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Abstract 
Diagnosability of a multiprocessor system is one important study topic. In 2012, Peng et al. pro- 
posed a measure for fault tolerance of the system, which is called the g-good-neighbor diagnosability 
that restrains every fault-free node containing at least g fault-free neighbors. In 2015, Zhang et al. 
proposed a measure for fault diagnosis of the system, namely, g-extra diagnosability, which 
restrains that every fault-free component has at least ( )1g +  fault-free nodes. In this paper, we 
obtain some properties of the g-good-neighbor (g-extra) diagnosability of the system and give the 
g-good-neighbor (g-extra) diagnosability of some graphs under the PMC model and MM* model. 
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1. Introduction 
Many multiprocessor systems take interconnection networks (networks for short) as underlying topologies and a 
network is usually represented by a graph where nodes represent processors and links represent communication 
links between processors. We use graphs and networks interchangeably. For a multiprocessor system, study on 
the topological properties of its network is important. Furthermore, some processors may fail in the system, so 
processor fault identification plays an important role for reliable computing. The first step to deal with faults is 
to identify the faulty processors from the fault-free ones. The identification process is called the diagnosis of the 
system. A system is said to be t-diagnosable if all faulty processors can be identified without replacement, 
provided that the number of faults presented does not exceed t. The diagnosability ( )t G  of a system G is the 
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maximum value of t such that G is t-diagnosable [1]-[3]. For a t-diagnosable system, Dahbura and Masson [1] 
proposed an algorithm with time complex ( )2.5O n , which can effectively identify the set of faulty processors. 

Several diagnosis models were proposed to identify the faulty processors. One major approach is the 
Preparata, Metze, and Chien’s (PMC) diagnosis model introduced by Preparata et al. [4]. The diagnosis of the 
system is achieved through two linked processors testing each other. Another major approach, namely the 
comparison diagnosis model (MM model), was proposed by Maeng and Malek [5]. In the MM model, to 
diagnose a system, a node sends the same task to two of its neighbors, and then compares their responses. In 
2005, Lai et al. [3] introduced a restricted diagnosability of multiprocessor systems called conditional diag- 
nosability. They consider the situation that any fault set cannot contain all the neighbors of any vertex in a 
system. In 2012, Peng et al. [6] proposed a measure for fault diagnosis of the system, namely, g-good-neighbor 
diagnosability (which is also called g-good-neighbor conditional diagnosability), which requires that every fault- 
free node has at least g fault-free neighbors. In [6], they studied the g-good-neighbor diagnosability of the 
n-dimensional hypercube under the PMC model. In [7], Wang and Han studied the g-good-neighbor diag- 
nosability of the n-dimensional hypercube under MM* model. Yuan et al. [8] and [9] studied the g-good- 
neighbor diagnosability of the k-ary n-cube ( )3k ≥  under the PMC model and MM* model. The Cayley graph 

nCΓ  generated by the transposition tree nΓ  has recently received considerable attention. In [10] [11], Wang et 
al. studied the g-good-neighbor diagnosability of nCΓ  under the PMC model and MM* model for 1, 2g = . In 
2015, Zhang et al. [12] proposed a new measure for fault diagnosis of the system, namely, g-extra diagnosability, 
which restrains that every fault-free component has at least ( )1g +  fault-free nodes. In [12], they studied the 
g-extra diagnosability of the n-dimensional hypercube under the PMC model and MM* model. The n- 
dimensional bubble-sort star graph nBS  has many good properties. In 2016, Wang et al. [13] studied the 
2-extra diagnosability of nBS  under the PMC model and MM* model. In this paper, we obtain some properties 
of the g-good-neighbor (g-extra) diagnosability of the system and give the g-good-neighbor (g-extra) diag- 
nosability of some graphs under the PMC model and MM* model. 

2. Preliminaries  
In this section, some definitions and notations needed for our discussion, some results, the PMC model and the 
MM* model are introduced. 

