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ABSTRACT 

Genomics has become a ground-breaking field in all 
areas of the life sciences. The advanced genomics and 
the development of high-throughput techniques have 
lately provided insight into whole-genome characteri- 
zation of a wide range of organisms. In the post-geno- 
mic era, new technologies have revealed an outbreak 
of prerequisite genomic sequences and supporting 
data to understand genome wide functional regula- 
tion of gene expression and metabolic pathways re- 
construction. However, the availability of this pleth- 
ora of genomic data presents a significant challenge 
for storage, analyses and data management. Analysis 
of this mega-data requires the development and ap- 
plication of novel bioinformatics tools that must in- 
clude unified functional annotation, structural search, 
and comprehensive analysis and identification of new 
genes in a wide range of species with fully sequenced 
genomes. In addition, generation of systematically 
and syntactically unambiguous nomenclature systems 
for genomic data across species is a crucial task. Such 
systems are necessary for adequate handling genetic 
information in the context of comparative functional 
genomics. In this paper, we provide an overview of 
major advances in bioinformatics and computational 
biology in genome sequencing and next-generation 
sequence data analysis. We focus on their potential 
applications for efficient collection, storage, and ana- 
lysis of genetic data/information from a wide range of 
gene banks. We also discuss the importance of estab- 
lishing a unified nomenclature system through a func- 
tional and structural genomics approach. 

Keywords: Databases; Computational Biology;  
Genomics; Proteomics; Next-Generation Sequencing 

1. INTRODUCTION 

Information processing by bioinformatics tools and com- 
putational biology methods has become essential for 
solving complex biological problems in genomics, pro- 
teomics, and metabolomics. Such methods give new insi- 
ghts into areas such as genome evolution, systems bio- 
logy, biotechnology, genome deciphering, and develop- 
ments in medicine. 

Bioinformatics is the application of computational 
tools to predict, manage and interpret biological data [1]. 
It is one of the essential tools for integrative and multi- 
disciplinary understanding of metabolic network proces- 
ses in systems biology [2]. For example, understanding 
-omics data requires both common statistical and com- 
puting-based methods due to the multi-dimensional and 
complexity level of the data. 

Generally, there are three central biological principles 
around which bioinformatics tools must be developed: 1) 
DNA sequence determines protein sequence, 2) protein 
sequence determines protein structure, and 3) protein 
structure determines protein function. 

Next Generation Sequencing (NGS) is revolutionizing 
the study of the genetics of many organisms, with 
immense biological implications. With the rapid advan- 
cement in NGS technologies and the subsequently fast- 
growing volume of biological data, diverse data sources 
(databases and web servers) have been developed to faci- 
litate data management, accessibility, and analysis, 
which will be facilitated by following an adequate and 
sequential work-flow (Figure 1). Using deep sequencing, *Corresponding author. 
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Figure 1. Hypothesis-generating bioinformatics (a) and experi- 
mental (b) workflow. 
 
it is now possible to discover novel disease causing 
mutations [3] and detect traces of pathogenic microorga- 
nisms [4]. A single ultra high throughput sequencing run 
can produce millions of reads in various lengths per expe- 
riment [5]. Thus, integration of data from heterogeneous 
and voluminous data sources is significantly important in 
order to fully and efficiently exploit the huge and readily 
available biological data. The storage, processing, que- 
rying, parsing, analysis and interpretation of such an 
incredible amount of data is a significant task that also 
holds many obstacles [6]. As acquisition of genomic data 
becomes increasingly cost-efficient, genomic data sets 
are accumulating at an exponential rate and new types of 
genetic data are emerging. These come with the inherent 
challenges of new methods of statistical analysis and 
modeling. Indeed new technologies are producing data at 
a rate that outpaces our ability to analyze its biological 
meaning. Researchers are addressing this challenge by 
adopting mathematical and statistical software, computer 
modeling, and other computational and engineering me- 
thods. As a result, bioinformatics has become the latest 
engineering discipline. As computers provide the ability to 
process the complex models, high-performance computer 
languages have become a necessity for implementing 
state-of-the-art algorithms and methods. 

Sequencing technologies are evolving rapidly, with an 
overwhelming increase in efficiency and throughput [5]. 
For example, the pyrosequencing method can sequence a 
microbial genome in one hour [7-9]. These improved 
technologies deploy random fragmentation of the nu- 
cleotide sequence of interest in order to increase through- 
put by simultaneously sequencing millions of fragments. 
Platforms such as Roche/454 [10], Illumina/Solexa [11], 
and Life/APG SOLiD [12,13] ligate these fragments with 
adapters and thereafter amplified using PCR primers. 

Alternatively, when a high amount of DNA is initially 
present, platforms such as Pacific Biosciences [14] use 
the fragments themselves as single molecule templates. 
The amount of introduced errors is correlated with the 
fidelity of the polymerase utilized in the reaction [15]. 
Read lengths vary with the technology, pyrosequencing 
generating long reads (~400 nts), while reverse termina- 
tion and sequencing by ligation technologies produce 
shorter reads. Different technologies can thus result in 
significantly different output data and performance. The 
combination of more than one platform is potentially 
more cost effective and could yield higher fidelity and 
accuracy [16,17]. 

2. GENOME SEQUENCING 

2.1. Pre-Analysis and Processing of Sequencing  
Data 

To alleviate the above mentioned difficulties in NGS, 
platform developers should provide end-users with a se- 
quencing quality scale for both automated and manual- 
based data filtration and refinement. 

The most common sequence output format is a 
FASTA file accompanied by a numerical quality QUAL 
file, describing the per-base probability of incorrect se- 
quencing based on the PHRED quality score [18]. Qua- 
lity control of deep sequencing data refers to an overview 
of the base and quality distribution between lanes, tiles 
and cycles, and correlation of the initial sequence data 
with expected length, GC content, ambiguous bases, se- 
quence complexity and alignment of ensuing location 
distributions which can hold information regarding pos- 
sible sequencing bias, contamination or artifacts. Plat- 
form specific quality control tools and more general 
quality assessment software [19] can help circumvent 
such biases. A more common example is sequence dupli- 
cation, usually an artifact of PCR amplification and other 
library preparation processes, that cause over-represen- 
tation of certain sequences. We urge the user to consider 
sequencing data in the appropriate experimental context. 
The aforementioned quality control methods should be 
used prior to downstream analysis to increase the experi- 
mental validity and accuracy and, thus, ensure better, 
more reliable results [20]. 

2.2. Genomic Annotation 

Annotation generates data that allows various types of 
research on model organisms. After sequencing the orga- 
nism’s genome, sequences must be mapped according to 
areas pertinent to the research objectives. Gene predic- 
tions can be made with computational techniques for re- 
cognizing gene sequences, including stop codons and the 
initial portions of nucleotide sequences. This is known as 
functional annotation, and can be done initially by com- 
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puter, using similarity in sequence alignment. However, 
no software is capable of generating a functional anno- 
tation without false positive results. Predicted genes need 
to be revised manually. When annotation is complete, the 
genome should subsequently be submitted a public- 
access site. 

