possesses much larger betweenness values than 
most of the other nodes in the network. Therefore, the 
larger the value π is, the more heterogeneous the network 
is. On the other hand, for very homogeneous networks, π 
is very small. For example, for the RL network, we have 
π ≈ 0. The average path length <D> of a network is de- 
fined as the average of the shortest path lengths among 
all the source-destination pairs. In the next section, we 
are going to demonstrate how node betweenness, net- 
work polarization, and average path length relate to the 
performance of the underlying networks.  

The above three parameters capture the structural fea- 
tures of a network from different angles. They are also 
interrelated. Usually, the more heterogeneous (larger π, 
or relatively higher Bmax) the network is, the shorter the 
average path length <D> is. The reason is that high be- 
tweenness nodes (usually hubs) serve as shortcuts for 
connecting node pairs. In addition, the following rela- 
tionship between shortest path length and node between- 
ness centrality can be easily found, 

                 (2) 

where Dij stands for the shortest path length from node i 
to node j, Bi stands for the betweenness value of node i. 

In the underlying networks studied, fixed shortest path 
routing strategy is implemented. The length of the short- 
est path is the minimum hop count between a source- 
destination pair. Given network topology, each node 
calculates the shortest paths to all the other nodes using 
Dijkstra’s algorithm. Then a routing table is constructed 
at each node. A routing table contains three columns: 
destination node, next node to route a packet to the des- 
tination, and the hop count to the destination. 

The model used to govern the dynamic processes of 
packet generation, storage, and routing is similar to the 
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model by Ohira and Sawatari [1]. In [1], only infinite 
queues and first-in-first-out (FIFO) queuing discipline 
are implemented; while in our model, we include also 
finite queues and last-in-first-out (LIFO) queuing disci- 
pline. Especially, the implementation of finite queues is 
close to real-world scenarios. In the model, we assume 
that time is slotted. During each time slot, first, packets 
are generated at each node with the rate λ, the destination 
of a packet is randomly chosen among all other nodes. 
Each node is endowed with a queue in which packets are 
stored waiting to be processed. Then, if the queue is not 
empty, each node transmits one packet from its queue to 
one of its neighbors according to its routing table. When 
a packet reaches its destination, it is eliminated from the 
system. The traffic load on a node is quantified by the 
number of packets stored in its queue waiting to be proc- 
essed. 

In the paper, we study traffic dynamics and network 
performance as a function of packet generation rate, net- 
work structure, queue type, and queuing discipline. We 
use throughput, average packet delay, and packet loss as 
main performance measures. Throughput is defined as 
the average number of delivered packets per time slot. 
The average packet delay is defined as the average time 
that a delivered packet spent in the network. Under heavy 
traffic load, packet loss is defined as the average number 
of discarded packets per time slot. Packet loss is caused 
by traffic overflow at nodes with heavy traffic; thus, it is 
evaluated only when finite queues are implemented. 

3. Simulation Results and Analysis 

In the simulation, a discrete time clock k is used. Simula- 
tion starts with k = 0, for each passed time slot, k is in- 
cremented by 1. The performance of an underlying net- 
work is measured by its throughput o(k), average packet 
delay τ(k), and packet loss l(k). The values of o(k), τ(k), 
and l(k) are calculated respectively as the average from 
the start of simulation (k = 0) to time k. We use n(k) to 
represent the total number of packets within the network 
at time k.  

In the simulation, the underlying networks are gener- 
ated with approximately the same number of nodes and 
links. The SF network, the random ER network, and the 
RL network are all generated with 50 nodes and 100 
links. The SL network is generated with 49 nodes and 84 
links because of its structural restrictions. Four different 
cases are considered: infinite queues with FIFO queuing 
discipline, infinite queues with LIFO queuing discipline, 
finite queues with FIFO queuing discipline, and finite 
queues with LIFO queuing discipline. Then, we investi- 
gate network performance as a function of λ in above 
four different cases. Three network states are identified 
accordingly. We demonstrate that how, in different net- 

work states, the structure of a network influences its per- 
formance. 