2.1. Diagnosability  
Under the PMC model, to diagnose a system G, two adjacent nodes in G are capable to perform tests on each 
other. For two adjacent nodes u and v in ( )V G , the test performed by u on v is represented by the ordered pair 
( ),u v . The outcome of a test ( ),u v  is 1 (resp. 0) if u evaluate v as faulty (resp. fault-free). In the PMC model, 
we usually assume that the testing result is reliable (resp. unreliable) if the node u is fault-free(resp. faulty). A 
test assignment T for a system G is a collection of tests for every adjacent pair of vertices. It can be modeled as a 
directed testing graph ( )( ),T V G L= , where ( ),u v L∈  implies that u and v are adjacent in G. The collection 
of all test results for a test assignment T is called a syndrome. Formally, a syndrome is a function 

{ }: 0,1Lσ � . 
The set of all faulty processors in the system is called a faulty set. This can be any subset of ( )V G . For a 

given syndrome σ, a subset of vertices ( )F V G⊆  is said to be consistent with σ if syndrome σ can be 
produced from the situation that, for any ( ),u v L∈  such that \u V F∈ , ( ), 1u vσ =  if and only if v F∈ . 
This means that F is a possible set of faulty processors. Since a test outcome produced by a faulty processor is 
unreliable, a given set F of faulty vertices may produce a lot of different syndromes. On the other hand, different 
fault sets may produce the same syndrome. Let ( )Fσ  denote the set of all syndromes which F is consistent 
with. 

Under the PMC model, two distinct sets 1F  and 2F  in ( )V G  are said to be indistinguishable if  
( ) ( )1 2F Fσ σ∩ ≠ ∅ , otherwise, 1F  and 2F  are said to be distinguishable. Besides, we say ( )1 2,F F  is an 

indistinguishable pair if ( ) ( )1 2F Fσ σ∩ ≠ ∅ ; else, ( )1 2,F F  is a distinguishable pair. 
Using the MM model [14], the diagnosis is carried out by sending the same testing task to a pair of processors 

and comparing their responses. Under the MM model, we always assume the output of a comparison performed by 
a faulty processor is unreliable. The comparison scheme of a system ( ),G V E=  is modeled as a multigraph, 
denoted by ( )( ),M V G L= , where L is the labeled-edge set. A labeled edge ( ), wu v L∈  represents a comparison 
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in which two vertices u and v are compared by a vertex w, which implies ( ),uw vw E G∈ , where w is called a 
comparator for processors u and v. The collection of all comparison results in ( )( ),M V G L=  is called the 
syndrome, denoted by *σ , of the diagnosis. If the comparison ( ), wu v  disagrees, then ( )( )* , 1wu vσ = , 
otherwise, ( )( )* , 0wu vσ = . Hence, a syndrome is a function from L to { }0,1 . The MM* model is a special case 
of the MM model. In the MM* model, all comparisons of G are in the comparison scheme of G, i.e., if 

( ),uw vw E G∈ , then ( ), wu v L∈ . Since the comparator processor w itself might be faulty, a comparison result 
( )( )* , 0wu vσ =  implies that if the comparator processor w is fault-free, then the compared processors u and v are 

fault-free; on the other hand, a comparison result ( )( )* , 1wu vσ =  implies that at least one of three pro- cessors 
involved in the comparison must be faulty. The possible comparison results for the different conditions of the three 
processors involved in a comparison are shown in Table 1. 

For a given syndrome *σ , a subset of vertices ( )F V G⊆  is said to be consistent with *σ  if syndrome σ 
can be produced from the situation that, for any ( ), wu v L∈  such that \w V F∈ , ( ), 1wu vσ =  if and only if 
u F∈  or v F∈ . Similar to the PMC model, we can define two distinct sets 1F  and 2F  in ( )V G  are 
indistinguishable (resp. distinguishable) under the MM* model. 

A system ( ),G V E=  is g-good-neighbor t-diagnosable if 1F  and 2F  are distinguishable, for each distinct 
pair of g-good-neighbor faulty subsets 1F  and 2F  of V with 1F t≤  and 2F t≤ . The g-good-neighbor 
diagnosability ( )gt G  of G is the maximum value of t such that G is g-good-neighbor t-diagnosable. 

Proposition 1. ([5]) For any given system G, ( ) ( )g gt G t G′≤  if g g′≤ .  
In a system ( ),G V E= , a faulty set F V⊆  is called a conditional faulty set if it does not contain all of 

neighbors of any vertex in G. A system G is conditional t-diagnosable if every two distinct conditional faulty 
subsets 1 2,F F V∈  with 1 2,F F t≤ , are distinguishable. The conditional diagnosability ( )ct G  of G is the 
maximum number of t such that G is conditional t-diagnosable. By [15], ( ) ( )ct G t G≥ . 