Gene Prediction Strategies 
Gene prediction programs can be divided into two cate- 
gories: empirical and ab initio. Empirical predictors 
search for sequence similarity in the genome; they pre- 
dict genes based on homologies with known databases, 
such as genomic DNA, cDNA, dbEST and proteins. This 
approach facilitates the identification of well—conserved 
exons. Ab initio gene finders use sequence information 
of signal and content sensors. Usually, these programs 
are based on hidden Markov models. They can be clas- 
sified as single, dual and multiple—genome predictors 
based on the number of genome sequences used in the 
analysis. Integrated approaches couple the extrinsic me- 
thodology of empirical gene—finders and intrinsic ab 
initio prediction. This technique significantly improves 
prediction protocols [21]. Gene prediction methodology 
for eukaryotes involves two distinct aspects. The first fo- 
cuses on the information such as signal functions in the 
DNA strand for gene recognition. The second uses algo- 
rithms implemented by prediction programs for accurate 
prediction of gene structure and organization [22]. Un- 
like eukaryotes, the archaeal, bacterial and virus geno- 
mes are highly gene-dense. The protein coding regions 
usually represent more than 90% of the genome. The 
simplest approach in gene prediction is to look for Open 
Reading Frames (ORFs). An ORF is a DNA sequence 
that initiates at a start codon and ends at a stop codon, 
with no other intervening stop codon. One way to locate 
genes is to look for ORFs with the mean size of proteins 
[21]. Example of tools used for gene prediction are: 1) 
Glimmer, a system for finding genes in microbial DNA, 
especially the genomes of bacteria, archaea, and viruses  
(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/gli
mmer_3.cgi), 2) FgenesB, a package developed by Soft- 
berry Inc. for automatic annotation of bacterial genomes  
(http://www.molquest.com/help/2.3/programs/FgenesB/a
bout.html), 3) Prodigal (Prokaryotic Dynamic Program- 
ming Genefinding Algorithm) is a microbial (bacterial 
and archaeal) gene finding program 
(http://prodigal.ornl.gov/), and 4) GeneMarkTM, a public 
access program for gene prediction in eukaryotes  
(http://exon.biology.gatech.edu/). 

2.3. Solving the Problem: Biological Patterns 

One of the key aspects in the analysis of biological se- 
quences is the identification of interesting patterns [23]. 
We define an interesting pattern as one which shows an 

unusual behavior with respect to the sequence under 
analysis. The search for shared or over-represented pat- 
terns is motivated by a simple commonly accepted prin- 
ciple: if two or more sequences perform the same func- 
tions or have the same structure, then the common 
elements among the sequences might be responsible for 
the observed similarity. To identify biologically signi- 
ficant patterns, we must find those that are statistically 
significant. 

A scoring function to evaluate the output also plays an 
important role in the identification of the searched pat- 
terns. However, traditional statistics are often unable to 
discriminate interesting motifs from motifs that are likely 
to occur by chance, necessitating development of differ- 
ent measures of statistical significance [24]. 

We define a statistical measure (SM) of a motif m, and 
ask the following three questions: 1) What is the value of 
this motif’s statistical measure SM(m)? 2) How surpri- 
sing is measure SM(m) with respect to the expected 
value according to some background distribution? and 3) 
How likely is it for the recorded values to occur by 
chance? These three questions can be answered by dif- 
ferent computational means. The first one, for example, 
can be answered by exact counts or estimates. To answer 
the second, we need a score that measures over-repre- 
sentation, such as the z-score. The third one requires 
calculation of the p-value of a statistic. 

2.4. Data Analysis Pathways and Tools 

2.4.1. Alignment of Sequences 
Bioinformatics and molecular evolutionary analyses 
most often start with comparing DNA or amino acid se- 
quences by aligning them. Pairwise alignment measures 
the similarities between a query sequence and each of 
those in a database using BLAST search, the most used 
bioinformatics tools [25,26]. Multiple sequence align- 
ment (MSA) is a useful tool in designing experiments for 
testing and modifying the function of specific proteins, 
predicting their functions and structures, and identifying 
new members of protein families. MSA of DNA, RNA, 
and protein is one of the most common and important 
tasks in bioinformatics. To process data efficiently, new 
software packages and algorithms are continuously being 
developed to improve protein identification, characteri- 
zation and quantification in terms of high-throughput and 
statistical accuracy. In particular, for the analysis of plant 
proteins extensive data elaboration is necessary due to 
the lack of structural information in the proteomic and 
genomic public databases. The high dimensionality of 
data generated from these studies will require the de- 
velopment of improved bioinformatics tools and data- 
mining approaches. 

When deep sequencing was initially introduced, estab- 
lished alignment tools, suited for the query of a limited  
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number of sequences, were inadequate for high through- 
put sequencing data which comprised millions of short 
fragment sequences. This spurred the design of novel 
alignment algorithms and tools which use heuristic tech- 
niques for alignment of millions of short sequences with- 
in an acceptable time requirement [27]. 

When choosing an alignment tool, one needs to con- 
sider some important features including the following: 1) 
Quality utilization and control—Most alignment soft- 
ware generate the alignment output in the Sequence 
Alignment Map (SAM) format, with a multitude of sup- 
porting downstream analysis tools. Alignment output con- 
tains a PHRED based quality score describing the 
probability of per-base false alignment. These quality 
scores can be re-assessed using currently available tools 
[28], 2) Gapped alignment. Alignment tools may or may 
not use a gap alignment algorithm. When specifically 
detecting for insertions and deletions (indels) [29] it is 
highly recommended to choose a tool that implements 
gapped alignment [30], 3) Mismatches and Gap penalties. 
Most alignment tools allow the user to set the number of 
allowed mismatches between the read and a reference 
location and the scoring scale for gap opening and 
extension, and 4) Multiple mapping. Usually, a portion 
of the reads will remain unmapped due to contaminant 
origin or sequencing errors. More commonly, they will 
ambiguously map to several different locations (multiple 
mapping) due to sequence homology and repetitiveness. 
Of the current approaches for allocation of these multiply 
mapped reads, one uses probabilistic models such as 
maximum likelihood to compute the most likely origin of 
each read. This greatly improves the results of quantita- 
tive deep sequencing experiments and differential expres- 
sion [31]. 

1) Assembly. Assembly refers to the process of piecing 
together short DNA/RNA sequences into longer ones. 
These long sequences, called contigs, are then grouped to 
form scaffolds for computationally reconstructing a 
sample’s genetic component. When the assembly process 
is performed with the assistance of a reference genome, 
it is referred to as mapping assembly; if no reference is 
available it is called de novo assembly. 

2) Variant calling. This refers to the identification of 
single nucleotide polymorphisms (SNPs), insertions and 
deletions (indels), copy number variations (CNVs) and 
other types of structural variations, e.g. inversions, trans- 
locations etc, in a sequenced sample [32]. The process is 
complicated by areas of low coverage, sequencing errors, 
misalignment caused by either low complexity and re- 
peat regions or adjacent variants and library preparation 
biases (e.g. PCR duplicates) [12]. 