Table 1 lists the related parameters of the underlying 
networks. It tells us that the RL network has the lowest 
polarization value π, which shows its almost homogene- 
ous structure in terms of node betweenness distribution; 
while the SF network has the highest π, which demon- 
strates its most heterogeneous structure. In addition, the 
RL network has the longest average path length <D> be- 
cause of its homogeneous structure; while the average 
path length of the SF network is the shortest because 
those few nodes of very high node betweenness values 
serve as shortcuts connecting different node pairs. The 
corresponding parameters of the random ER network and 
the SL network lie somewhere in between. One excep- 
tion is that the SL network has the lowest Bmax. In the fol- 
lowing section, the total internal traffic n(k) of these net- 
works is going to be calculated and compared as a func- 
tion of packet generation rate, queue type, and queuing 
discipline. In our simulation, each data obtained is aver- 
aged over 100 runs. 

3.1. Total Internal Traffic n(k) 

In this section, by investigating the change of n(k) as a 
function of packet generation rate λ, we reproduce net- 
work phase transition reported in [1-3]. Simulation re- 
sults are plotted in Figure 1. From Figure 1, we observe 
that the change of n(k) as a function of packet generation 
rate is independent of queuing discipline, but depends 
heavily on queue type. It is shown in Figures 1(a) and (c) 
that when queue size is infinite, a critical point λc is ob- 
served in all these networks where a network phase tran- 
sition takes place from traffic free flow to congestion. 
Compared with Figures 1(a) and (c), it is shown in Fig- 
ures 1(b) and (d) that when queue size is finite, the ab- 
rupt change of internal traffic at the critical points is 
greatly smoothed.  

When c  , a network is in steady state or traffic 
free flow state. In this sate, n(k) remain slow and almost 
unchanged with the increase in incoming traffic λ. Ac- 
cording to Little’s law, for a network of size N, the num- 
ber of packets created per unit time (given by N × λ) must 
be equal to the number of packets delivered per time slot. 
The number of delivered packets per time slot is 
 

Table 1. Network parameters 

 Bmax <B> π <D> 

SF network 802 127 5.32 2.59 

Random ER 449 141 2.19 2.87 

SL network 376 224 0.68 4.67 

Ring lattice 416 325 0.28 6.63 
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to the average path length of the networks. For instance, 
the RL network has the most internal traffic because it 
has the longest average path length. 

From Figures 1(a) and (c), we observe that compared 
with the other networks, the SF network has the lowest 
value of λc. The reason lies in its highest Bmax among all 
the networks studied. According to the definition of node 
betweenness centrality, the node with maximum be- 
tweenness value Bmax handles the heaviest traffic because 
it participates in the largest number of shortest path 
routes. With increasing incoming traffic, initial conges- 
tion (or quick accumulation of packets) shall take place 
first at the node with Bmax. In a similar way, the SL net- 
work obtains highest λc because it has the lowest Bmax. 
Thus, the critical point λc of a network is inverse propor-
tional to its Bmax. 

When c  , the networks enter into congestion state, 
where n(k) start increasing quickly with the increase in λ 
in the infinite queue case (shown in Figures 1(a) and (c)). 
However, in the finite queue case, we observe from Fig- 
ures 1(b) and (d) that, the change of n(k) is greatly smoo- 
thed. Especially, the curve that represents the change of 
n(k) in the SF network is the most flat among the four 
networks. The reason lies in that the few high between- 
ness nodes are quickly congested in the SF network; 
therefore, the huge amount of traffic that goes through 
those nodes has to be discarded because the queue size is 
finite. With the increase in λ, n(k) does not change much. 
However, since the incoming traffic is not yet very heavy, 
for the RL network, packets start to accumulate at almost 
all the nodes because of its homogeneous structure, which 
leads to relatively quick increase in its internal traffic 
n(k).  

3.2. Network Throughput o(k) 

This section investigates network throughput as a func- 
tion of packet generation rate, network structure, queue 
type, and queuing discipline. Simulation results are plot- 
ted in Figures 2 and 3. inf. stands for infinite queue type. 
fin. stands for finite queue type.  

From Figure 2, we observe that network throughput is 
almost independent of queue type and queuing discipline, 
but depends heavily on the structure of the underlying 
networks. Figure 2 shows that when c

 
(a) 

 
(b) 

 
(c) 

  , with the 
increase in packet generation rate λ, network throughput 
increases linearly, which demonstrate that the networks 
are in traffic free flow state. When λ exceeds the critical 
point λc, the increase in network throughput becomes 
slower because packets start to accumulate in the net- 
works. We say that a network is in moderate congestion  

 
(d) 

Figure 1. n(k) as a function of λ (k = 2000): (a) Infinite 
queue, FIFO; (b) Finite queue, FIFO; (c) Infinite queue, 
LIFO; (d) Finite queue, LIFO. 
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state. With further increase in λ, we observe clearly from 
Figure 2 that the throughput of the SL network and the 
RL network quickly drops. Figure 3 displays the through- 
put of the SF network and the random ER network under 
different queue types and queuing disciplines when the 
incoming traffic is very heavy. From Figure 3, a similar 
phenomenon is found in the SF network and the random 
ER network, even though the drop in network throughput 
is much slower. When network throughput starts to drop, 
we say that a network has entered into heavy congestion 
state. 

