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ABSTRACT 

This paper develops an efficient variant of a Genetic Algorithm (GA) for a ship routing and scheduling problem (SRSP) 
with time-window in industrial shipping operation mode. This method addresses the problem of loading shipments for 
many customers using heterogeneous ships. Constraints relate to delivery time windows imposed by customers, the time 
horizon by which all deliveries must be made and ship capacities. The results of a computational investigation are pre-
sented and the solution quality and execution time are explored with respect to problem size. The proposed algorithm is 
compared, in terms of solution quality and computational time, with an exact method that uses Set Partitioning Problem 
(SPP). It is found that while the exact method solves small scale problem efficiently, treating large scale problems with 
the exact method becomes involved due to computational problem, a deficiency that the GA can encounter. Meantime, 
GA consistently returns better solution than other published work using Tabu Search method in term of solution quality. 
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1. Introduction 

The steady growth in international trade over many years 
has resulted in an increased need for freight transporta- 
tion. Maritime transportation (seaborne) is the major 
conduit of international trade. The statistics provided in 
UNCTAD [1] demonstrate high dependence of the world 
economy on seaborne trade. It supports production, trade, 
and consumption activities by ensuring the efficient 
movement and timely availability of raw materials and 
finished goods. According to the statistics provided in [1] 
(see Table 1), the total international seaborne has in- 
creased extremely, in terms of weight since 1970. This 
increase in seaborne trade has resulted in a parallel 
grown in the world maritime fleet. A recent survey on 
ship scheduling research is given in Christiansen et al. 
[2]. Transportation planning has been widely discussed 
in the literature but most of the attention has been de- 
voted to aircraft, rail and road transportation. Although 
these modes of transportation have similarities in terms 
of scheduling, ship fleet planning problems are different 
than those of other modes of transportation because ships 
operate under different conditions or operational charac- 
teristics. Christiansen et al. [3] conducted a thorough 
survey of maritime transportation and ship scheduling 
research. 

There are three basic modes of operation of comer- 
cial ships; 1) liner, 2) tramp, and 3) industrial Law- 

rence [4]. Liners operate according to a published itiner- 
ary and schedule similar to a bus line. Tramp ships fol- 
low the available shipments, like a taxi. A tramp shipping 
company may have a certain amount of contract ship- 
ments that it is committed to carry, and tries to maximize 
the profit from optional shipments. In industrial shipping, 
the shippers, control the ships and they strive to mini- 
mize the cost of shipping their shipments. In industrial 
shipping all shipments have to be allocated to a ship and 
picked up at its origin and delivered at its destination. In 
some cases, the controlled fleet may have insufficient 
 

Table 1. World seaborne trade. 

Total (all shipments) 
Year 

Millions of tons loaded 

1970 2566 

1980 3704 

1990 4008 

2000 5984 

2006 7700 

2007 8034 

2008 8229 

2009 7858 

2010 8408 
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capacity to deliver all shipments for an industrial ship 
scheduling during the planning horizon. In such a case 
some of the shipments can be delivered by spot charters, 
which are ships chartered for a single journey. The in- 
dustrial shipping can be presented into two separate types: 
inventory routing and cargo routing problems. First, in- 
ventory routing problems are constrained by inventory 
requirements, where the level of products at ports should 
be maintained. The second type, routing problems are 
usually constrained by the shipment, which is specified 
by loading/ unloading ports, and by time windows for 
loading and unloading. In this paper, the problem can be 
categorized as industrial shipping for type cargo routing 
problems. During the last decades, there has been a shift 
from industrial to tramp shipping, Christiansen et al. [3]. 

Ship Routing and Scheduling Problem (SRSP) is a 
branch of OR which focuses on studying and finding the 
best method to minimize the cost of shipping quantities 
of shipments over fleet of ships to a number of destina- 
tions over time windows. The problem is considered 
NP-difficult (nun polynomial) and grows in complication 
proportional to the increase in variables and constraints. 
The SRSP has been tackled in the literature for industrial 
shipping through many approaches. The methods varied 
from exact approach to constructive heuristic. The exact 
approaches include; integer programming , mixed integer 
programming, or linear programming, where optimal 
solution will be produced. On the other hand, it will be 
complicated to solve large scale problems due to compu- 
tational problems. The majority of researchers use exact 
approach methods based on a set partitioning formulation. 
All candidates feasible schedules are generated a priori, 
then the scheduling problem is formulated and solved as 
set partitioning problem. But, for some real ship sched- 
uling problems—large scale—it is time consuming to 
generate all these schedules, as the number of such 
schedules would result in too many columns when solv-
ing the models. The other technique is constructive heu-
ristic, which capable of solving large scale problem, 
however, optimality is not guaranty. Examples of heuris-
tic methods; Tabu Search (TS), Genetic algorithm (GA), 
Simulating Annealing (SA), or Neural Network methods 
for optimization. 