2.4.2. Multiple Sequence Alignment 
Evolutionary history among sequences is well reflected 

through MSA. When building a MSA, it is assumed that 
the sequences compared are derived from a common 
ancestral sequence. MSA infers homologous positions be- 
tween the input sequences and place gaps in the sequ- 
ences in order to align these positions. Gaps are caused 
by either insertions or deletions of nucleotides or amino 
acids on a particular lineage of sequences during the evo- 
lution. Some examples of bioinformatics methods that 
utilize information extracted from MSAs include: profile 
building in similarity search (PSIBLAST [33]), motif/ 
profile recognition (PROSITE [34]), profile hidden Mar- 
kov models for protein families/domains (Pfam [35]), 
and protein secondary-structure prediction [36]. 

Measuring the quality of MSAs requires a benchmark 
dataset and a scoring method. Benchmark datasets like 
OXBench [37], HOMSTRAD [38], PREFAB [39], Bali- 
BASE [40], and SABmark [41] are built on real se- 
quences by aligning structural elements and in some 
cases with hand-curation. Others like IRMBASE [42] are 
generated by simulating sequence evolution based on 
specific molecular evolutionary models. 

Visual Inspection of MSAs 
Currently, there are multiple MSA tools available, 

depending on the requirement and specific needs of the 
user as shown in Table 1. 

2.5. Genomics 

When reduced to its respective base letters (A, T, G, C), 
the genome sequence represents the unique identifier of 
biological species. This is a vital mechanism for com- 
puter scientists to store and retrieve data using a unique 
identifier (ID). A user can search and exactly pinpoint a 
particular gene in a database or flat file using the ID. 
Identification and classification of sequences led to the 
annotation of genes and retrieval of meaningful infor- 
mation about their history. 

Two diverging paths appeared in the development of 
bioinformatics in terms of project concepts and orga- 
nization, the -omics and the bio-. The latter focuses on 
molecular level resolution, while the focus of the -omics 

 
Table 1. Examples of the most used MSA methods. 

Method Web 

ClustalW2 http://www.clustal.org/ 

MUSCLE http://www.drive5.com/muscle/ 

MAFFT http://mafft.cbrc.jp/alignment/software/ 

PRALINE http://www.ibi.vu.nl/programs/pralinewww/ 

PRANK http://www.ebi.ac.uk/goldman-srv/webprank/ 

Probalign http://probalign.njit.edu/probalign/login 

PROMALS http://prodata.swmed.edu/promals/ 
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trend is on mapping information and objects such as 
genes, proteins, and ligands; finding interaction relation- 
ships among the objects; engineering networks and ob- 
jects to understand and manipulate regulatory mecha- 
nisms; and integrating various omes and omics subfields. 
Genomics is the -omics science that deals with the dis- 
covery and noting of all the sequences in the entire ge- 
nome of a particular organism. Genomic sequences are 
used to study the function of genes (functional genomics), 
compare the genes in one organism with those of another 
(comparative genomics), and generate the 3-D structure 
of one or more proteins from each protein family, thus 
offering clues to their function (structural genomics). 
The first eukaryotic organism to have its genome com- 
pletely sequenced was Saccharomyces cerevisiae. Today, 
131 eukaryotes’ genomes have been sequenced. Among 
them 33 are protists, 16 are higher plants, 26 are fungi, 
17 are mammals (including humans), 9 are non-mam- 
malian animals ,10 are insects, and 4 nematodes. 

Genomics and biotechnology have become essential 
tools for understanding plant behavior at the various 
biological and environmental levels. The Arabidopsis In- 
formation Resource (TAIR) is a continuously updated 
database of genetic and molecular biology data of the 
model plant Arabidopsis thaliana. Available data include 
the complete genome sequence along with gene structure, 
gene product information, metabolism, gene expression, 
DNA and seed stocks, genome maps, genetic and physi- 
cal markers, publications, and information about the Ara- 
bidopsis research community. Genomics has also impro- 
ved classical plant breeding techniques, well summari- 
zed in the Plants for the Future technology platform  
(http://www.epsoweb.eu/catalog/tp/tpcom_home.htm). 
New technologies now permit researchers to identify the 
genetic background necessary for crop improvement, ex- 
plicitly the genes that contribute to the improved produc- 
tivity and quality of modern crop varieties. Agronomi- 
cally important genes are being identified and targeted to 
produce more nourishing and safe food. The genetical 
modification (GM) of plants is not the only technology in 
the toolbox of modern plant biotechnologies. Proteomics 
studies can provide information on the expression of 
transgenic proteins and their interactions within the cel- 
lular metabolism that affects the quality, health, and sa- 
fety of food. Application of these technologies will sub- 
stantially improve plant breeding, farming and food pro- 
cessing. In particular, the new technologies will make 
crops more traceable and enable different varieties to 
exist side by side, thereby expanding the consumer’s free- 
dom to choose between conventional, organic and GM 
foods. It will also expand the range of plant derived pro- 
ducts, including novel forms of pharmaceuticals, bio- 
degradable plastics, bio-energy, paper, and more. Plant 
genomics and biotechnology could potentially transform 

agriculture into a more knowledge-based business to 
address a number of socio-economic challenges. But the 
central challenge to identify genes underlying important 
traits and describe the fitness consequences of variation 
at these loci still remains [43]. 

Recently, various high-throughput technologies, inclu- 
ding genomics, transcriptomics, proteomics and meta- 
bolomics have been employed to investigate medicinal 
plants for regulatory genes and metabolites that can mo- 
dulate biological and metabolic processes, which in turn 
can confer specific physiological or pharmacological 
functions [44]. Bioinformatics and systems biology ap- 
proaches are considered by many as needed to organize, 
manage, process, and understand the vast amounts of 
data obtained in various omics studies. Systems biology 
is aimed at understanding complex biology by inte- 
grating for network analysis experimental results from 
-omics studies which are most often not obtained or 
isolated as a single set of data points or events [45], thus 
evaluating the system as a whole. This approach will 
hopefully lead to new methods for classifying and authen- 
ticating potential medicinal plants, identifying new bio- 
active phytochemicals or compounds, and even improv- 
ing medicinal plant species or cultivars that can tolerate 
stressful environmental challenges. 