Theorem 2. [10] For a system ( ),G V E= , ( ) ( ) ( ) ( )0 1= ct G t G t G t G≤ ≤ .  
In [10], Wang et al. proved that the 1-good-neighbor diagnosability of the Bubble-sort graph nB  under the 

PMC model is 2 3n −  for 4n ≥ . In [16], Zhou et al. proved the conditional diagnosability of nB  is 4 11n −  
for 4n ≥  under the PMC model. Therefore, ( ) ( )1 ct G t G<  when 5n ≥  and ( ) ( )1 ct G t G=  when 4n = . 

In a system ( ),G V E= , a faulty set F V⊆  is called a g-extra faulty set if every component of G F−  has 
more than g nodes. G is g-extra t-diagnosable if and only if for each pair of distinct faulty g-extra vertex subsets 

( )1 2,F F V G⊆  such that iF t≤ , 1F  and 2F  are distinguishable. The g-extra diagnosability of G, denoted by 
( )gt G� , is the maximum value of t such that G is g-extra t-diagnosable. 
Proposition 3. [13] For any given system G, ( ) ( )g gt G t G′≤� �  if g g′≤ .  
Theorem 4. [13] For a system ( ),G V E= , ( ) ( ) ( ) ( )0= g gt G t G t G t G≤ ≤� � .  
Theorem 5. [13] For a system ( ),G V E= , ( ) ( )1 1t G t G=� .  

2.2. Connectivity  
A multiprocessor system is modeled as an undirected simple graph ( ),G V E= , whose vertices (nodes) 
represent processors and edges (links) represent communication links. Given a nonempty vertex subset V ′  of V, 
the induced subgraph by V ′  in G, denoted by [ ]G V ′ , is a graph, whose vertex set is V ′  and the edge set is 
the set of all the edges of G with both endpoints in V ′ . The degree ( )Gd v  of a vertex v is the number of edges 
incident with v. The minimum degree of a vertex in G is denoted by ( )Gδ . For any vertex v, we define the 
neighborhood ( )GN v  of v in G to be the set of vertices adjacent to v. u is called a neighbor vertex or a  
neighbor of v for ( )Gu N v∈ . Let S V⊆ . We use ( )GN S  to denote the set ( ) \Gv S

N v S
∈∪ . For neigh-  

borhoods and degrees, we will usually omit the subscript for the graph when no confusion arises. Certain types  
 

Table 1. The possible comparison results for different conditions of three processors in a comparison.                             

                       Of the two compared processor 
Comparator processor Test result 

 None is faulty At least one is faulty 

Fault-free 0 1 

Faulty 0 or 1 0 or 1 
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of graphs play prominent roles in graph theory. A graph G is said to be k-regular if for any vertex v, ( )Gd v k= . 
A complete graph is a simple graph in which any two vertices are adjacent. The connectivity ( )Gκ  of a graph 
G is the minimum number of vertices whose removal results in a disconnected graph or only one vertex left 
when G is complete. Let 1F  and 2F  be two distinct subsets of V, and let the symmetric difference  

( ) ( )1 2 1 2 2 1\ \F F F F F F= ∪ . For graph-theoretical terminology and notation not defined here we follow [17]. 
Let ( ),G V E= . A fault set F V⊆  is called a g-good-neighbor faulty set if ( ) ( )\N v V F g∩ ≥  for every 

vertex v in \V F . A g-good-neighbor cut of G is a g-good-neighbor faulty set F such that G F−  is dis- 
connected. The minimum cardinality of g-good-neighbor cuts is said to be the g-good-neighbor connectivity of 
G, denoted by ( ) ( )g Gκ . A fault set F V⊆  is called a g-extra faulty set if every component of G F−  has at 
least ( )1g +  vertices. A g-extra cut of G is a g-extra faulty set F such that G F−  is disconnected. The 
minimum cardinality of g-extra cuts is said to be the g-extra connectivity of G, denoted by ( ) ( )g Gκ� . 