Most of the works in industrial mode are focused on 
inventory routing, where there are a little works tackled 
cargo routing as our problem. For example, Christiansen 
et al. [5] and Ronen [6] considered an inventory routing 
problem (IRP). On the other hand, Sherali et al. [7] tack- 
led cargo routing problem . They considered a problem 
for routing and scheduling ships. The main thrust of the 
research was focused on the Kuwait Petroleum Corpora- 
tion (KPC) Problem. A fleet of ships was involved in 
delivering crude oil and refined oil-related products from 
Kuwait to ports around the world. The model considered 

a fleet of ships consisting of controlled and chartered 
ships. The problem was solved and formulated using an 
integer programming model. The results presented a 
good cost reduction compared with the ad-hoc schedule 
procedure used by Kuwait Petroleum Corporation (KPC). 
Alhamad [8] addressed SRSP using Tabu Search heuris-
tic method. The problem of loading shipments for many 
customers using heterogeneous ships. Constraints relate 
to delivery time windows imposed by customers, the 
time horizon by which all deliveries must be made and 
ship capacities. The results of a computational investiga- 
tion are presented. Solution quality and execution time 
are explored with respect to problem size and parameters 
controlling of Tabu Search such as tenure and neighbour- 
hood size. Mehrez et al. [9] considered a real industrial 
ocean cargo-shipping problem. The number and size of 
ships (controlled and chartered) in each time period are 
among the decisions to make in addition to the number 
and location of transshipment ports to use and the trans- 
portation routes from discharging ports to customers. The 
resulting formulation of the problem was a mixed-integer 
program. They use commercial optimization software to 
solve the problem by reduce the large scale, dynamic and 
stochastic problem to a deterministic model. Brown et al. 
[10] considered a crude oil tanker scheduling problem 
faced by a major company, and solved it using an elastic 
set-partitioning model. The oil company controlled sev- 
eral crude oil ships of similar sizes to ship crude oil (full 
shipload) from Middle East to North America and 
Europe. The problem was solved by generating all feasi- 
ble schedules, and selecting the optimal subset of sched- 
ules. The model took into account all fleet cost compo- 
nents, and determined the optimal speed for the ships, 
and the best routing of empty ships. The model also de- 
termined which shipments to load on controlled ships, 
and which to spot charter. Bausch et al. [11] expanded 
the Brown et al. [10] model for scheduling shipments of 
refined oil products from several refineries to multiple 
destinations using either tankers or barges. A microcosm- 
puter system was designed with an EXCEL user interface. 
A detailed cost model was integrated in the system. The 
model can be used to find out the optimal speed of the 
ships and the need for spot chartering ships. 

The purpose of this paper is to present a solution ap- 
proach for this problem based on Genetic Algorithm 
(GA). GA was used in many other problems and found to 
produce competitive results; see for example Liu et al. 
[12]. To the authors knowledge, no work on ship routing 
and scheduling problem adapted GA is reported in the 
literature. 

In this paper, GA heuristic method is used to solve 
SRSP with time-window. The method was developed to 
address the problem of loading shipments for many cus- 
tomers using heterogeneous ships. Besides, the aim of 
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this research is to design a reliable model, which is capa- 
ble of generating a good schedule for industrial sectors. 
Moreover, this model can be used to solve large-scale 
problems practically and efficiently. Yet, an improve- 
ment of GA to solve these types of problems was pro- 
posed by changing the way of generating population by 
using insert trail method to repair any infeasible solution. 
On the other hand, an exact approach based on SPP were 
presented as well, to measure the quality of the solution 
for GA used in this paper. 

The paper is organized as follows: Section 2, a de- 
scription of GA is provided in brief. Section 3, problem 
description and mathematical formulation of the SRSP 
are described. In Section 4, the proposed algorithm using 
GA method is presented. The overall computational re-
sults are listed and described in Section 5. Finally, con-
clusions are drawn in Section 6. 

2. Genetic Algorithm 

This section presents a full description of the GA method, 
which is capable of solving large scale instances of SRSP. 
However, since this is a heuristic method, optimality is 
not guaranteed in all cases. 

Genetic Algorithms (GAs) were introduced and 
developed by Holland [13], his colleagues, and his 
students at the University of Michigan. The aim of their 
study was to abstract and explain the adaptive technique 
of natural systems and to create artificial systems soft- 
ware that preserves the essential mechanisms of natural 
systems. The idea behind GAs is well known. The 
application of solutions is generated randomly and 
reproductive operation allows the parent solutions to be 
chosen from the population. The GA keeps a population 
of candidate members over many generations. The 
population consists of a number of strings of artificial 
chromosomes. A chromosome consists of a number of 
entities known as genes. The number of genes in a 
chromosome is usually the same for all chromosomes in 
the population. Each gene has a value associated with it. 
In most applications those numbers are either binary or 
integer. Variables are often called genes, and the values 
of variables are called alleles. The process starts by 
selecting parents according to the fitness value (quality). 
Offspring solutions are produced by applying two major 
tools in GA, crossover and mutation. 

