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Abstract 
In this paper the Black Scholes differential equation is transformed into a parabolic heat equation 
by appropriate change in variables. The transformed equation is semi-discretized by the Method 
of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated nu-
merically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum 
error of order 10−10. 
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1. Introduction 
Financial derivative, in particular options, became very popular financial contracts in the last few decades. Op-
tions can be used to hedge assets and portfolios in order to control the risk due to movements in the share price. 
A European call (put) option provides the right share price to buy or sell a fixed number of assets at the fixed 
exercised price E, at the expiry time t0 [1]. In the early 1970’s Fisher Black and Myron Scholes made a major 
breakthrough by deriving a partial differential equation that must be satisfied by the price of any derivative se-
curity dependent on a non-dividend-paying stock [2]. According to [3] their work had a huge impact on how op-
tions were viewed in the financial world. In an idealized financial market, the price of a European option can be 
obtained as the solution of the Black-Scholes equation [4] [5]. However, the Black Scholes equation has been 
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derived under quite restrictive assumptions such as frictionless, liquid and complete market. In recent years non-
linear Black Scholes equations have been derived in order to model transaction costs arising in the hedging of 
portfolios [1] [6] [7] and feedback effects due to large traders [8]-[13]. 

In seeking the solution of the Black Scholes equation, emphasis is always laid on derivation of formula or 
equation for the price of the option of interest and computation of the price of the option. This calls for the usage 
of numerical methods because explicit theoretical solutions for the price of the option do not exist. From a bi-
nomial model, [6] derived an option price that takes into account transaction costs which approximates a Black 
Scholes price but with modified volatility. [14] [15] computed the option price of the Black Scholes equation as 
the solution of a nonlinear quasi-variational inequality. This approach has the disadvantage that the option price 
depends on the choice of the utility function. Seeking the analytical solution of the Black-Scholes equation, [16] 
used the Adomain decomposition method. Adomain decomposition can provide analytical approximations to a 
wide class of linear and nonlinear equations without perturbation, closure approximations or discretization. So-
lution for the Black-Scholes equation as a semigroup on spaces of continuous functions on (0, ∞) is presented in 
[17]. 

In the mathematical literature, only a few results can be found on the numerical discretization of Black 
Scholes equations. The numerical approaches vary from binomial approximations for American options in sto-
chastic framework [18], Monte-Carlo methods [19], finite element discretization [20], and finite difference ap-
proximations [1]. The numerical discretization of the Black Scholes equations with nonlinear volatilities has 
been performed using explicit finite difference schemes [21] [22]. Explicit numerical schemes have the disad-
vantage that restrictive conditions on the discretization parameters, time and space steps, are needed to obtain 
stable, convergent schemes [23]. Moreover the convergence order is the only one in time. 

The Method of Lines (MOL) is a general procedure for the solution of time-dependent partial differential eq-
uations (PDEs) [24]. The basic idea of the MOL is to replace the spatial (boundary value) derivatives in the 
PDEs with algebraic approximations [25]. Ones this is done, the spatial derivatives are no longer stated explicit-
ly in terms of the spatial dependent variables. Thus, only the initial value variable, typically time in a physical 
problem, remains, which results in a system of ODEs that approximates the original PDE. An accurate integra-
tion algorithm for initial value ODEs to compute an approximate numerical solution to the PDE can then be 
used for the numerical integration. One of the salient features of the MOL is the use of existing, and generally 
well established, numerical methods for ODEs [26].  

This paper is organized thus: In Section 2 we transform the black Scholes equation into a heat equation by 
change in variables. In Section 3 we introduce an L-stable trapezoidal like integrator for the numerical integra-
tion of the transformed Black Scholes equation. Section 4 is devoted to the numerical test of the method on the 
transformed Black Scholes equation. Section 5 explains the computation of the errors and relative errors of the 
method while results are discussed in Section 6. 

2. Transforming the Black Scholes Equation into a Parabolic Heat Equation 
Given the Black Scholes equation: 

2 2

0
2t ss s
SV V rSV rVσ

+ + − =                                     (1) 

Subject to: 

( )0, 0, for all V t t=                                       (2a) 

( ), ~  asV S t S S →∞                                      (2b) 

( ) ( ), max ,0V S T S K= −                                     (2c) 

where: 
General option priceV =                                      (3a) 

Asset priceS =                                         (3b) 

Risk-free interest rater =                                     (3c) 
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Volitilityσ =                                            (3d) 

Following [27] to transform the diffusion-advection-reaction Equation (1) into a parabolic heat PDE, we make 
the following change of variables: 

( ) 2

2
T t σ

τ
−

=                                           (4a) 

exS K=                                              (4b) 

( ) ( ), ,V S t Ku x τ=                                         (4c) 

By taking appropriate partial derivatives of ( ),V S t  in Equation (4c) and substituting in Equation (1) yields 
2 2 2 2

2 2 2 0
2 2

K u S K u K u K urS rKu
x S xS S x

σ σ
τ

 − ∂ − ∂ ∂ ∂ + + + − =   ∂ ∂ ∂∂   
                       (5) 

