Retraction Notice

Title of retracted article: The Modified Simple Equation Method and Its Applications in Mathematical Physics and Biology

Author(s): Mahmoud A. E. Abdelrahman, Magdi Hakeem Armanious, Emad H. M. Zahrnan, Mostafa M. A. Khater*

* Corresponding author. Email: mostafa.khater2024@yahoo.com

Journal: American Journal of Computational Mathematics
Year: 2015
Volume: 5
Number: 1
Pages (from - to): 1 - 17
DOI (to PDF): http://dx.doi.org/10.4236/ajcm.2015.51001
Paper ID at SCIRP: 54588

Retraction date: 2016-05-04

Retraction initiative (multiple responses allowed; mark with X):
- All authors
- Some of the authors: X Editor with hints from
- Journal owner (publisher)
- Institution:
- Reader: E.M.E.Zayed
- Other:

Retraction type (multiple responses allowed):
- Unreliable findings
 - Lab error
 - Inconsistent data
 - Analytical error
 - Biased interpretation
 - Other:
- Irreproducible results
- Failure to disclose a major competing interest likely to influence interpretations or recommendations
- Unethical research
- Fraud
 - Data fabrication
 - Fake publication
 - Other:
- Plagiarism
 - Self plagiarism
 - Overlap
 - Redundant publication *
- Copyright infringement
 - Other legal concern:
- Editorial reasons
 - Handling error
 - Unreliable review(s)
 - Decision error
 - Other:
- Other:

Results of publication (only one response allowed):
X valid.
- invalid.

Author's conduct (only one response allowed):
- honest error
- academic misconduct X
- none
History
Expression of Concern:
Date (yyyy-mm-dd): none

Correction:
Date(yyyy-mm-dd): none

Comment:

The paper does not meet the standards of "American Journal of Computational Mathematics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines (http://publicationethics.org/files/retraction-guidelines.pdf). The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editor guiding this retraction: Prof. Hari M. Srivastava (EiC of AJCM)
The Modified Simple Equation Method and Its Applications in Mathematical Physics and Biology

Mahmoud A. E. Abdelrahman¹, Magdi Hakeem Armanious¹, Emad H. M. Zahran², Mostafa M. A. Khater¹*

¹Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
²Department of Mathematical and Physical Engineering, College of Engineering Shubra, Benha University, Banha, Egypt
Email: mostafa.khater2024@yahoo.com

Received 4 December 2014; accepted 10 March 2015; published 12 March 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
The modified simple equation method is employed to find the exact traveling wave solutions involving parameters for nonlinear evolution equations namely, a diffusive predator-prey system, the Bogoyavlenskii equation, the generalized Fisher equation and the Burgers-Huxley equation. When these parameters are taken special values, the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that the modified simple equation method provides an effective and a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Comparison between our results and the well-known results will be presented.

Keywords

1. Introduction
The nonlinear partial differential equations of mathematical physics are major subjects in physical science [1]. Exact solutions for these equations play an important role in many phenomena in physics such as fluid mechanics, hydrodynamics, optics, plasma physics and so on. Recently many new approaches for finding these solutions have been proposed, for example, tanh-sech method [2]-[4], extended tanh-method [5]-[7], sine-cosine

method [8]-[10], homogeneous balance method [11], the Exp(-φ(ξ)) expansion method [12] and [13], Jacobi elliptic function method [14]-[16], F-expansion method [17]-[19], exp-function method [20] and [21], trigonometric function series method [22], \(G' \) expansion method [23]-[26], the modified simple equation method [27]-[32] and so on. The objective of this article is to apply the modified simple equation method for finding the exact traveling wave solution of some nonlinear partial differential equations, namely the diffusive predator-prey system [33], the Bogoyavlenskii equation [34], the generalized fisher equation [35] and the Burgers-Huxley equation [36], which play an important role in mathematical physics.

The rest of this paper is organized as follows: In Section 2, we give the description of the modified simple equation method. In Section 3, we use this method to find the exact solutions of the nonlinear evolution equations pointed out above. In Section 4, conclusions are given.