3. DATABASES 

Data sources differ in data accessibility and dissemi- 
nation. Different levels of provision are made by the data 
source managers for human-reading, computer-reading, 
or both. Certainly, data sources can also be classified by 
species of interest. Despite the challenges, the promise of 
data integration is high, because heterogeneous data 
sources provide biological data encompassing a wide 
range of research fields. Therefore, data integration has 
the potential to facilitate a better and more comprehen- 
sive scope of inference for biological studies. According 
to the 2010 update on the Bioinformatics Links Directory, 
there are almost 1500 unique publicly-available data 
sources. Based on their functions, data sources can be 
classified into diverse categories: 

1) Sequence databases: GenBank  
(http://www.ncbi.nlm.nih.gov/genbank/), RefSeq  
(http://www.ncbi.nlm.nih.gov/RefSeq/),  
CMR (Comprehensive Microbial Resource)  
(http://cmr.jcvi.org/tigr-scripts/CMR/CmrHome-Page.cgi/), 
PlantGDB (http://www.plantgdb.org/), Plant Genomic 
Resources (http://www.gramene.org/resources/), Plant 
Transcript Assemblies (http://plantta.jcvi.org/), Plant 
Cis-acting Regulatory DNA Elements Database  
(http://www.dna.affrc.go.jp/PLACE/), Plant Model Orga- 
nism Databases  
(http://www.arabidopsis.org/por-tals/genAnnotation/othe
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r_genomes/index.jsp/), 2) Functional genomics data- 
bases: ArrayExpress  
(http://www.ebi.ac.uk/arrayexpress/), FFGED (Filament- 
ous Fungal Gene Expression Database)  
(http://bioinfo.townsend.yale.edu/), GEO (Gene Expres- 
sion Omnibus) (http://www.ncbi.nlm.nih.gov/geo/), 3) 
Protein-protein interaction databases: BIND (Biomo- 
lecular Interaction Network Database)  
(http://binddb.Org/), DIP (Database of Interacting Pro- 
teins) (http://dip.doe-mbi.ucla.edu/dip/Main.cgi/), IntAct 
(http://www.ebi.ac.uk/intact/), MINT (Molecular Interac- 
tions Database) (http://mint.bio.uniroma2.it/mint/). Pro- 
tein databases, e.g., CluSTr, CSA, HPI, IntEnz, InterPro, 
IPI, PANDIT, Patentdata Resource, UniProt, UniSave  
(http://www.ebi.ac.uk/Databases/pro-tein.html), 4) Path- 
way databases: KEGG (Kyoto Encyclopedia of Genes 
and Genomes) (http://www.genome.jp/kegg/), 5) Struc- 
ture databases: CATH (http://www.cathdb.info/), PDB 
(Protein Data Bank) (http://pdb.org/), 6) Annotation 
databases: AmiGO (Gene Ontology)  
(http://amigo.geneontology.org/cgi-bin/amigo/go.cgi/), 
NCBI Taxonomy  
(http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhom
e.html/), and 7) Domain databases: Pfam v25.0 
(pfam.sanger.ac.uk), Prosite 
(http://prosite.expasy.org/scanprosite), SMART v6.0 
(http://smart.embl-heidelberg.de/), Conserved Domain. 
Database (CDD) v3.02, CDART (Conserved Domain Ar- 
chitecture Retrieval Tool) and CD-Search tools  
(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), 
InterPRO v35.0 (http://www.ebi.ac.uk/interpro/), 
ProDom release 2010.1 
(http://prodom.prabi.fr/prodom/current/html/home.php), 
Superfamily v1.75  
(supfam.cs.bris.ac.uk/SUPERFAMILY), PIRSF  
(pir.georgetown.edu), and functional search by 
PANTHER (www.pantherdb.org).  

3.1. Bioinformatics Tools to Retrieve Biological 
Data 

A large number of bioinformatics tools have been deve- 
loped to address diverse biological questions. These in- 
clude investigating relationship between protein structure 
and function, immune response, development of poten- 
tial vaccine candidates, modeling pathways, discovery of 
drug targets and drugs. 

3.2. Immunoinformatics Data 

Immunoinformatics applies bioinformatics principles and 
tools to the molecular activities of the immune system. 
Immunoinformatics databases and predictive tools are 
used to fetch data on cells of involved in immune res- 
ponse. Immunological data can be broadly split into epi-  

tope and allergen categories. This data is used for vac- 
cine discovery via computer aided vaccine design. An im- 
portant aim here is identification of antigen epitopes. An 
epitope is a surface localized part of the antigen capable 
of eliciting an immune response. B-cell epitopes are 
regions of the antigen recognized by soluble or mem- 
brane bound antibodies. They are further classified as 
either linear or discontinuous epitopes. The former is a 
single continuous stretch of amino acids within a protein 
sequence, whereas the latter encompasses residues that 
are distantly placed in the sequence but are brought toge- 
ther by physico-chemical folding. 

T-cell epitopes are short regions presented on the 
surface of an antigen-presenting cell, where they are 
bound to major histocompatibility complex (MHC) mo- 
lecules. These epitopes are characterized based on their 
recognition by either MHC Class I molecule or Class II 
molecule. T-cell epitope prediction tools have been de- 
veloped based on artificial neural networks and weight 
matrices such as NetMHC  
(http://www.cbs.dtu.dk/services/NetMHC/), predictive 
IC(50) values IEDB-ARB method  
(http://tools.immuneepitope.org/main/html/references.ht
ml/), predicted half-time of dissociation Bimas  
(http://www-bimas.cit.nih.gov/molbio/hla_bind/), and qu- 
antitative matrices ProPred  
(http://www.imtech.res.in/raghava/propred/). Reliable and 
accurate B-cell epitope prediction is still in development, 
though some tools are available such as ABCpred 
(http://www.imtech.res.in/raghava/), BepiPred  
(www.cbs.dtu.dk), BCPREDS 
(http://ailab.cs.iastate.edu/bcpreds/), Bcepred 
(http://www.imtech.res.in/raghava/), Ellipro 
(tools.immuneepitope.org), and COBEpro 
(http://scratch.proteomics.ics.uci.edu/) web servers. These 
tools help build epitope data from protein sequences. 

Allergen identification holds major importance in vac- 
cine discovery, as candidate vaccines should be non-alle- 
rgenic. Allergens are substances like proteins, carbohy- 
drates, particles, and pollen to which the body mounts a 
hypersensitive immune response typically of Type I. 
AlgPred (http://www.imtech.res.in/raghava/algpred/) al- 
lows prediction of peptide allergens through support vec- 
tor machines, motif-based method, and database search 
of known IgE epitopes. Allermatch  
(http://www.allermatch.org/) performs BLAST search 
against allergen peptides using a sliding window app- 
roach. The results constitute allergen data from databases 
like the Structural Database of Allergenic Proteins 
(SDAP) (fermi.utmb.edu/SDAP), Allergome  
(http://www.allergome.org/), IUIS (www.allergen.org), 
AllergenIndex (www.expasy.ch/cgibin/lists?allergen.txt), 
BIFS (www.iit.edu/ sgendel/fa.htm), CSL  
(www.csl.gov.uk/allergen), FARRP  
(www.allergenonline.com), PROTALL  
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(www.ifr.bbsrc.ac.uk/Protall), and ALLALLERGY  
(www.allallergy. net). 

3.2.1. Systems Biology Data 
Systems biology deals with a system-level understanding 
of biological systems. It aims to integrate all the knowl- 
edge of networks that represent pathways. A network is 
mathematically modeled as a graph consisting of nodes 
and edges. The network can be shown diagrammatically 
by using classical graph theory. Many types of path- 
ways, including gene regulatory networks, signal trans- 
duction and metabolic pathways can be modeled using 
qualitative (Data driven) and quantitative (Knowledge 
driven) modeling approaches. Data driven pathway mod- 
eling, as in for gene regulatory networks, requires DNA 
microarray data. Such models can be inferred by using 
logical networks like Boolean, probabilistic Boolean and 
dynamic Bayesian networks [46]. Table 2 lists tools 
available for modeling systems based on given tasks. 