When a network enters into moderate congestion state, 
at least one node is congested. From Figure 2, we ob- 
serve that the SF network is the first that enters into mod- 
erate congestion state because it has the highest Bmax. 
Compared with the others, the performance of the SF 
network is the worst. The reason lies in its most hetero- 
geneous structure (largest π). When the SF network is in 
moderate congestion state, huge amount of packets 
quickly accumulate at one or several nodes of extremely 
high betweenness values when many other nodes are idle 
(or do not have enough packets to send). A similar phe- 
nomenon is observed in the random ER network, but the 
random ER network performs much better than the SF 
network because of its much smaller polarization value π. 
According to the same reasoning, we find that during 
moderate congestion state, both the RL network and the 
SL network achieve a little higher throughput than the 
other two because of their lower polarization value π. 
However, from Figures 2 and 3, we observe that both the 
RL network and the SL network have much shorter mo- 
derate congestion duration before entering into heavy 
congestion state.  

We find that even though in moderate congestion state, 
congestion happens at only a few nodes, network through- 
put depends heavily on traffic load distribution. The less 
the value of network polarization is, the more homoge- 
neous (in terms of node betweenness distribution) a net- 
work is, and the more balanced the traffic load is distrib- 
uted; therefore, the better the network performs. For the 
RL network and the SL network, their almost uniform 
node betweenness distribution results in more balanced 
traffic load distribution among all the nodes so that many 
packets are delivered successfully. Therefore, we may 
say that in moderate congestion state when traffic is not 
yet very heavy, network throughput strongly relates to 
network polarization. 

When λ increases beyond a specific value (this value is 
different for different networks), the networks enter into 
heavy congestion state. In this state, more nodes in the 
networks are congested. We observe that the smaller the 
network polarization is, the faster the network enters into 
heavy congestion state (shown in Figure 2). In this state, 
network throughput starts to decrease. For the SF net 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. o(k)as a function of λ (k = 2000): (a) Infinite queue, 
FIFO; (b) Finite queue, FIFO; (c) Infinite queue, LIFO; (d) 
Finite queue, LIFO. 
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work and the random ER network, because of their het- 
erogeneous structure (large π), even though most traffic 
is jammed at more nodes of high betweenness values, a 
small amount of traffic bypassing those congested nodes 
can still be delivered successfully. Compared with the SF 
network, the performance of the random ER network is 
much better because the random ER network is relatively 
less heterogeneous (relatively smaller π). For the RL net- 
work and the SL network, their structure is more homo- 
geneous. However, when the incoming traffic becomes 
very heavy, their very long average path length causes 
huge amount of internal traffic. In addition, since their 
node betweenness distribution is almost uniform and 
their average betweenness value is high, almost all the 
nodes are congested (few packets can be delivered suc- 
cessfully). Compared with the RL network, the SL net- 
work performs better because of its relatively shorter ave- 
rage path length and lower betweenness values. There- 
fore, in heavy congestion state, average path length, node 
betweenness, and node betweenness distribution all play 
important roles in network throughput. 

3.3. Average Packet Delay τ(k) 

Average packet delay as a function of packet generation 
rate, network structure, queue type, and queuing disci- 
pline is investigated in this section. Simulation results are 
plotted in Figure 4.  

In traffic free flow state c  

 
 

, we know that all 
the networks perform the same in terms of throughput 
(throughput increases linearly with λ), but it is not so in 
terms of average packet delay. In traffic free flow state,  

from 
n k

N
k




    
, we obtain 

n k
k

N



 . Since n(k)  

depends on the average path length of a network, the 
average packet delay τ(k) also depends on the average 
path length of the network. It is verified through our si- 
mulation. For instance, the SF network displays the low- 
est τ(k) because it has the shortest average path length. 
Therefore, in traffic free flow state, the average path 
length plays a major role in average packet delay of the 
networks. 