2. Description of the Modified Simple Equation Method

Consider the following nonlinear evolution equation

\[
F(u, u_t, u_x, u_{xx}, u_{xxx}, u_{xxt}, \cdots) = 0.
\]

where \(F \) is a polynomial in \(u(x,t) \) and its partial derivatives in which the highest order derivatives and nonlinear terms are involved. In the following, we give the main steps of this method [27]-[32]:

Step 1. We use the wave transformation

\[
u(x, y, t) = u(\xi), \quad \xi = x + y - ct,
\]

where \(c \) is a nonzero constant, to reduce Equation (1) to the following ODE:

\[
P(u, u_t, u_x, u_{xx}, \cdots) = 0,
\]

where \(P \) is a polynomial in \(u(\xi) \) and its total derivatives, while \(\frac{d}{d\xi} = \frac{1}{ct} \).

Step 2. Suppose that the solution of Equation (3) has the formal solution:

\[
u(\xi) = \sum_{j=0}^{N} A_j \left(\frac{\psi'^{j}(\xi)}{\psi(\xi)} \right)^{i},
\]

where \(A_j \) are arbitrary constants to be determined, such that \(A_0 \neq 0 \), while the function \(\psi(\xi) \) is an unknown function to be determined later, such that \(\psi' \neq 0 \).

Step 3. Determine the positive integer \(N \) in Equation (4) by considering the homogenous balance between the highest order derivatives and the nonlinear terms in Equation (3).

Step 4. Substitute Equation (4) into Equation (3), we calculate all the necessary derivative \(u', u'', \cdots \) of the function \(u(\xi) \) and we account the function \(\psi(\xi) \). As a result of this substitution, we get a polynomial of \(\psi^{-j} (j = 0, 1, 2, \cdots) \). In this polynomial, we gather all terms of the same power of \(\psi^{-j} (j = 0, 1, 2, \cdots) \), and we equate with zero all coefficient of this polynomial. This operation yields a system of equations which can be solved to find \(A_k \) and \(\psi(\xi) \). Consequently, we can get the exact solution of Equation (1).

3. Application

Here, we will apply the modified simple equation method described in Section 2 to find the exact traveling wave solutions and then the solitary wave solutions for the following nonlinear systems of evolution equations.

3.1. Example 1: A Diffusive Predator-Prey System

We consider a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system [33],

\[
\begin{aligned}
u_t &= u_{xx} - \beta u + (1 + \beta) u^2 - u^3 - uv, \\
v_t &= v_{xx} + kuv - mv - \delta v^3.
\end{aligned}
\]
where \(\kappa, \delta, m \) and \(\beta \) are positive parameters. The solutions of predator-prey system have been studied in various aspects [33] [37] [38]. The dynamics of the diffusive predator-prey system have assumed the following relations between the parameters, namely \(m = \beta \) and \(\kappa + \frac{1}{\sqrt{\delta}} = \beta + 1 \). Under these assumptions, Equation (5) can be rewritten in the form:

\[
\begin{aligned}
 u_t &= u_{xx} - \beta u + \left(\kappa + \frac{1}{\sqrt{\delta}} \right) u^2 - u^3 - uv, \\
 v_t &= v_{xx} + \kappa uv - \beta v - \delta v^3.
\end{aligned}
\]

(6)

We use the wave transformation \(u(x,t) = u(\xi), \xi = x - ct \) to reduce Equation (6) to the following nonlinear system of ordinary differential equations:

\[
\begin{aligned}
 u^* + cu' - \beta u + \left(\kappa + \frac{1}{\sqrt{\delta}} \right) u^2 - u^3 - uv &= 0, \\
 v^* + cv' + \kappa uv - \beta v - \delta v^3 &= 0,
\end{aligned}
\]

(7)

where \(c \) is a nonzero constant.

In order to solve Equation (7), let us consider the following transformation

\[
v = \frac{1}{\sqrt{\delta}} u.
\]

(8)

Substituting the transformation (8) into Equation (7), we get

\[
\begin{aligned}
 u^* + cu' - \beta u + \left(\kappa + \frac{1}{\sqrt{\delta}} \right) u^2 - u^3 - uv &= 0, \\
 \psi^* + c\psi' + \kappa \psi \psi - \beta \psi - \delta \psi^3 &= 0,
\end{aligned}
\]

(9)

Balancing \(u^* \) with \(u^3 \) in Equation (9) yields \(N + 2 = 3N \Rightarrow N = 1 \). Consequently, we get the formal solution

\[
u(\xi) = A_0 + A_1 \left(\frac{\psi'}{\psi} \right),
\]

(10)

where \(A_0 \) and \(A_1 \) are constants to determined such that \(A_1 \neq 0 \). It is easy to see that

\[
u^* = A_1 \left[\frac{\psi'^*}{\psi} \left(\frac{\psi'}{\psi} \right)^2 \right],
\]