3.2.2. Cheminformatics Data 
Cheminformatics deals mostly with molecular modeling, 
chemical structure coding and searching, and data visua- 
lization. Cheminformatics deals mostly with molecular 
modeling, chemical structure coding and searching, and 
data visualization. Cheminformatics is especially useful 
in drug-like or lead identification and optimization steps 
of drug discovery. Databases for cheminformatics are 
listed in Table 3. 

3.2.3. Text Mining 
In the last few decades, there has been an enormous in- 
crease in available data from of scientific articles, ab- 
stracts and books, online databases and other resources.  
 
Table 2. Bioinformatics tools for systems modeling in different 
platforms. 

Task Tools Web address 

Model  
construction 

CellDesigner http://www.celldesigner.org/ 

 Jarnac http://sys-bio.org/ 

 Jdesigner http://sys-bio.org/ 

 Gepasi http://www.gepasi.org/ 

 CellDesigner http://www.celldesigner.org/ 

Simulation COPASI http://www.copasi.org/ 

 Gepasi http://www.gepasi.org/ 

 
SBaddon 

(MatLab tool) 
http://www.mathworks.com/ 

Model 
Analysis 

MatLab, http://www.mathworks.com/ 

 R-environment http://www.r-project.org/ 

This text data may be structured or unstructured and may 
require hours of mining to extract useful information. 
Thus text mining has evolved interdisciplinary methods 
using computer sciences, linguistics and statistics. The da- 
tabase backend support also minimizes the memory 
demands to handle very large data sets in R. It accepts 
text data either from local database or directly from on- 
line database. 

3.2.4. Parallel Computing 
When the data size is large (example in millions) and fast 
information calculation and retrieval is needed, a single 
modern computational processor fails to perform the task. 
Many processors are needed to work simultaneously, 
each carrying out same set of operations on different data 
objects. This is called Parallelization on data level. In 
this approach, the processing time for a single object is 
not being reduced but a number of data objects are being 
processed during the same time-interval by separate 
processors. 

4. DATA INTEGRATION IN  
BIOINFORMATICS 

One of the goals in bioinformatics is to establish auto- 
mated and efficient ways to integrate large, biological 
datasets from multiple sources. This objective is chall- 
enging because data sources are heterogeneous in terms 
of their functions, structures, data access methods and 
dissemination formats. Several major approaches pro- 
posed for data integration can be classified into five 
groups [47,48]: 1) data warehousing, 2) federated data- 
basing, 3) service-oriented integration, 4) semantic inte- 
gration, and 5) wiki-based integration. 

4.1. Data Warehousing 

The data warehouse approach offers a “one-stop shop” 
solution to ease access and management of a large va- 
riety of biological data from different data sources. Ware- 
houses focus on data translation, fetching all accessible 
data from disparate sources. Currently the focus is on 
transforming the data and importing it into the data 
warehouse. Representative examples of data warehous- 
ing include the following list: 1) Atlas is a biological data 
warehouse that includes data from BIND, LocusLink, 
MINT, RefSeq, DIP, Entrez Gene, GO, GenBank, Ho- 
moloGene, HPRD (Human Protein Reference Database), 
IntAct, OMIM (Online Mendelian Inheritance in Man), 
Taxonomy, and UniProt [49], 2) BioWarehouse is an 
open source toolkit that incorporates data from EN- 
ZYME, GenBank, GO, BioCyc, CMR, KEGG, Taxon- 
omy, and UniProt and integrates its component databases 
into a common representational framework within a sin- 
gle database management system [50], 3) BIOZON is a  
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Table 3. Softwares used in cheminformatics. 

Function Tools Links 

Pubchem http://pubchem.ncbi.nlm.nih.gov/search/search.cgi 

Pubmed http://www.ncbi.nlm.nih.gov/pubmed 
Databases for searching known 

inhibitors 

Drug Bank http://www.drugbank.ca/ 

Pymol http://www.pymol.org 

Rasmol http://rasmol.org Molecular visualization 

SwissPDBviewer http://spdbv.vital-it.ch/ 

Marvin Sketch http://www.chemaxon.com/products/marvin/marvinsketch 
Structures drawn and view 

Chemmine http://bioweb.ucr.edu/ChemMineV2 

Smile Translator http://cactus.nci.nih.gov/translate/ 
File format translator 

OpenBabel http://openbabel.org/wiki/Main_Page 

AutoDock http://autodock.scripps.edu/ 
Drug designing 

GOLD http://www.ccdc.cam.ac.uk/products/life_sciences/gold/ 

Toxicity prediction Toxtree http://toxtree.sourceforge.net/ 

Molecular dynamics simulation GROMACS http://www.gromacs.org/ 

 
unified biological resource on DNA sequences, proteins, 
complexes and cellular pathways, including KEGG, PDB, 
RefSeq, Genbank, InterPro, Swiss-Prot, UniGene, BIND, 
DIP, and UniProt [51], 4) COLUMBA is an integrated 
database of information on proteins, structures and an- 
notations. It integrates twelve different databases, in- 
cluding GO, CATH, PDB, SCOP, ENZYME, KEGG, 
and Swiss-Prot [52], and 5) VINEdb is a data warehouse 
for integration and interactive exploration of life science 
data. It manages diverse data from KEGG, OMIM, GO, 
IntAct, and UniProt and emphasizes the visualization of 
the integrated data in a comprehensible manner [53]. 

4.1.1. Federated Databasing 
Federated databasing focuses on query translation. Repre- 
sentative examples for federated databasing include: 1) 
BioMart provides a user-friendly and unified way to 
retrieve data from one or multiple data sources located at 
diverse geographical locations, including Ensembl, 
HGNC, Uniprot, Reactome, Wormbase, and PRIDE [54], 
2) DiscoveryLink is a system for integrated access to life 
sciences data from heterogeneous data sources, including 
GenBank, MedLine and Swiss-Prot [55], 3) K2/Kleisli is 
a federated database system, integrating data from 
EcoCyc, GenBank, GSDB, dbEST, GDB, KEGG and 
SRSindexed databases [56], 4) MRS allows for very 
rapid queries in a large number of flat-file data banks, 
including EMBL, UniProt, OMIM, dbEST, PDB, KEGG 
[57], 5) QIS (Query Integrator System) is based on a set 
of distributed network-based servers and includes Cell- 
PropDB [58], Brain Architecture Management System 

[59], Yale Microarray Database [60], a local Gene Anno- 
tation Database and GO, 6) SRS (Sequence Retrieval 
System) [61], and 7) TAMBIS (Transparent Access to 
Multiple Bioinformatics Information Sources). The pro- 
totype version of TAMBIS contains five data sources, 
viz., BLAST, CATH, ENZYME, PROSITE [62], and 
Swiss-Prot. 

4.1.2. Service-Oriented Integration 
The service-oriented approach enables data integration 
from multiple heterogeneous data sources through com- 
puter interoperability. Examples for service-oriented 
integration include: 1) BioMOBY [63] is an open source 
ontology-based integration system for accessing distri- 
buted and heterogeneous data sources via WS, 2) DAS 
(Distributed Annotation System). It allows a single ma- 
chine to collect all annotations from multiple distributed 
data sources and display them to the user in a single view. 
DAS is widely used in the genome annotation com- 
munity  
(http://en.wikipedia.org/wiki/Distributed_Annotation_Sy
stem) and adopted by several systems, including Ense- 
mbl, WormBase, and the Berkeley Drosophila Genome 
Project [64-66], and 3) Taverna [67] is a graphical work- 
flow workbench application, aiming to integrate the grow- 
ing number of molecular biology tools and databases. 