The first step of most researches that use GA is to 
generate a number of chromosomes considered as a 
population or mating pool. Then two chromosomes are 
selected from the population. By applying the crossover 
and the mutation operators two Offspring are produced 
and their fitness is evaluated. This operation will carry on 
by selecting two other parents from the population and 
repeat the same previous procedure for a number of it- 
erations or a certain stop criteria is achieved. In contrast, 

in this research, two chromosomes (parents) will be gen- 
erated and apply mating operation (crossover and muta- 
tion operators) on them to produce a new two Offspring. 
These two Offspring after evaluation will be considered 
as a new two parents for the next iteration and then apply 
the same previous procedure. This operation will carry 
on for a number of iteration. It is worth noting that, since 
this is a heuristic method, the optimality is not guaran- 
teed in all cases. 

3. Problem Descriptions and Mathematical 
Formulation 

The Ship Routing and Scheduling Problem (SRSP) ad- 
dressed in this paper is described as follows: 

Given a number of ships with different capacities, each 
one of them will serve a number of customers by, possi- 
bly, making more than one trip from a customer to an- 
other within the time horizon. A trip is portions of the 
route, starting and finishing at the origin, see Figure 1. 
The route for a specific ship is defined as the total num- 
ber of all the trips this ship has made. A schedule con- 
sists of all the routes together with the servicing time of 
each shipment in the route. The requirements of all cus- 
tomers must be satisfied by the company operating the 
ships. Each customer imposes a delivery time window 
according to an arranged contract with the company. 
Unloading must take place within the delivery time win- 
dow. If the ship arrives before the time window, it must 
wait until the start of the delivery time window before 
unloading. The objective function which searches for 
minimizing the overall cost, should consider all the oper- 
ating expenses, such as fuel consumption, crew wages, 
maintenance, fixed cost of chartered ships, and other 
expenses. 

This problem is defined formally as: N is a set of ver- 
tices (shipments), N = {0, 1, ···, n}, where 0 is the origin 
and n is the total number of shipments-port to be visited. 
There is a set of ships, V = Vc + Vch, where Vc is the total 
number of controlled ships belonging to the company to 
serve n shipments with different capacities. Vch is a fleet 
of chartered ships, where the company can resort to the 
market to charter if there are insufficient ships to deliver 
all shipments.  

It is assumed that all chartered ships will be available 
at the beginning of the schedule. To address this problem, 
a list of all shipments is arranged and numbered in se- 
quence according to their earliest delivery time-window.  
 

Trip

Route 

Trip Trip Trip 

0  1  0  3  8 5  0    k  0   h   (h+3)  0  

Figure 1. Illustrate the route and trip. 
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So, the shipment with the earliest delivery time-window 
will be considered as shipment number one, and so on for 
other shipments. The ships, on the other hand, are num- 
bered according to time availability in origin. 

To illustrate, suppose for example, that there are 10 
shipments and 4 ships available. Figure 2 illustrates all 
possible routes to satisfy all shipments and the operating 
cost for each route using specified ship. 

For example, ship 2 has two trips: the first trip has 
only one shipment for customer 2; the second trip has 
two shipments for customers 8 and 5. 

Figure 3 illustrates the schedule for 10 shipments to 
be delivered by a fleet of ships including the total oper-
ating cost. 

The schedule displays all the shipments and their allo- 
cated ships, where the shipments are arranged in se- 
quence according to their earliest delivery time-window 
as mentioned previously. More precisely, this sequence 
does not imply that each shipment will be delivered ac- 
cording to its arrangement: For example ship number 2 
(in Figure 2) delivered shipment 8 before shipment 5. 

In this paper, an approximate approach method based 
on GA is considered. Detailed notations are given below. 

Data: 
V = {1, ···, m}, denotes the set of m ships to be sched-

uled, indexed by v, where . v V
N = {0, 1, ···, n}, denotes the set of n shipments to be 

delivered, indexed by i, where  and 0 denotes to 
origin and 

i N
 \ 0N  denotes shipments. 

AVv denotes to the availability time of ship v at the 
origin . v V 

ei earliest arrival time for shipment i, .  \ 0i N 
 \ 0i N li latest arrival time for shipment i, . 

Qi shipment quantity of shipment i (tons)  \ 0i N  . 
dik distance (in days) between shipment-port i and 

shipment-port k, where . .i k N
CTv capacity of ship v (tons) . v V 
Rv Route of ship v, . v V 
CPiv port entrance due (fee) at shipment-port i for ship 

 

 

Figure 2. Illustrate the route for each ship and the cost for 
each route. 
 

 

Figure 3. Illustrate 10 shipments are delivered by 4 ships, 
and the total operating cost. 

v  \ 0 ,i N v V    . 
SPv sailing cost using ship v (per day) . v V 
LDiv time required for loading shipment i onto ship v 

(days)  \ 0 ,i N v V    . 
ULiv time required for unloading shipment i from ship 

v (days)  \ 0 ,i N v V    . 
OCiv operating cost for ship v to handle shipment i, in-

cluding loading and unloading costs  
 \ 0 ,i N v V    . 