(11)

\[
u^* = A_1 \left[\frac{\psi'^*}{\psi} - 3\psi' (c - \kappa A_1 + 3A_0 A_1 \psi') \right],
\]

(12)

Substituting (10)-(12) into Equation (9) and equating the coefficients of \(\psi^3, \psi^2, \psi^1, \psi^0 \) to zero, we respectively obtain

\[
\begin{aligned}
 \psi^3 : \psi'^3 A_1 (2 - A_1^2) &= 0, \\
 \psi^2 : \psi A_1 \left[-3\psi^* - (c - \kappa A_1 + 3A_0 A_1) \psi' \right] &= 0, \\
 \psi^1 : A_1 \left[\psi'^* - (\beta - 2\kappa A_1 + 3A_0 A_1) \psi' \right] &= 0, \\
 \psi^0 : A_0 \left[-\beta + \kappa A_0 - A_0^2 \right] &= 0.
\end{aligned}
\]

(13-16)

From Equations (13) and (16), we deduce that

\[
A_1 = \pm \sqrt{2}, A_0 = 0 \text{ or } A_0 = \frac{-\kappa \pm \sqrt{\kappa^2 - 4\beta}}{-2},
\]

where \(\kappa^2 > 4\beta \).
Let us discuss the following cases.

Case 1. If $A_0 = 0$.

In this case, we deduce from Equations (14) and (15) that

$$\psi' = \frac{-3}{c - \kappa A_1} \psi^*,$$ \hspace{1cm} (17)

and

$$\psi'' + c \psi'' - \beta \psi' = 0.$$ \hspace{1cm} (18)

where $c \neq \kappa A_1$.

Equations (17) and (18) yield

$$\frac{\psi''}{\psi'} = E_0$$ \hspace{1cm} (19)

where $E_0 = - \left(c + \frac{3\beta}{c - \kappa A_1} \right) \neq 0$.

Integrating (19) and using (17) we deduce that

$$\psi' = \frac{-3c_1}{c - \kappa A_1} \exp(E_0 \xi),$$ \hspace{1cm} (20)

and consequently, we get

$$\psi = \frac{-3c_1}{E_0 (c - \kappa A_1)} \exp(E_0 \xi) + c_2,$$ \hspace{1cm} (21)

where c_1 and c_2 are arbitrary constants of integration.

Substituting (20) and (21) into (10) we have the exact solution:

$$u(\xi) = \pm \sqrt{2} E_0 \left[\frac{\exp(E_0 \xi)}{\exp(E_0 \xi) + c_2} \right],$$ \hspace{1cm} (22)

and from (8) we get

$$v(\xi) = \pm \frac{E_0}{\sqrt{2} \delta} \left[\frac{\exp(E_0 \xi)}{\exp(E_0 \xi) + c_2} \right],$$ \hspace{1cm} (23)

where $c_1 = \frac{E_0 (c - \kappa A_1)}{-3}$.

If $c_2 = 1$, we have the solitary wave solutions.

$$u(\xi) = \pm \frac{E_0}{\sqrt{2}} \left[1 + \tanh \left(\frac{E_0 \xi}{2} \right) \right],$$ \hspace{1cm} (24)

and

$$v(\xi) = \pm \frac{E_0}{\sqrt{2} \delta} \left[1 + \tanh \left(\frac{E_0 \xi}{2} \right) \right],$$ \hspace{1cm} (25)

while, if $c_2 = -1$, we get

$$u(\xi) = \pm \frac{E_0}{\sqrt{2}} \left[1 + \coth \left(\frac{E_0 \xi}{2} \right) \right],$$ \hspace{1cm} (26)