Proposition 6. Let G be a connected graph. Then ( ) ( ) ( ) ( )g gG Gκ κ≤� .  
Proof. Let F be a minimum g-good-neighbor cut of G. Then ( )G F gδ − ≥ . Therefore, every component of 

G F−  has at least ( )1g +  vertices and hence F is a g-extra cut of G. By the definition of the g-extra 
connectivity, ( ) ( ) ( ) ( )g gG F Gκ κ≤ =� .                                                        □ 

Proposition 7. Let G be a connected graph. Then ( ) ( ) ( ) ( )1 1G Gκ κ= � .  
Proof. By Proposition 6, ( ) ( ) ( ) ( )1 1G Gκ κ≤� . Let F be a minimum 1-extra cut of G. Then every component of 

G F−  has at least two vertices. Note that every component of G F−  is connected. Therefore, ( ) 1G Fδ − ≥  
and hence F is a 1-good-neighbor cut of G. By the definition of the g-good-neighbor connectivity,  

( ) ( ) ( ) ( )1 1G F Gκ κ≤ = � . Therefore, ( ) ( ) ( ) ( )1 1G Gκ κ= � .                                           □ 

3. Basic Results  
Theorem 8. Let a distinct pair of g-good-neighbor (g-extra) faulty subsets of V be 1S  and 2S  in a system 

( ),G V E= . If 1 2S S V∪ = , then ( )1 2,S S  is indistinguishable under the PMC model and MM* model.  
Proof. Consider two case as follows. 
Case 1. MM* model. 
Consider a directed testing graph ( )( ),M V G L=  for the system ( ),G V E= . 
1). If 1 2, , \i j k S S∈  and [ ]( )1 2, \ik jk E G S S∈ , then ( ), ki j L∈ . 
1'). If 2 1, , \i j k S S∈  and [ ]( )2 1, \ik jk E G S S∈ , then ( ), ki j L∈ . 

1''). If 2 1, ,i j k S S∈ ∩  and [ ]( )2 1,ik jk E G S S∈ ∩ , then ( ), ki j L∈ . 
2). If 1 2, \i k S S∈ , 2j S∈  and 1 2\j S S∉ , [ ]( )1 2\ik E G S S∈  and ( )jk E G∈ , then ( ), ki j L∈ . 

2'). If 2 1, \i k S S∈ , 1j S∈  and 2 1\j S S∈/ ,, [ ]( )2 1\ik E G S S∈  and ( )jk E G∈ , then ( ), ki j L∈ . 
2''). If 2 1,i k S S∈ ∩ , 1 2j F F∈  , [ ]( )2 1ik E G S S∈ ∩  and ( )jk E G∈ , then ( ), ki j L∈ . 

3). If 1 2\k S S∈ , 2,i j S∈  and 1 2, \i j S S∈/ , ( ),ik jk E G∈ , then ( ), ki j L∈ . 
3'). If 2 1\k S S∈ , 1,i j S∈  and 2 1, \i j S S∈/ , ( ),ik jk E G∈ , then ( ), ki j L∈ . 
4). If 2 1k S S∈ ∩ , 1 2,i j F F∈  , ( ),ik jk E G∈ , then ( ), ki j L∈ . 
Consider a syndrome σ for each ( ),i j L∈ . 
1). If 1 2, , \i j k S S∈  and [ ]( )1 2, \ik jk E G S S∈ , and ( ), ki j L∈  then, ( )( ), 0ki jσ = . 
1'). If 2 1, , \i j k S S∈  and [ ]( )2 1, \ik jk E G S S∈ , and ( ), ki j L∈  then, ( )( ), 0ki jσ = . 

1''). If 2 1, ,i j k S S∈ ∩  and [ ]( )2 1,ik jk E G S S∈ ∩ , and ( ), ki j L∈  then, ( )( ), 0ki jσ = . 

2). If 1 2, \i k S S∈ , 2j S∈  and 1 2\j S S∉ , [ ]( )1 2\ik E G S S∈  and ( )jk E G∈ , and ( ), ki j L∈ , then  
( )( ), 1ki jσ = . 

2'). If 2 1, \i k S S∈ , 1j S∈  and 2 1\j S S∉ , [ ]( )2 1\ik E G S S∈  and ( )jk E G∈ , and ( ), ki j L∈ , then  
( )( ), 1ki jσ = . 

2''). If 2 1,i k S S∈ ∩ , 1 2j F F∈  , [ ]( )2 1ik E G S S∈ ∩  and ( )jk E G∈ , and ( ), ki j L∈ , then  
( )( ), 1ki jσ = . 

3). If 1 2\k S S∈ , 2,i j S∈  and 1 2, \i j S S∉ , ( ),ik jk E G∈ , and ( ), ki j L∈ , then ( )( ), 1ki jσ = . 
3'). If 2 1\k S S∈ , 1,i j S∈  and 2 1, \i j S S∉ , ( ),ik jk E G∈ , and ( ), ki j L∈ , then ( )( ), 1ki jσ = . 