When the networks enter into moderate congestion 
state, from Figure 4, we find that the average delay per- 
formance relies heavily on queue type and queuing disci- 
pline. When LIFO queuing discipline is implemented, the 
average packet delay of all the networks reaches the low- 
est (shown in Figures 4(c) and (d)). This phenomenon is 
easy to understand. From Figures 4(a) and (b), when 
FIFO queuing discipline is implemented, an abrupt in- 
crease in average packet delay is observed in all the net- 
works. In addition, the average packet delay is greatly in- 
fluenced by queue types and network structure (shown in 
Figures 4(a) and (b)). For instance, when the SF net-  

 
(a) 

 
(b) 

Figure 3. o(k) as a function of λ (k = 2000): (a) The SF net- 
work; (b) The random ER network. 
 
work and the ER network are in moderate congestion 
state but the SL network and the RL network are already 
in heavy congestion state, the average delay of the SL 
network and the RL network is higher because of their 
longer average path length. 

The analysis made in above sections is also verified by 
our observation on the changes in queue length (total 
number of packets in a queue) through simulation. In 
traffic free flow state (we choose λ = 0.05), most queues 
in all the networks are almost empty. In moderate con- 
gestion state (we choose λ = 0.13), most queues in the RL 
network contain several packets, a few queues contain 
several tens of packets, and the length of one queue ex- 
ceeds one hundred packets. It is similar for the SL net- 
work. Most queues in the random ER network are almost 
empty, but the queues at a few nodes of high between- 
ness values contain hundreds of packets. Similar to the 
random ER network, most queues in the SF network are 
almost empty, but two queues at two nodes of extremely 
high betweenness values contain thousands of packets 
respectively. In heavy congestion state (a different λ is 
chosen for each network), for the RL network, the whole 
network is congested (most queues contain several tens 
of packets, a few queues contain even hundreds of pack-  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. τ(k) as a function of λ (k = 2000): (a) Infinite queue, 
IFO; (b) Finite queue, FIFO; (c) Infinite queue, LIFO; (d) 
Finite queue, LIFO. 

ets). It is similar to the SL network. While for the random 
ER network and the SF network, even though more 
nodes of high betweenness values are heavily congested, 
about half of the queues are still almost empty. Interest- 
ingly, we find that no matter what the structure of an un- 
derlying network is, congestion always takes place when 
a large number of packets start to accumulate at a few 
nodes. 

3.4. Packet Loss l(k) 

This section investigates the average packet delay as a 
function of packet generation rate, network structure, 
queue type, and queuing discipline. Simulation results 
are plotted in Figure 5. Since traffic overflow happens 
only when finite queues are implemented, packet loss is 
evaluated in two cases: finite queues with FIFO queuing 
discipline and finite queues with LIFO queuing disci- 
pline. 

Figure 5 clearly shows that only when the networks 
enter into congestion state, packet loss starts to increase 
abruptly. It also shows that packet loss depends on in- 
coming traffic and network structure, but is independent 
of queuing discipline. The SF network has the highest 
packet loss under the same incoming traffic because 
large amount of traffic have to pass through a few con- 
gested nodes (hubs). The RL network achieves the lowest 
packet loss in moderate congestion state, but when it 
enters into heavy congestion state, its packet loss exceeds 
that of the SL and the random ER network. The reason 
lies in its homogeneous structure. In moderate congestion 
state when the incoming traffic is not yet very heavy, 
traffic load distributes almost uniformly in the RL net- 
work; while in heavy congestion state when the incoming 
traffic is heavy, its homogeneous structure, together with 
its long average path length, and relatively high between- 
ness value, leads to the congestion of the whole network. 

4. Conclusion 

We have investigated how internal traffic, throughput, 
average packet delay, and packet loss change as a func- 
tion of packet generation rate, network structure, queue 
type and queuing discipline. Networks of various struc- 
tures have been chosen as underlying networks. Based on 
network performance, three network states have been 
classified: traffic free flow state, moderate congestion 
state, and heavy congestion state. Under fixed shortest 
path routing, we have found that node betweenness cen- 
trality, network polarization, and average path length all 
play important roles in different states of the underlying 
networks. In traffic free flow state, average path length 
plays the major role; it directly affects average packet 
delay. In moderate congestion state and heavy congestion 
state, both average path length and node betweenness 
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(a) 

 
(b) 

Figure 5. l(k) as a function of λ (k = 2000): (a) FIFO; (b) 
LIFO. 
 
distribution play important roles in network performance. 
Our work could help in designing better network struc- 
tures and better routing protocols. 
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