4.1.3. Semantic Integration 
The Semantic Web [68] aims to describe data in a way 
that computers can understand and build an intercon- 
nected network. Several studies have applied this tech- 
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nology in data integration and representative examples of 
semantic integration are described below: 1) Bio2RDF 
[69] Bio2RDF applies the Semantic Web technologies to 
multiple data sources, such as Entrez Gene, HGNC, 
KEGG, MGI, OMIM PDB, PubMed and UniProt, and  
converts data into RDF format based on RDFizer (a set 
of tools for converting various data formats into RDF; 
http://simile.mit.edu/wiki/RDFizers), Sesame (an open 
source framework for storage, inference and querying of 
RDF data; http://www.openrdf.org) and OWL ontology, 
2) YeastHub [70] is an integrated database in RDF 
format for the yeast community. The ever-evolving next- 
generation Web (NGW), characterized as the Semantic 
Web, aims to provide information not only for human, 
but also for computers to semantically process large- 
scale data and automatically discover knowledge. The 
Semantic Web befits the exponential growth of bio- 
logical data with promise to provide solutions for data 
integration and advancing translational research [71]. In 
order to manage large-scale data, it necessitates adopting 
advances in high performance computing [72]. In addi- 
tion, a framework is also needed to set up Semantic WS 
workflows or pipelines [73]. 

4.1.4. Wiki-Based Integration 
Wikipedia features collaborative integration that is con- 
tinuous and frequently updated. It has a broad coverage 
and low maintenance costs. Content can be freely and 
anonymously changed in the wiki, Wikipedia outper- 
forms the traditional Encyclopedia in accuracy  
(http://www.wikipedia.org). Representative examples in- 
clude: 1) WikiGenes (a wiki system that combines gene 
annotation with explicit authorship  
(http://www.wikigenes.org/), 2) Wikiproteins (a wiki- 
based system for protein annotation  
(http://www.omegawiki.org/Portal:Wikiproteins), 3) BO- 
Wiki (a ontology-based wiki for data annotation and 
knowledge integration  
(https://onto.eva.mpg.de/trac/BoWiki), 4) Gene Wiki (a 
wiki for human gene annotation  
(http://en.wikipedia.org/wiki/Gene), and 5) PDBWiki (a 
scientific wiki for the community annotation of protein 
structures (http://pdbwiki.org/wiki/Main_Page). However, 
the wiki-based integration has its own shortcomings, 
including the unstructured data generated, the lack of a 
standard format for data exchange, the lack of credit for 
authorship and vulnerability to malicious editing [74,75]. 

5. DATABASES: ORGANIZATIONS AND  
INFORMATICS 

The enormous quantity of information produced by NGS 
is handled via computers that systematically analyze and 
store the accumulating sequence and structure data. The 
idea that molecular information can be collected and 

distributed from electronic repositories is still in its 
infancy and faces significant challenges. 

5.1. The Protein Data Bank (PDB) 

PDB is one of the earliest scientific databases established 
in 1965 at the Cambridge Crystallographic Data Centre 
(CCDC)  
(http://beta-www.ccdc.cam.ac.uk/pages/Home.aspx) as a 
repository of small-molecule crystal structures. In Fe- 
bruary 2011, the archive housed 71,415 structures  
(http://www.rcsb.org/pdb/home/home.do). 

5.2. The EMBL Nucleotide Sequence Data  
Library 

At the end of 2010, the database contained 199,720,869 
entries (http://www.ebi.ac.uk/embl/). 

5.3. GenBank 

In April 2011, GenBank contained 135,440,924 sequence 
records. It became the responsibility of the NCBI to 
maintain the database, where it remains today  
(http://www.ncbi.nlm.nih.gov/genbank/). 

5.4. The PIR-PSD 

The Protein Information Resource  
(http://pir.georgetown.edu/). In 2003, with 283,000 sequ- 
ences, the PSD was the most comprehensive protein se- 
quence database in the world. 

5.5. UniProtKB/Swiss-Prot 

It is a comprehensive, annotated and non-redundant 
high-quality and freely accessible database of protein 
sequence and functional information, many entries being 
derived from genome sequencing projects, computed fea- 
tures, and research literature  
(http://web.expasy.org/docs/swiss-prot_guideline.html). 

5.6. The European Molecular Biology Network  
(EMBnet) 

EMBnet has promoted the development of distributed 
computing services to share workload among interna- 
tional servers. It has contributed to the development and 
maintenance of advanced database systems and has been 
an advocate of the deployment of Grid technologies for 
the life sciences through its contributions to major 
European Grid projects. EMBnet developed, and conti- 
nues to promote the use of, an e-learning system both to 
support distance learning in bioinformatics and to com- 
plement face-to-face bioinformatics teaching and training. 
It is also committed to bringing the latest software and 
algorithms to users, free of charge. 
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The combined expertise of its Nodes has allowed 
EMBnet to provide services to its local European life 
science communities. Currently, the network connects 31 
member Nodes extending over 27 countries. Together, 
the Nodes work to disseminate data, share computing 
resources and provide training support thousands of users  
(http://journal.embnet.org/index.php/embnetjournal/articl
e/view/185). 

5.7. Prosite 

It consists of documentation entries describing protein 
domains, families and functional sites as well as asso- 
ciated patterns and profiles to identify them  
(http://prosite.expasy.org/). 

5.8. The European Bioinformatics Institute (EBI) 

EBI is a centre for research and services in bioinfor- 
matics. It maintains and distributes the EMBL Nucleo- 
tide Sequence database, Europe’s primary nucleotide se- 
quence data resource (http://www.ebi.ac.uk/). 

5.9. TrEMBL 

At the beginning of 2011, with millions of entries, 
TrEMBL was almost 26 times larger than Swiss-Prot, 
illustrating the vast disparity between manual and com- 
puter assisted annotation strategies  
(http://www.uniprot.org/news/2004/03/02/full). 

5.10. InterPro 

With 21,185 entries in February 2011 (release 31.0), 
InterPro is the most comprehensive integrated protein 
family database in the world  
(http://www.ebi.ac.uk/interpro/). This family database is 
integrated by GENE3D, HAMAP, PANTHER, PIRSF, 
PRINTS, PROSITE patterns, PROSITE profiles, Pfam, 
ProDom, SMART, SUPERFAMILY, and TIGRFAMs. 

5.11. UniProt 

By 2011 (http://www.uniprot.org/), UniProt also inclu- 
ded a Metagenomic and Environmental Sequence com- 
ponent, termed UniMES (The UniProt Consortium, 
2011); by this time, UniProtKB: Swiss-Prot contained 
525,207 entries, accompanied by UniProtKB: TrEMBL, 
with a staggering 13,499,622 entries. 