4). If 2 1k S S∈ ∩ , 1 2,i j F F∈  , ( ),ik jk E G∈ , and ( ), ki j L∈ , then ( )( ), 1ki jσ = . 
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Suppose that S2 is a g-good-neighbor faulty subset of V. 1). Let 1 2, , \i j k S S∈  and [ ]( )1 2, \ik jk E G S S∈ . 
Since i, j and k are fault-free, and ( ), ki j L∈ , we have ( )( ), 0ki jσ = . 1'). Let 2 1, , \i j k S S∈  and  

[ ]( )2 1, \ik jk E G S S∈ . Since i, j and k are fault, and ( ), ki j L∈ , we set ( )( ), 0ki jσ = . 1''). Let  
2 1, ,i j k S S∈ ∩  and [ ]( )2 1,ik jk E G S S∈ ∩ . Since i, j and k are fault, and ( ), ki j L∈ , we set ( )( ), 0ki jσ = . 

2). Let 1 2, \i k S S∈ , 2j S∈  and 1 2\j S S∉ , [ ]( )1 2\ik E G S S∈ , ( )jk E G∈ , and ( ), ki j L∈ . Since i and k 
are fault-free and j is fault, and ( ), ki j L∈ , we have ( )( ), 1ki jσ = . 2'). Let 2 1, \i k S S∈ , 1j S∈  and 

2 1\j S S∈/ , [ ]( )2 1\ik E G S S∈ , ( )jk E G∈ , and ( ), ki j L∈ . Since i and k are fault, j is fault-free, and 
( ), ki j L∈ , we set ( )( ), 1ki jσ = . 2"). Let 2 1,i k S S∈ ∩ , 1 2j F F∈  , [ ]( )2 1ik E G S S∈ ∩ , ( )jk E G∈ , and 
( ), ki j L∈ . Suppose that 2 1\j S S∈ . Since i, k and j are fault and ( ), ki j L∈ , we set ( )( ), 1ki jσ = . Suppose 
that 1 2\j S S∈ . Since i and k are fault, j is fault-free, and ( ), ki j L∈ , we set ( )( ), 1ki jσ = . 3). Let 

1 2\k S S∈ , 2, Sji ∈  and 1 2, \i j S S∈/ , ( ),ik jk E G∈ , and ( ), ki j L∈ . Since k is fault-free, i and j are fault, 
and ( ), ki j L∈ , we have ( )( ), 1ki jσ = . 3'). Let 2 1\k S S∈ , 1,i j S∈  and 2 1, \i j S S∈/ , ( ),ik jk E G∈ , and  
( ), ki j L∈ . Since k is fault, i and j are fault-free, and ( ), ki j L∈ , we set ( )( ), 1ki jσ = . 4). Let 2 1k S S∈ ∩ ,  

1 2,i j F F∈  , ( ),ik jk E G∈ , and ( ), ki j L∈ . Since k is fault and ( ), ki j L∈ , we set ( )( ), 1ki jσ = . 
Therefore, ( )2Sσ σ∈ . Suppose that 1S  is a g-good-neighbor faulty subset of V. Similar to that of above 
paragraph, we have that ( )1Sσ σ∈ . Thus, the above syndrome belongs to ( ) ( )1 2F Fσ σ∩ . Therefore, 1S  
and 2S  are indistinguishable. 

Case 2. PMC model. 
Consider a directed testing graph ( )( ),T V G L=  for the system ( ),G V E= . 
1). If 1 2, \i j S S∈  and [ ]( )1 2\ij E G S S∈ , then ( ),i j L∈ . 
1'). If 2 1, \i j S S∈  and [ ]( )2 1\ij E G S S∈ , then ( ),i j L∈ . 