Wpv waiting cost (idle in the ocean) for ship v (per day) 
v V  . 
Decision Variables: 
fiv actual arrival time for ship v to shipment-port i, 

 \ 0 ,i N v V    . 
Wiv duration of waiting (idle) time for ship v until 

time-window of shipment-port i opens (days) 
 \ 0 ,i N v V    . 

tsv total sailing using ship v, . v V 

1 if ship  sailing from  to 

0 otherwiseikv

v i
x


 


k
 

, ,i k N v V    . 

1 if ship  delivered shipment 

0 otherwiseiv

v i
y


 


 

 \ 0 ,i N v V    . 
The variable of actual arriving time fiv can be com- 

puted using one of the following two equations according 
to ship position: 

1) fiv = AVv + LDiv + d0k + wkv + ULkv + dki + wiv if ship 
v sailing direct from origin and loading to deliver ship- 
ment k then shipment i. 

2) fiv = fkv + ULkv + dki + wiv, if ship has delivered 
shipment k. 

If ei ≤ fiv ≤ li, where ship v arrived shipment-port i 
within time-window, in that case Wiv = 0. On the other 
hand, if fiv < ei, which means, ship v arrived the ship- 
ment-port i before earliest start time. On this time, Wiv 
can be computed using the following equation: Wiv = ei – 
(fkv + ULkv + dki). 

The total sailing tsv using ship v can be computed by 

0 0,i k

n n

v i
i

kv k
k

its x d
  

    

The operating cost and port entrance due for ship v for 
the entire route can be computed by: 

 
1

n

v iv iv i
i

vopd y OC PC


   

where the total cost TC for this problem can be counted 
by: 

1 1

m n

v v v v
v

iv
i

TC ts SP opd wv WP
 

 
   

 
   
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4. Problem Approach 

Section 4.1 presents the approximation approach based 
on GA, while the exact algorithm is presented in Section 
4.2. 

4.1. Solving the Problem by the Genetic  
Algorithm 

In this paper, the GA starts by generating two chromo- 
somes (solutions) which represent the first two parents. 
The representation of each chromosome is an integer 
string of length N, where N is the number of shipments in 
the problem. Each gene in the chromosome is the integer 
number of a specific ship assigned to that original ship- 
ment. Not like other application of GAs, where usually 
generate a number of chromosomes which form a popu- 
lation. In this research, initial solutions are generated to 
produce two parents. Operations such as crossover and 
mutation are applied to parents to produce offspring 
(children). The new generation is considered as the new 
population and the procedure is repeated. Through each 
mating process, each chromosome will be evaluated ac- 
cording to the feasibility; any infeasible solution is not 
acceptable and must go through a repair operation to fix 
it. Repairing procedure will be applied after each opera-
tor (crossover or mutation). The lower fitness value will 
be stored and compared with other new chromosome. 
The process will carry on until a specified number of 
iterations are reached.  

One of the initial parents can be obtained by using a 
Greedy Algorithm, while the other parent is generated 
randomly. The Greedy Algorithm starts by selecting the 
ship with the least overall cost ship. A route is then cre- 
ated for this ship starting from shipment number one in 
the list, provided that all constraints such as capacity and 
delivery time window are satisfied. The process can be 
presented as follows: 

1) The insertion of shipment i in a route for ship v, 
does not violate the delivery time window if ei ≤ fiv ≤ li 

.  \ 0 ,i N v V 
2) The insertion of shipment i in a route for ship v, 

does not violate the capacity of ship v if Qi ≤ CTv, 
. v V 

The next step is to select the ship with the next lowest 
cost and considering the unallocated shipments in the list. 
This procedure will carry on until no shipment remains 
unallocated. For instance, a schedule of n shipments is 
illustrated in Figure 4. 

In Figure 4, shipment 1 is served by ship 3, shipment 
 

 

Figure 4. Schedule of n shipments. 

2 is served by ship 1, and so on until last shipment n is 
served by ship k. 

In the rest of this research, representation of schedules 
will be as chromosome, for example, Figure 5 illustrates 
the previous schedule in Figure 4. 

Note that after forming the initial chromosome (sche- 
dule), it is possible that one or more ships are not used in 
this schedule. These ships are referred as idle ships. 
These ships will be available during GA operation. 

The following section explains the methodologies for 
solving this type of problem by using the GA method, 
and describes separately the characteristics of each com- 
ponent of the method. 

4.1.1. Crossover Operator 
Crossover is a genetic operator that mates two chromo- 
somes (parents) to produce a new chromosome (off- 
spring). Mating implies that a portion of chromosome 
one is swapped with another portion from chromosome 
two. The new chromosome may be better than both of 
the initial parents in case it takes the best characteristics 
from each one of the parents. Three different types of 
Crossover can be reported in the literature: Single point 
(1-point), 2-point, and 4-point. Since the results of using 
1-point crossover operator were modest comparing with 
the two other types, the results will not be discussed. In 
the 2-point crossover two points in chromosome are 
chosen randomly, while in the 4-point four points in 
chromosome are chosen randomly as well. Figure 6 il- 
lustrates 2-point and 4-point crossover. 

In 2-point operator, swapped every genes value be- 
tween the two chosen points (portion) with the genes 
value between the two chosen points in the opposite par- 
ent, which generate two offspring. Figure 7 illustrates 
2-point operator. 