5.12. The Swiss Institute of Bioinformatics (SIB) 

Today, the SIB (http://www.isb-sib.ch/) leads and coor- 
dinates the field of bioinformatics in Switzerland. Its 
vision is to help shape the future of the life sciences 
through excellence in bioinformatics services, research 
and education. SIB’s mission is to provide world-class 

core bioinformatics resources to both national and inter- 
national research communities in fields spanning geno- 
mics, proteomics and systems biology. Many of its core 
activities, including maintenance of databases such as 
UniProt and InterPro, are carried out in close collabo- 
ration with the EBI. 

5.13. The European Nucleotide Archive (ENA) 

Today, ENA (http://www.ebi.ac.uk/ena/) holds more 
than 20 terabases of nucleotide sequence data, which, 
combined with its annotation information, and so on, oc- 
cupies more than 230 terabytes of disk space. 

5.14. ELIXIR 

Europe’s databases (estimated to number around 500), 
especially those hosted by the EBI, will become the 
foundation of the new ELIXIR infrastructure, the aim of 
which is to construct and operate a sustainable infras- 
tructure for biological information in Europe to support 
life science research and its translation to medicine, the 
environment, bio-industries and society  
(http://www.bbsrc.ac.uk/science/international/elixir.aspx). 

6. NOMENCLATURES AND NAMING 
SYSTEMS 

In biological research, there are thousands of specialized 
data repositories which offer sets of richly annotated 
records. To ensure data of the highest quality, manual 
data entry and curation (annotation) processes are gene- 
rally performed on these databases. This process makes 
the information searchable through a variety of auto- 
mated techniques, given that the curators use standar- 
dized terminologies or ontologies. 

The task of gene annotation by means of a controlled 
vocabulary becomes laborious when an expert is required 
to inspect carefully all of the literature associated with 
each gene, to identify the appropriate terms. To reduce 
the cost of obtaining annotations, several initiatives for 
collaborative curation like the pseudomomas project  
(http://www.pseudomonas.com/), and wiki-based proto- 
types (e.g., http://www.wikiprofessional.org/) have been 
prompted. As of now, PubMed remains the richest and 
most updated source of information about biological data 
despite its unstructured nature. Text mining technology 
can contribute to this field by operating together with 
curators to minimize their involvement and speed up the 
pace of research; however it should not completely 
supplant their role. 

6.1. Automated Functional Annotation 

Automated functional annotation of genomes can bequite 
efficient because it takes advantage of knowledge con-
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cerning alignment of ORFs of homologous organisms 
[76], saving considerable time in manual curation [77]. 
However, care must be taken with fully automated func- 
tional annotation, since similarity of sequences can easily 
incur false positives [78]. The following are some tools 
for automatic annotation of entire genomes. 

6.1.1. GenDB 
GeneDataBank is included among a selected set of tools 
for automatic annotation of genomes because it was 
developed as a web platform [79]. Geographically dis- 
persed research groups can benefit from web interfaces 
using standard tools and a centralized database. The 
GeneDataBase program performs sequence alignments 
using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and 
allows incorporation of predictions of conserved do- 
mains of protein families based on InterProScan  
(http://www.ebi.ac.uk/Tools/pfa/iprscan/), as well as tran- 
smembrane domains based on TMHMM  
(http://www.cbs.dtu.dk/services/TMHMM/), and indica- 
tions of export to the extracellular medium through 
SignalP (http://www.cbs.dtu.dk/services/SignalP/). 

6.1.2. BLAST2GO (B2G) 
This tool was designed as an interface for Gene Ontology 
(GO); additional features have transformed it into a more 
comprehensive annotation platform 
(http://www.blast2go.com/b2ghome). The program menus 
include various steps initiating annotation, with an auto- 
matic alignment of genome sequences against a protein- 
based non-redundant (NR) NCBI database, through predi- 
ction of conserved domains (InterPro-Scan), GO anno- 
tation ratings against the enzymatic English Enzymatic 
Code (EC) and subsequent visualization of molecular 
interactions in a genome by means of maps in the format 
of the Kyoto Encyclopedia of Genes and Genomes 
(KEEGO). 

6.1.3. CpDB 
The Corynebacterium pseudotuberculosis DataBase 
(CpDB) is a relational database schema and tools for 
bacterial genomes annotation and pos-genome research. 
Its tutorial has approximately 100 steps, including soft- 
ware installation and configuration, edition of files by 
Linux commands or through interfaces with biological 
sequence manipulation programs. All of the steps in this 
manual can be automated in order to develop an auto- 
matic pipeline for annotation, allowing CpDB to become 
another web-based automatic annotation environment. 

6.2. Manual Curation 

Genome annotation is a process that consists of adding 
analyses and biological interpretations to DNA sequence 
information. This process can be divided into three main 

categories: 1) annotation of nucleotides, 2) proteins, and 
3) processes. Annotation of nucleotides can be done 
when there is information about the complete genome (or 
DNA segments) of an organism. It involves looking for 
the physical location (position on the chromosome) of 
each part of the sequence and discovering the location of 
the genes, RNAs, repeat elements, etc. Annotation of 
proteins involves searching for gene function. Besides 
general predictions about gene and protein function, 
other information can be found in an annotation, such as 
biochemical and structural properties of a protein, pre- 
diction of operons, gene ontology, evolutionary relation- 
ships and metabolic cycles [80]. Consequently, manual 
curation is a fundamental part of the process of assembl- 
ing and annotating a genome, in which the curator is 
responsible for validating all of the predicted genes [81]. 
A more detailed description of the gene or gene family 
product is obtained through similarity analyses using 
protein data banks that contain well-characterized and 
conserved proteins [82]. 

6.2.1. Steps for Manual Curation 
Manual curation is a very complex task and is sus- 
ceptible to errors. One of these is a lack of padronization 
in the interpretation of BLAST results. Another is pro- 
pagation of errors, which involves prediction of protein 
function based on proteins that were also predicted but 
could have imprecise or even incorrect annotation [83]. 
The fundamental step for avoiding this error is mining 
data obtained from similarity analyses of BLASTp data 
banks. It is also important to observe whether there is 
any consensus among the first ten hits. In cases where 
there is no consensus or when the E-value of the best hit 
is significantly larger than that of the following sequ- 
ences, it is preferable to transfer the annotation of the 
best hit [84]. In cases of non-significant alignments, run 
a similarity search at the nucleotide level (BLASTn). 
Other measures such as percentage identity between the 
sequence being analyzed and the sequence in the data 
bank, score value and E-value, as well as pair-by-pair 
alignment evaluation to check the texture of the align- 
ment (evaluating the number of gaps, size of the gaps, 
and the number of conserved substitutions of amino 
acids) are also informative. 

6.2.2. Pseudogenes 
Comparisons between non-coding regions of genomes 
from various prokaryotic species has aided in the iden- 
tification and characterization of genome segments with 
regulatory roles [85] such as pseudogenes. These are 
DNA sequences that are highly similar to functional 
genes but do not express a functional protein. Loss of 
function is probably due to deleterious mutations, such as 
a nonsense mutation that introduces a premature stop co- 
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don, resulting in an incomplete protein and a later change 
in the open reading frame [86]. Whenever possible, addi- 
tion or removal of erroneous bases can restore the rea- 
ding frame. If there is no data that justifies addition or 
removal of bases, the genes should be classified as pseu- 
dogenes. 