2). If 1 2\i S S∈ , 2 1\j S S∈  and ( )ij E G∈ , then ( ),i j L∈ . 
2'). If 2 1\i S S∈ , 1 2\j S S∈  and ( )ij E G∈ , then ( ),i j L∈ . 
3). If 1 2\i S S∈ , 2 1j S S∈ ∩  and ( )ij E G∈ , then ( ),i j L∈ . 
3'). If 2 1i S S∈ ∩ , 1 2\j S S∈ , and ( )ij E G∈ , then ( ),i j L∈ . 
4). If 2 1\i S S∈ , 2 1j S S∈ ∩  and ( )ij E G∈ , then ( ),i j L∈ . 
4'). If 2 1i S S∈ ∩ , 2 1\j S S∈ , and ( )ij E G∈ , then ( ),i j L∈ . 
5). If 2 1,i j S S∈ ∩  and ( )ij E G∈ , then ( ),i j L∈ . 
Consider a syndrome σ for each ( ),i j L∈ . 
1). If 1 2, \i j S S∈  and [ ]( )1 2\ij E G S S∈ , then ( ),i j L∈  and ( )( ), 0i jσ = . 
1'). If 2 1, \i j S S∈  and [ ]( )2 1\ij E G S S∈ , then ( ),i j L∈  and ( )( ), 0i jσ = . 

2). If 1 2\i S S∈ , 2 1\j S S∈  and ( )ij E G∈ , then ( ),i j L∈  and ( )( ), 1i jσ = . 
2'). If 2 1\i S S∈ , 1 2\j S S∈  and ( )ij E G∈ , then ( ),i j L∈  and ( )( ), 1i jσ = . 
3). If 1 2\i S S∈ , 2 1j S S∈ ∩  and ( )ij E G∈ , then ( ),i j L∈  and ( )( ), 1i jσ = . 
3'). If 2 1i S S∈ ∩ , 1 2\j S S∈ , and ( )ij E G∈ , then ( ),i j L∈  and ( )( ), 1i jσ = . 
4). If 2 1\i S S∈ , 2 1j S S∈ ∩  and ( )ij E G∈ , then ( ),i j L∈  and ( )( ), 1i jσ = . 
4'). If 2 1i S S∈ ∩ , 2 1\j S S∈ , and ( )ij E G∈ , then ( ),i j L∈  and ( )( ), 1i jσ = . 

5). If 2 1,i j S S∈ ∩  and ( )ij E G∈ , then ( ),i j L∈  and ( )( ), 1i jσ = . 
Suppose that S2 is a g-good-neighbor faulty subset of V. 1). Let 1 2 2, \ \i j S S V S∈ =  and [ ]( )1 2\ij E G S S∈ . 

Since i and j are fault-free, and ( ),i j L∈ , we have ( )( ), 0i jσ = . 1'). Let 2 1, \i j S S∈  and [ ]( )2 1\ij E G S S∈ . 
Since i and j are fault, and ( ),i j L∈ , we set ( )( ), 0i jσ = . 2). Let 1 2\i S S∈ , 2 1\j S S∈  and ( )ij E G∈ . 
Since i is fault-free and j is fault, and ( ),i j L∈ , we have ( )( ), 1i jσ = . 2'). Let 2 1\i S S∈ , 1 2\j S S∈  and 

( )ij E G∈ . Since i is fault and j is fault-free, and ( ),i j L∈ , we set ( )( ), 1i jσ = . 3). Let 1 2\i S S∈ , 
2 1j S S∈ ∩  and ( )ij E G∈ . Since i is fault-free and j is fault, and ( ),i j L∈ , we have ( )( ), 1i jσ = . 3'). Let 

2 1i S S∈ ∩ , 1 2\j S S∈ , and ( )ij E G∈ . Since i is fault and j is fault-free, and ( ),i j L∈ , we set ( )( ), 1i jσ = . 
4). Let 2 1\i S S∈ , 2 1j S S∈ ∩  and ( )ij E G∈ . Since i and j are fault, and ( ),i j L∈ , we set ( )( ), 1i jσ = . 
4'). Let 2 1i S S∈ ∩ , 2 1\j S S∈ , and ( )ij E G∈ . Since i and j are fault, and ( ),i j L∈ , we set ( )( ), 1i jσ = . 
5). Let 2 1,i j S S∈ ∩  and ( )ij E G∈ . Since i and j are fault, and ( ),i j L∈ , we set ( )( ), 1i jσ = . Therefore, 

( )2Sσ σ∈ . Suppose that 1S  is a g-good-neighbor faulty subsets of V. Similar to that of above paragraph, we 
have that ( )1Sσ σ∈ . Thus, the above syndrome belongs to ( ) ( )1 2F Fσ σ∩ . Therefore, 1S  and 2S  are 
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indistinguishable.                                                                          □ 
Corollary 1. Let a distinct pair of g-good-neighbor (g-extra) faulty subsets of V be 1F  and 2F  in a system 
( ),G V E= . If 1 2F F V∪ = , and 1F m≤ , 2F m≤ , then the g-good-neighbor (g-extra) diagnosability of G is 

less than m, ( ) 1gt G m≤ −  ( ( ) 1gt G m≤ −� ), under the PMC model and MM* model.  
Proof. By Theorem 8, G is not g-good-neighbor (g-extra) m-diagnosable under PMC model and MM* model. 