In the 4-point crossover, two portions are considered 
in each parent. Therefore every gene belonging to portion 
one in the first parent will be swapped with a gene from 
the portion one in the second parent. The same idea ap-
plies to portion two. This operation will generate two 
offspring. Figure 8 illustrates 4-point operator. 
 

 

Figure 5. A chromosome of n shipments. 
 

 

Figure 6. 2-point and 4-point crossover operators. 
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Figure 7. 2-point crossover operator. 
 

 

Figure 8. 4-point crossover operator. 
 

The procedure of crossover is performed by swapping 
the two selected portions as illustrated in Figure 9. We 
adapted the 2-point crossover operator as example. 

The procedure of crossover is performed as following: 
Insertion and backtracking procedure: we start in- 

serting the selected shipments (genes 4, 5, and 6) in the 
exchange ships and determine their position in ship’s 
route. For instance, the insert trail of shipment 4 in the 
route of ship 1 for offspring1 will be as illustrated in 
Figure 10. 

The criterion adopted in the insertion is as follows: For 
example, if shipment 4 is going to be inserted between 
shipment 2 and 7 as in Figure 11, the following condi- 
tions must be satisfied: 

21 41 71 02 2LD LD LD d l              (1) 

21 21 24 4f UL d l                 (2) 

41 41 47 7f UL d l                 (3) 

2 4 7Q Q Q CT   1               (4) 

The insertion may shift the positions for some original 
shipments in the ship route as illustrated in Figure 11 
where the shipment 7 is moved one step forward, or, due 
to some limitations (such as ship capacity), some ship- 
ments are possibly transferred to next the trip as shown 
in Figure 12 where shipment 7 is transferred to next trip. 

 

Figure 9. Swapping operation. 
 

 

Figure 10. Potential insert trial places for shipment 4 in ship 
1. 
 

 

Figure 11. The effect of insertion on shifting the position of 
a shipment on a trip. 
 

 

Figure 12. The effect of insertion on transferring the ship-
ment to next trip. 
 

Insert trail proposed in this research will increase the 
investigation in search area and give good chance to 
reach good solution by utilizing waiting time, exploit 
ship’s capacity. 

Backtracking procedure will be applied that ensures 
that the ship capacity and the delivery-time are not vio-
lated after insertion. This process is applied for the entire 
route starting from the first shipment until the last one in 
the route after every insertion, to check the feasibility, 
where all constraints are satisfied. 

In general, the backtracking is carried on to satisfy the 
two conditions: 

1) The trail does not violate any constraints such as 
ship capacity CTv or delivery time-window of shipment i. 

2) The trail does not violate any constraints for the 
original shipments in the route of ship v (Rv). 

If the insertion succeeds, then a feasible solution is 
generated. The next chosen shipment will go through the 
same insertion and backtracking mentioned previously, 
until no shipment is leftover. 

Otherwise, if the insertion procedure failed for all po-
tential places for this specific shipment, then no feasible 
solution is generated and this gene will be left empty; 
that is this is an invalid offspring and needs to go through 
a repairing procedure. 

Repairing. This applies in case of generating infeasi-
ble solution. The key idea of repairing is to select a ship 
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with the lowest overall cost and try to insert it in the 
leftover shipment so that the two conditions (ship capac-
ity and delivery time window) are fulfilled. This proce-
dure is repeated with the other ship having the second 
lowest cost until no empty gene in the chromosome is 
left. 

4.1.2. Mutation Operator 
The key idea of the mutation operator is to consider the 
chromosomes generated by the crossover and swap one 
gene selected from chromosome 1 with another gene 
selected from chromosome 2 as illustrated in Figure 13. 
The selection of each gene is done randomly. Unlike the 
crossover operator that concentrates on local optima are, 
the mutation may expand the search to a wider area and 
allows to divert the search to outside the area defined by 
the crossover. This swapping will result in a new chro-
mosome. To test whether this is feasible or not, the inser-
tion, backtracking, and repairing procedure are applied as 
explained in the previous section. 

The procedure diagram of the proposed GA is shown 
in Figure 14. 

4.2. Exact Algorithm 

The approach adopted to solve this type of problem is 
based on the Set Partitioning Problem (SPP). The major 
advantages of SPP models are that cost can be easily 
incorporated when generating all feasible schedules. The 
SPP model involves generating candidate feasible sched- 
ules and can be solved by use of a heuristic method or by 
optimization depending on the desired solution quality 
and the time available for solution. SPP is a widely used 
model for solving routing and scheduling problems, 
Christiansen et al. [3] reported that 40% of the reviewed 
papers use the SPP models or a variant. This research 
adapted SPP for exact solution, where candidate feasible 
schedules are generated. 

In this section, notations and formulation for solving 
SRSP are presented, while the full description of genera- 
tion of the candidate schedules will be presented in the  
 

 
Figure 13. Mutation operation. 

 

Figure 14. Operation of genetic algorithm. 
 
following section. 