and

$$v(\xi) = \pm \frac{E_0}{\sqrt{2} \delta} \left[1 + \coth \left(\frac{E_0 \xi}{2} \right) \right].$$ \hspace{1cm} (27)
Case 2. If $A_0 \neq 0$.
In this case, we deduce from Equations (14) and (15) that
\[
\psi' = \left(-3 \frac{c - \kappa A_1 + 3 A_0 A_1}{c - \kappa A_1 + 3 A_0 A_1} \right) \psi''
\]
(28)
and
\[
\psi'' + c \psi''' - \left(\beta - 2 \kappa A_0 + 3 A_0^2 \right) \psi' = 0.
\]
(29)
Substituting (28) into (29), we get
\[
\frac{\psi''}{\psi'''} = E_1,
\]
(30)
where $E_1 = - \left[\frac{2 \left(\beta - 2 \kappa A_0 + 3 A_0^2 \right)}{c - \kappa A_1 + 3 A_0 A_1} \right] \neq 0$.
Integrating (30) and using (28), we deduce that
\[
\psi' = \frac{-3 c_3}{c - \kappa A_1 + 3 A_0 A_1} \exp \left(E_1 \xi \right),
\]
(31)
and consequently, we get
\[
\psi = \frac{-3 c_1}{E_1 (c - \kappa A_1 + 3 A_0 A_1)} \exp \left(E_1 \xi \right) + c_4,
\]
(32)
where c_1 and c_4 are arbitrary constants of integration.
Substituting (31) and (32) into (10), we have the exact solution:
\[
\frac{E_0}{E_1} = \frac{1}{\sqrt{2}} \frac{E_1}{E_2} \frac{\exp \left(E_1 \xi \right)}{\exp \left(E_1 \xi \right) + c_4},
\]
(33)
and from (8) we get
\[
\frac{E_0}{E_1} = \frac{1}{\sqrt{2}} \left(\frac{E_1}{E_2} \frac{\exp \left(E_1 \xi \right)}{\exp \left(E_1 \xi \right) + c_4} \right),
\]
(34)
where $c_2 = \frac{E_1 (c - \kappa A_1 + 3 A_0 A_1)}{c - \kappa A_1 + 3 A_0 A_1}$.
If $c_4 = 1$, we get the solitary solutions.
\[
u(\xi) = \frac{- \kappa \pm \sqrt{\kappa^2 - 4 \beta}}{-2} \frac{E_1}{2} \left[1 + \tanh \left(\frac{E_1}{2} \xi \right) \right],
\]
(35)
and
\[
u(\xi) = \frac{- \kappa \pm \sqrt{\kappa^2 - 4 \beta}}{-2} \frac{E_1}{2} \left[1 + \tanh \left(\frac{E_1}{2} \xi \right) \right],
\]
(36)
while, if $c_4 = -1$, we get
\[
u(\xi) = \frac{- \kappa \pm \sqrt{\kappa^2 - 4 \beta}}{-2} \frac{E_1}{2} \left[1 + \coth \left(\frac{E_1}{2} \xi \right) \right],
\]
(37)
and
\[
u(\xi) = \frac{- \kappa \pm \sqrt{\kappa^2 - 4 \beta}}{-2} \frac{E_1}{2} \left[1 + \coth \left(\frac{E_1}{2} \xi \right) \right].
\]
(38)
3.2. Example 2: The Bogoyavlenskii Equation

We consider the Bogoyavlenskii equation \([34]\) in the form

\[
\begin{aligned}
4u_t + u_{xty} - 4u^2 u_y - 4u_x v &= 0, \\
u u_y &= v_x.
\end{aligned}
\] (39)

Equation (39) was derived by Kudryashov and Pickering \([39]\) as a member of \(a(2 + 1)\) Schwarzian breaking soliton hierarchy. The above equation also appeared in \([40]\) as one of the equations associated to nonisospectral scattering problems. Estevez et al. \([41]\) showed that Equation (39) possesses the Painleve property. Equation (39) is the modified version of a breaking soliton equation, \(4u_{xt} + 8u_x u_{yt} + 4u_y u_{xy} + u_{xyy} = 0\), which describes the \((2 + 1)\)-dimensional interaction of a Riemann wave propagation along the \(y\)-axis with a long wave along the \(x\)-axis. To a certain extent, a similar interaction is observed in waves on the surface of the sea. It is well-known that the solution and its dynamics of the equation can make researchers.

In this subsection, we determine the exact solutions and the solitary wave solutions of Equation (39). To this end, we use the wave transformation (2) to reduce Equation (39) to the following nonlinear system of ordinary differential equations.

\[
\begin{aligned}
-4cu' + u'' - 4u^2 u' - 4u' v &= 0, \\
u^2 &= v.
\end{aligned}
\] (40)

Substituting the second equation of (40) into the first one, and integrating the resultant equation

\[
u^2 - 2u^3 - 4cu = 0,
\] (41)

with zero constant of integration.