Hence, by the definition of g-good-neighbor (g-extra) diagnosability, we conclude that the g-good-neighbor 
(g-extra) diagnosability of G is less than m, i.e., ( ) 1gt G m≤ −  ( ( ) 1gt G m≤ −� ).                       □ 

Corollary 2. Let a system ( ),G V E=  with ν  vertices be g-good-neighbor (g-extra) t-diagnosable. If there 
is a distinct pair of g-good-neighbor (g-extra) faulty subsets 1F  and 2F  of V such that 1F t≤  and 2F t≤ , 
and 1 2F Fν = ∪ , then 2 1tν ≥ + . 

Proof. Suppose, on the contrary, that 2tν ≤ . Let a distinct pair of g-good-neighbor (g-extra) faulty subsets of 
V be 1F  and 2F  such that 1F t≤  and 2F t≤ , and 1 2F Fν = ∪ . By Corollary 1, G is not g-good-neighbor 
(g-extra) t-diagnosable, a contradiction.                                                        □ 

4. The g-Good-Neighbor (g-Extra) Diagnosability of Some Graphs under the PMC  
Model and the MM* Model  

In this section, we will give the g-good-neighbor (g-extra) diagnosability of some graphs under the PMC model 
and the MM* model. 

Theorem 9. ([8] [13]) A system ( ),G V E=  is g-good-neighbor (g-extra) t-diagnosable under the PMC 
model if and only if there is an edge uv E∈  with ( )1 2\u V F F∈ ∪  and 1 2v F F∈   for each distinct pair of 
g-good-neighbor (g-extra) faulty subsets 1F  and 2F  of V with 1F t≤  and 2F t≤ .  

Theorem 10. ([1] [8] [13]) A system ( ),G V E=  is g-good-neighbor (g-extra) t-diagnosable under the MM* 
model if and only if for each distinct pair of g-good-neighbor (g-extra) faulty subsets 1F  and 2F  of V with 

1F t≤  and 2F t≤  satisfies one of the following conditions. 
1) There are two vertices ( )1 2, \u w V F F∈ ∪  and there is a vertex 1 2v F F∈   such that uw E∈  and 

vw E∈ . 
2) There are two vertices 2 1, \u v F F∈  and there is a vertex ( )1 2\w V F F∈ ∪  such that uw E∈  and 

vw E∈ . 
3) There are two vertices 2 1, \u v F F∈  and there is a vertex ( )1 2\w V F F∈ ∪  such that uw E∈  and 

vw E∈ .  

Theorem 11. Let 0 1
2
ng  ≤ ≤ −  

. If 3n ≥ , the g-good-neighbor (g-extra) diagnosability of the complete  

graph nK  under the PMC model, ( ) 1
2g n
nt K  = −  

 ( ( ) 1
2g n
nt K  = −  

� ). If 4n ≥ , the g-good-neighbor 

(g-extra) diagnosability of nK  under the MM* model, ( ) 1
2g n
nt K  = −  

 ( ( ) 1
2g n
nt K  = −  

� ).  

Proof. Let 3n ≥ , 0 1
2
ng  ≤ ≤ −  

. Firstly, prove that ( ) 1
2g n
nt K  ≤ −  

 ( ( ) 1
2g n
nt K  ≤ −  

� ). If  

( ), nX Y V K⊆  such that 
2
nX Y  = =   

 and ( )nX Y V K∪ = . By Corollary 1, ( ) 1
2g n
nt K  ≤ −  

  

( ( ) 1
2g n
nt K  ≤ −  

� ) for 1
2
nX  ≤ −  

 and 1
2
nY  ≤ −  

. Note that nK X−  is connected and  

( )( ) 1 1 .
2n n
nK V K X n X gδ   − = − − = − ≥    

 Therefore, ( ) 1nV K X g− ≥ + . Next, prove that  

( ) 1
2g n
nt K  ≥ −  

 ( ( ) 1
2g n
nt K  ≥ −  

� ). By the definition of g-good-neighbor (g-extra) diagnosability, it is  

sufficient to show that nK  is g-good-neighbor (g-extra) 1
2
n   −    

-diagnosable. Consider two cases as follows. 
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Case 1. PMC model. 