Sv denotes to a set of candidate schedules are available 
for ship v, and j indexed to specific schedule v V  . 

Cvj denotes to the cost for using schedule j for ship v 
, vv V j S   . 

1 if schedule  for ship  is delivering 

shipment 

0 otherwise
ivj

j v

SC i


 



 

 \ 0 , , vi N v V j S     . 
Decision variable 

1 if schedule  for ship  is selected

0 otherwisevj

j v
x


 


 

, vv V j S   . 
The following is SPP based formulation for solving 

SRSP: 

Min
j

vj vj
v V j S

C x
 
              (5) 

Subject to 

1,
j

ivj vj
v V j S

SC x i N
 

            (6) 

1,
v

vj
j S

x v V


              (7) 

 0,1 , ,vj vx v V j S            (8) 

The objective function (5) represents overall cost. 
Constraints (6) ensure that all shipments have been de- 
livered either by controlled ship or spot chartered ship. 
Constraints (7) ensure that each ship has used at most 
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once. These two tests will apply for each generated schedule 
to ensure that SPP will consider only feasible schedules. The following section will explain the method of gen- 

erating all possible candidate schedules SCivj. To simplify this procedure, consider an example with 
three shipments and one ship. If all constraints are re- 
laxed, then Table 2 illustrates all the candidate schedules 
that can be generated: 

4.2.1. Generation of the Candidate Schedules 
Candidate schedule generation uses a procedure that 
generates a set of feasible candidate schedules, each of 
which corresponds to a variable in the SPP model. Each 
individual candidate schedule has a route for a specific 
ship containing one or more shipments. A number of 
candidate schedules for a specific ship are represented by 
a subset. The union for all subsets (for the set of all ships 
in the fleet) forms a set of candidate schedules 

5. Comparison between SPP Approach and 
GA Approach 

5.1. Description of the Test Problems 

The major objective of the computational experiment 
reported here is to evaluate the performance of the pro-
posed GA designed model in terms of the quality of the 
solutions and the computing time. This evaluation can be 
implemented by comparing the results of the two ap-
proaches: the exact method using SPP and the GA de-
signed model. 

The generation of schedules is implemented in a sys- 
tematic way by expanding an existing schedule by in- 
serting a new shipment. Since the route in the schedule 
consists of origin and shipment nodes, there are at least 3 
nodes in each route, where the first and the last nodes 
represent the origin. Before continuing to explain the 
method of generating candidate feasible schedules, it is 
necessary to illustrate the test of feasibility for each gen- 
erated schedule. 

Since there were obstacles in obtaining some informa- 
tion related to Kuwait Petroleum Company (KPC), due to 
commercial confidentiality, random data are generated 
using distributions close to the reality. Data involved in 
SRSP can be presented as follows:  Feasibility tests for each generated schedule will be 

implemented by considering each ship capacity or avail- 
ability time at origin, as follows: 

1) Ship details (Time availability at origin, capacity, 
sailing expenses, and waiting in the sea expenses). 

2) Distance between shipment-ports (include origin). 
1) To ensure that each ship arrives not after the latest 

required time-window, the following test is necessary 
3) Shipment details (delivery time-window (start and 

close) and quantity). 
,iv if l i N v V                 (9) 4) Loading & unloading duration, and the cost of ship. 

5) Port fee due for each ship. 2) To ensure a ship has sufficient capacity to handle a 
specific shipment, it is necessary to add the following 
test: 

The user can enter a specific data that defines a par-
ticular problem instance of SRSP by using a designed 
interface. The component of the interface consists of all 
data involved in SRSP presented previously. , where i vQ CT v V i N         (10) 

 
Table 2. All candidate feasible schedules. 

No. Candidate schedules No. Candidate schedules No. Candidate schedules 

1 0—1—0 14 0—2—0 27 0—3—0 

2 0—1—2—0 15 0—2—1—0 28 0—3—1—0 

3 0—1—2—3—0 16 0—2—1—3—0 29 0—3—1—2—0 

4 0—1—2—0—3—0 17 0—2—1—0—3—0 30 0—3—1—0—2—0 

5 0—1—0—2—0 18 0—2—0—1—0 31 0—3—0—1—0 

6 0—1—0—2—3—0 19 0—2—0—1—3—0 32 0—3—0—1—2—0 

7 0—1—0—2—0—3—0 20 0—2—0—1—0—3—0 33 0—3—0—1—0—2—0 

8 0—1—3—0 21 0—2—3—0 34 0—3—2—0 

9 0—1—3—2—0 22 0—2—3—1—0 35 0—3—2—1—0 

10 0—1—3—0—2—0 23 0—2—3—0—1—0 36 0—3—2—0—1—0 

11 0—1—0—3—0 24 0—2—0—3—0 37 0—3—0—2—0 

12 0—1—0—3—2—0 25 0—2—0—3—1—0 38 0—3—0—2—1—0 

13 0—1—0—3—0—2—0 26 0—2—0—3—0—1—0 39 0—3—0—2—0—1—0 
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Six cases are examined with different number of ship-

ments and ships. Twenty five randomly generated in-
stances for each of these problem sizes were used. Ship 
time availability, ship capacity, shipment-port duration, 
shipment amount, and shipment-port delivery time win- 
dow are all generated from a Uniform distribution, where 
time-horizon is equal to 150 days for each case. Table 3 
presents the features for each case.  