Balancing \(u''\) with \(u^3\) in Equation (41) yields, \(N + 2 = 3N \Rightarrow N = 1\). Consequently, we get the same formal solution (10).

Substituting (10)-(12) into Equation (41) and equating the coefficients of \(\psi^{-3}, \psi^{-2}, \psi^{-1}, \psi^0\) to zero, we obtain

\[
\begin{aligned}
\psi^{-3} : 2A_1 \psi' \left[1 - A_1^2 \right] &= 0, \\
\psi^{-2} : 3A_1 \psi' \left[\psi'' + 2A_1 A_0 \psi'\right] &= 0, \\
\psi^{-1} : A_1 \left[\psi'' - (6A_0^2 + 4c) \psi'\right] &= 0, \\
\psi^0 : -2A_0 \left[A_0^2 + 2c\right] &= 0.
\end{aligned}
\] (42) (43) (44) (45)

From Equations (42) and (45), we deduce that

\(A_1 = \pm 1, A_0 = 0\) or \(A_0 = \pm \sqrt{-2c}, \) where \(c < 0\).

Case 1. \(A_0 \neq 0\).

In this case, we deduce from Equations (43) and (44) that

\[
\psi' = -\frac{1}{2A_0 A_1} \psi' ,
\] (46)

and

\[
\psi'' - (6A_0^2 + 4c) \psi' = 0.
\] (47)

Equations (46) and (47) yield

\[
\frac{\psi''}{\psi'} = E_2,
\] (48)
where \(E_2 = \frac{-6A_1^2 - 4c}{2A_0A_1} \neq 0 \).

Integrating (48) and using (46), we deduce that

\[
\psi' = \frac{-c_s}{2A_0A_1} \exp(E_2 \xi), \\
\psi = \frac{-c_s}{2E_2A_0A_1} \exp(E_2 \xi) + c_6,
\]

where \(c_s \) and \(c_6 \) are arbitrary constants of integration.

Substituting (49) and (50) into (10), we have the exact solution:

\[
u(\xi) = \frac{1}{2} \pm \sqrt{-2c \pm E_2} \left[\frac{\exp(E_2 \xi)}{c_0 + \exp(E_2 \xi)} \right],
\]

and

\[
u(\xi) = \frac{1}{2} \pm \sqrt{-2c \pm E_2} \left[\frac{\exp(E_2 \xi)}{c_0 + \exp(E_2 \xi)} \right] \left[1 + \tanh \left(\frac{E_2}{2} \xi \right) \right]^2,
\]

where \(c_5 = -2E_2A_0A_1 \).

If \(c_2 = 1 \), we have the solitary wave solutions:

\[
u(\xi) = \frac{1}{2} \pm \sqrt{-2c \pm E_2} \left[\frac{\exp(E_2 \xi)}{c_0 + \exp(E_2 \xi)} \right],
\]

and

\[
u(\xi) = \frac{1}{2} \pm \sqrt{-2c \pm E_2} \left[\frac{\exp(E_2 \xi)}{c_0 + \exp(E_2 \xi)} \right] \left[1 + \coth \left(\frac{E_2}{2} \xi \right) \right]^2,
\]

while, if \(c_2 = -1 \), we get

\[
u(\xi) = \frac{1}{2} \pm \sqrt{-2c \pm E_2} \left[\frac{\exp(E_2 \xi)}{c_0 + \exp(E_2 \xi)} \right],
\]

and

\[
u(\xi) = \frac{1}{2} \pm \sqrt{-2c \pm E_2} \left[\frac{\exp(E_2 \xi)}{c_0 + \exp(E_2 \xi)} \right] \left[1 + \coth \left(\frac{E_2}{2} \xi \right) \right]^2.
\]

Case 2. If \(A_1 = 0 \).

In this case, we deduce from Equations (40) and (41) that \(\psi' = 0 \). This case is rejected.

3.3. Example 3. The Generalized Fisher Equation with Nonlinearity

We consider a nonlinear partial differential equation describing the generalized Fisher equation [35]

\[
u = Du_{xx} + \alpha u - \beta u^2 - \gamma u^3,
\]

where \(D \) is the diffusion coefficient, \(u \) is the concentration or density, \(c \) represent the convective velocity, and \(\alpha, \beta, \gamma \) are the constants in different contexts. Substituting the wave transformation

\[
u(x,t) = u(\xi), \xi = x - kt
\]

into Equation (57), we get

\[Du'' + \alpha u - \beta u^2 - \gamma u^3 + (k - c) u' = 0, \text{ where } k \neq c,
\]

where \(k \) is arbitrary constant.