Let 3n ≥ . By Theorem 9, to prove nK  is g-good-neighbor (g-extra) 1
2
n   −    

-diagnosable, it is equivalent  

to prove that there is an edge ( )nuv E K∈  with ( ) ( )1 2\nu V K F F∈ ∪  and 1 2v F F∈   for each distinct pair  

of g-good-neighbor (g-extra) faulty subsets 1F  and 2F  of ( )nV K  with 1 1
2
nF  ≤ −  

 and 2 1
2
nF  ≤ −  

. 

Since 1 1
2
nF  ≤ −  

 and 2 1
2
nF  ≤ −  

, ( ) ( )1 2\nV K F F∪ ≠ ∅  holds. Thus, there is an  

( ) ( )1 2\nu V K F F∈ ∪ . Since g-good-neighbor (g-extra) faulty subsets 1F  and 2F  of ( )nV K  are distinct, 
without loss of generality, suppose that 2 1\F F ≠ ∅ . Then there is a 2 1 1 2\v F F F F∈ ⊆  . Since nK  is 
complete, uv  is an edge between ( ) ( )1 2\nV K F F∪  and 1 2F F . By Theorem 9, nK  is g-good-neighbor  

(g-extra) 1
2
n   −    

-diagnosable. 

Case 2. MM* model. 
Let 4n ≥ . By the definition of g-good-neighbor (g-extra) diagnosability, it is sufficient to show that nK  is  

g-good-neighbor 1
2
n   −    

-diagnosable. By Theorem 10, to prove nK  is g-good-neighbor (g-extra) 1
2
n   −    

-  

diagnosable, it is equivalent to prove that for each distinct pair of g-good-neighbor (g-extra) faulty subsets 1F   

and 2F  of ( )nV K  with 1 1
2
nF  ≤ −  

 and 2 1
2
nF  ≤ −  

 satisfies one of the following conditions. 1).  

There are two vertices ( ) ( )1 2, \nu w V K F F∈ ∪  and there is a vertex 1 2v F F∈   such that ( )nuw E K∈  and 
( )nvw E K∈ . 2). There are two vertices 1 2, \u v F F∈  and there is a vertex ( ) ( )1 2\nw V K F F∈ ∪  such that 
( )nuw E K∈  and ( )nvw E K∈ . 3). There are two vertices 2 1, \u v F F∈  and there is a vertex  
( ) ( )1 2\nw V K F F∈ ∪  such that ( )nuw E K∈  and ( )nvw E K∈ . 

Since 1 1
2
nF  ≤ −  

 and 2 1
2
nF  ≤ −  

, ( ) ( )1 2\nV K F F∪ ≠ ∅ . Thus, there is ( ) ( )1 2, \nu w V K F F∈ ∪   

when n is even. Since g-good-neighbor (g-extra) faulty subsets 1F  and 2F  of ( )nV K  are distinct, without 
loss of generality, suppose that 2 1\F F ≠ ∅ . Thus, there is a 2 1 1 2\v F F F F∈ ⊆ ∆ . Since nK  is complete, we 
have that ( )nuw E K∈  and vw  is an edge between ( ) ( )1 2\nV K F F∪  and 1 2F F . Let n be odd as follows. 
Note that there is an ( ) ( )1 2\nu V K F F∈ ∪ . If ( ) ( )1 2, \nu w V K F F∈ ∪ , by the above proof, ( )nuw E K∈  
and ( )nvw E K∈ , where 2 1\v F F∈ . Suppose that exactly one ( ) ( )1 2\nw V K F F∈ ∪ . Then  

1 2 2
1 1\ 1 1 1

2 2 2
n n nF F n F n n  + − = − − ≥ − − − = − =    

. Since 5n ≥ , we have 1 2\ 2F F ≥ . Therefore, let  

1 2 1 2, \u v F F F F∈ ⊆ ∆ . Since nK  is complete, we have that ( )nuw E K∈  and ( )nvw E K∈ . By Theorem 10,  

nK  is g-good-neighbor (g-extra) 1
2
n   −    

-diagnosable.                                         □ 
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