Substituting exK  for S  in Equation (5) and dividing by 
2

2
Kσ  yields 

2

2 2 2

2 21u u r u r u
xxτ σ δ

∂ ∂ ∂ ⇒ = + − − ∂ ∂∂  
                                    (6) 

Defining 

2

2rk
δ

=                                               (7) 

And substituting for k in Equation (6) we obtain 

( )
2

2 1u u uk ku
xxτ

∂ ∂ ∂
= + − −

∂ ∂∂
                                     (8) 

By defining 

( ) ( ), e ,ax bw x u xττ τ+=                                       (9) 

Then, the partial derivatives of ( ),w x τ  are thus obtained: 

( )( )e ,ax b
x xw au x uτ τ+= +                                    (10) 

( )2e 2ax b
xx x xxw a u au uτ+= + +                                  (11) 

( )eax bw bu uτ
τ τ

+= +                                       (12) 

Making ,x xxu u  and uτ  the subjects of Equations (10), (11) and (12) respectively we obtain: 

e ax b
x xu w auτ− −= −                                        (13) 

2e 2ax b
xx xx xu w a u auτ− −= − −                                     (14) 

e ax bu w buτ
τ τ

− −= −                                        (15) 

Substituting Equations (13), (14) and (15) into Equation (8) we obtain 

( ) ( )2 1 2xx xw w a a ak k b w k a wτ⇒ = + + − − + + − −                          (16) 

By letting the coefficients of w  and xw  in Equation (16) vanish identically 
Under the condition that  

1
2

ka − =  
 

                                          (17) 

and 
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( )21
4

k
b

+
=                                          (18) 

the Black Scholes equation given in Equation (1) is transformed into the parabolic heat equation PDE 
2

, , 0,
2xx

Tw w xτ
στ

 
= ∈ ∈ 

 
                                  (19) 

Subject to  

( )
( ) ( )1 1

2 2,0 max e e ,0 ,
k k

w x x
+ −  = − ∈ 

  
                             (20a) 

( )
2

, 0 as , 0,
2

Tw x x στ τ
 

→ → ±∞ ∈ 
 

                            (20b) 

According to [28] European Call option as the solution to the Black Scholes equation on 0 ,0S t T≤ < ∞ ≤ ≤  
can be approximated by 

( ) ( ), ~ e as ,r T tV S t S K S− −− → ∞                                (21) 

Equating both hand sides of Equation (21) yields 

( ) ( ), e r T tV S t S K − −= −                                    (22) 

Substituting for S from Equation (4) in Equation (22) gives 

( ) ( ), e e r T txV S t K K − −= −                                   (23) 

Substituting 2

2τ
σ

 for ( )T t−  in Equation (23) from Equation (3a), 

( ) 2
2

, e e
r

xV S t K
τ

σ

 
−  

 
 
 ⇒ = −
 
 

                                (24) 

By equating the RHS of Equations (2b) and (24) 

( ) 2
2

, e e
r

xu x
τ

στ
 

−  
 ⇒ = −                                  (25) 

Substituting k  for 2

2r
σ

 from Equation (7) in Equation (25) we obtain 

( ), e ex ku x ττ −= −                                     (26) 

Substituting Equation (26) for ( ),u x τ  in Equation (9) yields 

( ) ( ) ( )1, e ea x b ax b kw x τ ττ + + + −⇒ = −                              (27) 

Remark 
By appropriate change in variables, Equation (1) is transformed into Equation (19) which is a parabolic heat 

equation to be discretized by the MOL. Equation (27) is the derived approximate theoretical solution to the 
transformed Black Scholes equation.  

3. L-Stable Implicit Trapezoidal-Like Integrator 
The trapezoidal-like integrator 

1 1n n n nu u Ru Su+ +′ ′− = +                                   (28) 
where  
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( )
( )

( )
( )

1 2 2 1

1 2 1 2
1 2

1 e e e 1 e

e e e e

l l l l

l l l l
R

λ λ λ λ

λ λ λ λλ λ

− −

− −

 − −
 = −
 − − 

                            (29a) 

( )
( )

( )
( )

2 1

1 2 1 2
2 1

e 1 1 e

e e e e

l l

l l l l
S

λ λ

λ λ λ λλ λ

−

− −

 − −
 = −
 − − 

                            (29b) 

1 2andλ λ  are the first and second eigenvalues of the discretization matrix respectively; 
l  is the time step; and '  denotes differentiation with respect to time. 
The derivation of the method (28) and the analysis of the order of accuracy are as discussed in [29], while the 

stability properties of the method are discussed in [30]. 

4. Numerical Experimentation 
For numerical experimentation the following values were used: k = 0.001, r = 0.1, σ = 0.2, K = 100, T = 1, Δx = 
0.01 and Δτ = 0.001. 

5. Computation of Absolute and Relative Errors 
In this section we explain how the absolute errors and relative errors of the methods shown in Table 1 and Ta-
ble 2 were obtained. 