5.2. Numerical Results 

GA method was coded and implemented using Visual 
Basic 6, running on Intel Core 2 Duo, 2.50 GHz CPU. 

The second approach is an exact method based on the 
Set Partitioning Problem SPP. The implementation lan- 
guage Visual Basic 6 was used to generate all candidate 
feasible schedules, while the commercial optimization 
solver CPLEX-11 was used for optimality. 

In this section, experiment results for approximate and 
exact models are presented. First, experiment results for 
approximate models with different neighborhood size 
(NBS) are given. Table 4 (in the next page) displays the 
computational results for six cases, where, twenty five 
different problem instances were generated (150 different 
problems are the total), and shows the computational 
results when varying the value of the neighborhood size 
(NBS) for the crossover operator. Searching terminates 
after reaching 60,000 iterations. For all cases, the average 
of the mean of the overall operating cost (objective func-
tion) is presented. Meantime, the average of the gap be-
tween the best solution and the current solution are pre-
sented in percentage to measure the quality of the solu-
tion, where zero indicates the best solution of this spe-
cific case. 

In addition, last column (Average Gap %) evaluate the 
best gap among all cases, where the smallest gap is the 
best. In case 1, the best solution is obtained when NBS is 
equal to 10% using 4-Opt. For cases 2 and 4, NBS is 
equal to 40% using 4-Opt are produced the best solutions, 
while in cases 3 and 6, NBS is equal to 30% using 2-Opt 
are presented the best solutions. Lastly, for case 5, the 
best solution when NBS is equal to 40% using 2-Opt. In  

general, the solutions were very close by using different 
NBS, where the large gap is equal to 3.37% in case 1 
with NBS equal to 40% using 4-Opt. Meantime, the so- 
lution is slightly better when adapted NBS equal to 30% 
using 2-Opt, where the average gap is equal to 0.39%. 
Finally, the computing time is increased proportionately 
when the NBS increased for all experiments. 

The generation of candidates feasible schedules and 
finding the solution by set partitioning problem (SPP) 
required more CPU-time. Table 5 illustrates the com- 
puting time required for generating candidates feasible 
schedules and finding the solution by SPP for only cases 
1, 2, and 3, where the CPU-time is increased exponen- 
tially. Table 5 shows the increase of the number of can- 
didate schedules generated, and computing time corre- 
sponding to the increase of the problem size. The com- 
putational experience indicates that CPU-time required to 
generate the candidates feasible schedules profoundly 
depends on many parameters such as; number of ship- 
ments, time horizon, delivery time-window width, dis- 
tance between shipment-ports, number of ships involved, 
etc. This pointed to that more time is required to solve 
medium and large-scale problems, and necessitates to 
resort to another heuristic methods capable to of gener- 
ating solution close to optimality, such as GA method 
proposed in this research.  

Table 6 presents the computational comparison results 
for approximation approach (GA) and exact approach 
(SPP) for six cases, 150 different problems are generated. 
The results for all cases represent schedule generations, 
applying Set Partitioning model, and applying GA model. 
Number of shipments and ships as illustrated in Table 3. 
 

Table 3. Problem features to evaluate problem size. 

Case No. of shipments No. of ships 

1 20 9 

2 30 15 

3 40 17 

4 50 20 

5 75 30 

6 100 40 

 
Table 5. Details of number of schedules generated for the first three cases. 

Case 1 2 3 

Schedule generation:    

Candidate schedules (Avg.) 13,940 299,021 1,683,270 

Std. Dev 7999 327,666 1,649,175 

Max. No. 35,377 1,240,586 6,369,442 

Min. No. 4368 62,501 428,044 

CPU (seconds) Avg. 45.5 137 1490 (5 instances out of 25) 

Set partitioning: CPU (seconds) Avg. 4.25 543.2 4929.5 (5 instances out of 25) 
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Table 6. SPP and GA computational results. 

 Case 1 2 3 4 5 6 

Time Horizon (days)  70 100 100 120 120 150 

Shipments  20 30 40 50 75 100 

Ships  9 15 17 20 30 40 

Number of feasible  Schedules (per ship)  ∞ ∞ 50,000 45,000 30,000 20,000 

Generating Schedules        

No. Schedules Average 13940.2 299020.6 424,130 551,339 651,790 647,831 
 

 Std. Dev. 7999.3 327666.3 109,982 84,688 62,317 61,981 

 CPU-seconds Average 45.5 137 131.7 106 97 91 

 Std. Dev. 3 14.6 11.4 29.5 30 22.7 

SPP        

 Quality Average 1093621.4 1547789.7 2057987.8 2698111 3919554.2 5355456.6 

 CPU-seconds Average 4.25 543.2 622.4 774.3 1183 1345.2 

  Std. Dev. 4.68 1109 468.3 600.2 1071 1132 

        
GA 

Quality Average 1248408.2 1890102.8 2597697 3287371.6 4779181.1 6221626.4 

 No. of iterations  20,000 52,000 80,000 115,200 260,000 500,000 

 CPU-seconds Average 154 264 397 742 1258 2009 

 Std. Dev. 6.8 15.4 26 47 74 94 

TS (*)         