6.2.3. Sequence Similarity Searches 
1) Blast 
BLAST (Basic Local Alignment Search Tool) is a tool 

that is widely used for the characterization of products 
coded by genes that are identified by gene prediction. 
This program is available on the NCBI—National Center 
for Biotechnology Information site  
(http://www.ncbi.nlm.nih.gov/), the central databank for 
genome information. BLAST has programs for align- 
ment of protein and nucleotide sequences, according to 
the needs of the researcher. Through this type of algo- 
rithm, we can compare any DNA sequence or protein 
(query) with all of the genome sequences in the public 
domain (subject) [33]. BLAST parameters such as the 
number of points obtained (score), gap opening/exten- 
sion penalties, number of expected alignments in the case 
of scores equal to or superior to the alignment that is 
being investigated (expectation value), and the norma- 
lized score (bit-score), are indispensible for the interpre- 
tation of the results. The smaller the value of “E”, the 
smaller the chance of such a comparison being found 
merely by chance. Therefore, one can infer greater 
homology between the sequence being investigated and 
the data base [87]. 

2) PFAM 
Proteins generally are composed of one or more func- 

tional domains. Different combinations of domains result 
in the large variety of proteins found in nature. Identifi- 
cation of the domains that are found in proteins can, 
therefore, provide insight about protein function [88]. In 
sequences with an identity of less than 70%, without end 
to end similarity, the protein domains are searched 
through the Pfam database  
(http://pfam.sanger.ac.uk) [89]. In Pfam, the sequences 
that are in full alignment are identified through a search 
for a hidden profile using a hidden Markov model algori- 
thm generated using the software HMMER, based on the 
UniProt database (http://www.uniprot.org/). 

6.3. Challenges Ahead 

Although a number of current efforts have been devoted 
to data integration, none have yet become preeminent. 
As NGS data are grow at an exponential rate, the need 
for data integration is continually demanding (Figure 2). 

Low-cost and high-throughput NGS technologies can 
generate huge amounts of data in a relatively short period. 
To keep pace with sequencing technologies, genome se- 

quencing projects have transitioned from classical model 
organisms (e.g., fly, mouse, yeast), to other organisms 
(e.g., dog, panda) and even to sequencing individuals 
within populations. Examples of this are the 1000 Ge- 
nomes Project, a collection of the genomes of 1000 hu- 
mans (http://www.1000genomes.org), and the Genome 
10 K Project, a genomic zoo of genome sequences of 
10,000 vertebrate species (http://www.genome10k.org). 
In addition, we are in the era when personal genome se- 
quencing will cost a few hundred dollars is approaching 
and will accumulate unparalleled amounts of large-scale 
data (Figure 2). It is necessary to establish an efficient 
way to data exchange among these distributed and he- 
terogeneous data sources. The growing volume of bio- 
logical data also requires “computer-readable” approaches 
for data integration. Data sources should not only pro- 
vide data for human reading via web interfaces; they 
should also provide data for computer interoperability. 

6.3.1. Standards for Biological Data 
There are a wide variety of biological data types such as 
sequence, gene expression, protein-protein interaction, 
and pathway data [89]. Data sources store different data 
types in different formats like flat files, FASTA sequence 
files, structure files, and XML files that are often in- 
compatible [90]. Complications in data exchange and in- 
tegration arising from format heterogeneity can be re- 
solved by using standards for data formats. BioPAX [91] 
has been developed to deliver a compatible standard, faci- 
litating integration, exchange, visualization and analysis 
of biological pathway data. Standard data formats, in 
general, facilitate data analysis and visualization as well 
as downstream software development. 

Equally important, data integration requires standard- 
izing nomenclature and ontologies for biological data 
[92]. For example, if two data sources need to exchange 
gene annotations, they must share a standard regarding 
gene names. Otherwise, any ambiguity or inconsistency 
in nomenclature would burden the integration process.  

 

 

Figure 2. Applications and challenges for bioinformatics. 
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The following are efforts for standardizing nomenclature 
and ontologies for biological data: BioPortal  
(http://bioportal.bioontology.org) for integrating and sha- 
ring biomedical ontologies in National Center for Bio- 
medical Ontology, Gene Ontology (GO)  
(http://www.geneontology.org/) for standardizing the 
representation of gene and gene product attributes, 
HGNC (http://www.genenames.org/guidelines.html) for 
standardizing human gene symbols and names, and Open 
Biomedical Ontologies (OBO)  
(http://www.obofoundry.org/) for creating a suite of or- 
thogonal interoperable reference ontologies in the bio- 
medical domain. A wiki-based system might be promis- 
ing way to collaboratively and efficiently develop stan- 
dards with all communities’ efforts. 

6.3.2. Web Services (WS)-Based Pipelines 
The goal of data integration is to combine information 
from different resources in an automated fashion without 
human intervention, accommodating for increasing accu- 
mulation of biological data [93]. Towards this goal, data 
to be integrated should be re-defined in a broader man- 
ner, which include not merely sequences and other raw 
data, but also methods, tools, algorithms, analyzed re- 
sults, discovered knowledge [94] and even connections 
among people [48]. A pipeline with a combination of 
multiple WS can achieve data integration. Any user may 
easily create WS-based pipelines (adding value), publish 
them online, and subscribe to pipelines created by other 
users. Consequently, pipelines may be widely shared, re- 
used and even integrated into other pipelines. As a result, 
communications and collaborations among users in Sci- 
entific Social Community can be greatly increased, mak- 
ing knowledge discovery through collective intelligence 
possible. 

7. CONCLUSIONS 

Deep-sequencing data analysis is a growing field. The 
overflow of available bioinformatics tools for each of the 
optional analysis steps represents a challenge for the 
researcher aiming to evaluate and interpret deep sequen- 
cing data. The field is rapidly evolving both in sequen- 
cing platform technology and in computational tools. 
The development of high throughput technologies has 
not only increased the amount of data, but also the types 
of data available, opening new prospects for investiga- 
tions. Due to automatic approaches for data analysis, dis- 
ciplines such as bioinformatics and computational bio- 
logy are able to combine the expertise of biologists and 
computer scientists in a synergism of human knowledge 
and efficiency. 

Bioinformatics has given us the first “complete” cata- 
logues of genomes and proteomes of organisms across 
the entire Tree of Life; it has furnished the requisite 

software to help analyze biological data on an unprece- 
dented scale; it has hence yielded the possibilities to un- 
derstand more about evolutionary processes, and ulti- 
mately, a great deal more about health, disease and dis- 
ease processes. A detailed in this report, the evolution 
and broader impact of bioinformatics is evidenced by the 
fact that bioinformatics has enabled systems level ap- 
proach to analyze complex biological networks in a wide 
range of biological systems, bringing life science data to 
local communities and making available computing soft- 
ware tools for modeling and data analysis, while pro- 
viding on-line training of bioinformatics databases and 
software to users. 
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