 
Table 1. Solution approximations and errors of the new scheme.                                                    

t New Scheme Theoretical Solution Errors 

0.0 0.0100000917 0.0100000917 0 

0.001 0.01000359219 0.0100035927 5.1 × 10−10 

0.002 0.01000709380 0.0100070936 2.0 × 10−10 

0.003 0.01001059654 0.0100105966 6.0 × 10−11 

0.004 0.01001410040 0.0100141006 2.0 × 10−10 

0.005 0.01001760539 0.0100176056 2.1 × 10−10 

0.006 0.01002111150 0.0100211126 1.10 × 10−9 

0.007 0.01002461875 0.0100246196 8.5 × 10−10 

0.008 0.01002812713 0.0100281285 1.37 × 10−9 

0.009 0.01003163663 0.0100316373 6.7 × 10−10 

0.010 0.01003514726 0.0100351481 4.4 × 10−10 

0.011 0.01003865902 0.0100386598 7.8 × 10−10 

0.012 0.01004217190 0.0100421733 1.4 × 10−9 

0.013 0.01004568591 0.0100456878 1.89 × 10−9 

0.014 0.01004920106 0.0100492031 2.04 × 10−9 

0.015 0.01005271734 0.0100527192 1.86 × 10−9 

0.016 0.01005623474 0.0100562362 1.46 × 10−9 

0.017 0.01005975327 0.0100597549 1.63 × 10−9 

0.018 0.01006327294 0.0100632755 2.56 × 10−9 

0.019 0.01006679374 0.0100667959 2.16 × 10−9 

0.020 0.01007031567 0.0100703180 2.33 × 10−9 
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Figure 1. The graphs of the numerical solution of the new scheme and the theoretical solution. 

 
Table 2. Solution approximations, errors and relative errors of the new scheme.                                      

t New scheme Theoretical solution Errors Relative errors 

0.000 0.0100000917 0.0100000917 0 0 

0.001 0.01000359219 0.0100035927 5.1 × 10−10 5.049486987 × 10−10 

0.002 0.01000709380 0.0100070936 2.0 × 10−10 1.980184111 × 10−10 

0.003 0.01001059654 0.0100105966 6.0 × 10−11 5.940531731 × 10−11 

0.004 0.01001410040 0.0100141006 2.0 × 10−10 1.980170374 × 10−10 

0.005 0.01001760539 0.0100176056 2.1 × 10−10 2.079171677 × 10−10 

0.006 0.01002111150 0.0100211126 1.10 × 10−9 1.089086145 × 10−9 

0.007 0.01002461875 0.0100246196 8.5 × 10−10 8.415636443 × 10−10 

0.008 0.01002812713 0.0100281285 1.37 × 10−9 1.356397869 × 10−9 

0.009 0.01003163663 0.0100316373 6.7 × 10−10 6.633455582 × 10−10 

0.010 0.01003514726 0.0100351481 4.4 × 10−10 4.356284045 × 10−10 

0.011 0.01003865902 0.0100386598 7.8 × 10−10 7.722476682 × 10−10 

0.012 0.01004217190 0.0100421733 1.4 × 10−9 1.386080737 × 10−9 

0.013 0.01004568591 0.0100456878 1.89 × 10−9 1.871202484 × 10−9 

0.014 0.01004920106 0.0100492031 2.04 × 10−9 2.019703589 × 10−9 

0.015 0.01005271734 0.0100527192 1.86 × 10−9 1.841488038 × 10−9 

0.016 0.01005623474 0.0100562362 1.46 × 10−9 1.445464072 × 10−9 

0.017 0.01005975327 0.0100597549 1.63 × 10−9 1.613765910 × 10−9 

0.018 0.01006327294 0.0100632755 2.56 × 10−9 2.534494681 × 10−9 

0.019 0.01006679374 0.0100667959 2.16 × 10−9 2.138472434 × 10−9 

0.020 0.01007031567 0.0100703180 2.33 × 10−9 2.306770092 × 10−9 

0.0199 0.02 0.02 0.02 0.02 0.02 0.0201 0.0201 0.0201 0.0201
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t
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5.1. Absolute Errors 
The absolute errors of the scheme were computed by the use of the formula: 

( ),ij i ju u x t−  

where the numerical solution at the grid point ( ),i jx t  is iju  and the analytical solution at the same grid point 
is ( ),i ju x t . 

5.2. Relative Errors 
Relative errors of the method were computed by use of the formula: 

( )
( )

,

1 ,
ij i j

i j

u u x t

u x t

−

+
 

where the numerical solution at the grid point ( ),i jx t  is iju  and the analytical solution at the same grid point 
is ( ),i ju x t . 

6. Results and Discussion 
On the implementation of the L-stable trapezoidal-like integrator for the solution of transformed Black Scholes 
equation after discretizing with MOL, the errors and relative errors of the scheme were computed as shown in 
Table 1 and Table 2 respectively. The trapezoidal-like integrator is an accurate time predictor of the solution of 
the Black Scholes equation. All computations in this paper were carried out in Maple 15 while the plotting of 
Figure 1 was carried out in Matlab. 
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