 Quality Average 1323780.9 1918886.1 2637255.5 3382069.5 4868766.4 6311886.4 

 No. of iterations  20,000 52,000 80,000 115,200 260,000 500,000 

 CPU-seconds Average 15 26.2 46 70.8 160.4 227.3 

  Std. Dev. 1.7 4.7 6.3 15 18 38.5 

% Gap between SPP and GA Average 14.2% 22.1% 26.2% 21.8% 22% 16.1% 

% Gap between SPP and Tabu Search Average 21% 24% 28% 25.3% 24.2% 17.9% 

(*) Published work Alhamad K. [8]. 

 
For cases 1 and 2, the problems were solved by gener- 

ating all feasible schedules (Rmax = ∞), thus ensuring op- 
timal solution. This could not be implemented for the 
other cases (3, 4, 5, and 6) due to memory problems, 
where it is clear in case 3 that only 5 instances out of 25 
problems were solved, as illustrated in Table 4. The 
number of candidate schedules for cases 3, 4, 5, and 6 
has a limit set at 900,000, where, a subset of candidate 
schedules are selected. 

According to Table 5 the generation of candidate fea- 
sible schedules of case one requires CPU-time more than 
the time required to obtain the solution of the set parti- 
tioning problem. This is due to the exponential computa- 
tional time, which does not occur for the other cases.  

For the medium and large scale problems, the solu- 
tions obtained by SPP lose the property of optimality 
since only a subset of all feasible schedules can be in- 

cluded in the model. In Table 4, where for cases three to 
six the gap is 26.2%, 21.8%, 22%, and 16.1% respec- 
tively. This is due to the total number of the subset of 
candidate feasible schedules generated for each case, 
where in case three the number is large (up to 50000 
schedules for each ship), while it gets smaller for the next 
cases (the candidate feasible schedules for case six do not 
exceed 20000). 

Further, GA returns better solutions in term of solution 
quality compared to Tabu Search (TS), Alhamad [8], 
where the computing time for the latter is. However, in 
GA computing time is slightly large. 

The results given in Table 6 show that the gap be-
tween the solutions obtained by GA and SPP is slightly 
large. In addition, more time is needed to solve medium 
and large scale problems by the SPP because the com- 
puting time increases exponentially with the problem size. 
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However, the GA generates good solutions for such types 
of problems more quickly. The performance of GA is 
more predicted in term of computing time. 

An attempt to solve problems involving more than 100 
shipments such as 125 shipments using the SPP was car- 
ried out, but, infeasible solutions were obtained. This 
happened in some instances in case six, where four out of 
twenty five cases, generated infeasible solutions. 

Many factors influence the number of candidate 
schedules. These include time horizon, the delivery time 
window and the ship capacities. 

Therefore, user can use SPP for small scale problems 
where optimal solution is guaranteed, while for medium 
and large scale problems, user can refer to GA to produce 
good solutions.  

6. Conclusions 

This paper describes a new optimisation based approach 
for SRSP. Two computational approaches to handle 
SRSP are considered. The first is an approximate method 
based on GA and the second approach is an optimisation 
approach based on the SPP. For the optimisation ap-
proach, a number of candidate feasible schedules are 
generated, each of which corresponds to a variable in the 
SPP model.   

The major objective of the computational experiment 
was to evaluate the performance of the proposed GA 
designed model in terms of the quality of the solutions 
and the computing time. This evaluation was achieved by 
comparing the results of the two approaches: the exact 
method using SPP and the GA designed model.   

Computational results also indicate that the optimiza- 
tion approach can solve some moderate size problems by 
using a method to generate a subset of feasible schedules, 
which is considered very close to optimal solution. On 
the other hand, a very large problem will be difficult to 
be solved due to out of memory, where it recommends to 
resort to GA for solving them. Meantime, computational 
results indicate that GA in term of the quality of the solu-
tions is slightly better than other published work using 
Tabu Search method.  

Experiment results presented for the GA approach in-
dicate that when the number of iterations is large, better 
solution may obtain. However, some users prefer rea-
sonable solution in less time consumption. Therefore, for 
large scale problems, the user can reduce the total num-
ber of iterations, if time is matter. 

Further works can be done using soft delivery time- 
window. This means that the delivery time-window can 
be violated, however, penalties is impose. Most custom- 
ers impose a delivery time-widow for their shipments. 
Any violation of delivering is considered unacceptable, 
where some of those customers impose penalties for any 

violations. Therefore, large ship can be loaded up to its 
capacity even the delivery can be violated, if this ap-
proach reduces the overall cost. Meanwhile, customer 
considers delivering outside delivery time-window is 
unacceptable, will be satisfied by increase the penalty to 
enormous number. 
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