Balancing \(u'' \) with \(u^3 \) in Equation (58) yields, \(N + 2 = 3N \Rightarrow N = 1 \). Consequently, we get the same formal solution (10).
Substituting (10)-(12) into Equation (58) and equating the coefficients of ψ^{-3}, ψ^{-2}, ψ^{-1}, ψ^{0} to zero, we respectively obtain

\[\psi^{-3} : A_{9} \psi^{-1} \left[2D - \gamma A_{9} \right] = 0, \]
\[\psi^{-2} : A_{9} \psi^{-1} \left[-3D \psi^{*} - (\beta A_{9} + 3\gamma A_{9} + k - c) \psi^{*} \right] = 0, \]
\[\psi^{-1} : A_{9} \left[D \psi^{*} + (\alpha - 2\beta A_{9} - 3\gamma A_{9} + k - c) \psi^{*} + (k - c) \psi^{*} \right] = 0, \]
\[\psi^{0} : A_{9} \left[\alpha - \beta A_{9} - \gamma A_{9} \right] = 0. \]

From Equations (59) and (62), we deduce that

\[A_{9} = \pm \sqrt{\frac{2D}{\gamma}} \text{ and } A_{9} = 0 \text{ or } A_{9} = \frac{\beta \pm \sqrt{\beta^{2} + 4\gamma\alpha}}{-2\gamma}. \]

where D, γ are nonzero real constants.

Let us now discuss the following cases.

Case 1. If $A_{9} = 0$.

In this case, we deduce from Equations (60) and (61) that

\[\psi' = \frac{-3D}{\beta A_{9} + k - c} \psi^{*}, \]
and

\[D \psi^{*} + \alpha \psi + [k - c] \psi^{*} = 0, \]

Equations (63) and (64) yield

\[\psi' = \frac{-3Dc_{1}}{\beta A_{9} + k - c} \exp \left(\frac{-E_{1}}{D} \xi \right), \]

and consequently, we get

\[\psi = \frac{3D^{2}c_{1}}{E_{1}(\beta A_{9} + k - c)} \exp \left(\frac{-E_{1}}{D} \xi \right) + c_{2}, \]

where c_{1} and c_{2} are arbitrary constants of integration.

Substituting (66) and (67) into (10), we have the exact solution:

\[u(\xi) = \pm E_{1} \sqrt{\frac{2}{D\gamma}} \left[\exp \left(\frac{-E_{1}}{D} \xi \right) \right] \left[c_{2} + \exp \left(\frac{-E_{1}}{D} \xi \right) \right], \]

where $c_{2} = \frac{E_{1}(\beta A_{9} + c_{1} - c)}{3D^{2}c_{1}}$ and $\frac{2}{D\gamma} > 0$.

If $c_{2} = \pm 1$ and $\frac{E_{1}}{D} > 0$, we have the solitary wave solution.
while, if \(c_9 = \pm 1 \) and \(\frac{E_3}{D} < 0 \), we get

\[
\begin{align*}
\psi' &= -\frac{3D}{\beta A_1 + 3\gamma A_0 A_1 + k - c}, \\
\psi'' &= \frac{E_4}{D},
\end{align*}
\]

Case 2. If \(A_0 \neq 0 \).

In this case, we deduce from Equations (60) and (61) that

\[
\begin{align*}
\psi' &= \frac{-3D}{\beta A_1 + 3\gamma A_0 A_1 + k - c}, \\
\psi'' &= \frac{E_4}{D},
\end{align*}
\]

and

\[
D \psi'' + (k - c) \psi'' + \left(\alpha - 2 A_0 A_1 - 3\gamma A_0^2 \right) \psi' = 0.
\]

Equations (73) and (74) yield

\[
\begin{align*}
\psi' &= \frac{-E_4}{D}, \\
\psi'' &= \frac{E_4 (\beta A_1 + 3\gamma A_0 A_1 + k - c)}{D},
\end{align*}
\]

where \(E_4 \) is

\[
E_4 = \left[\frac{-3\alpha D}{\beta A_1 + 3\gamma A_0 A_1 + k - c} \right] \neq 0.
\]

Integrating (75) and using (72), we deduce that

\[
\psi = \frac{3D^2 c_9}{E_4 (\beta A_1 + 3\gamma A_0 A_1 + k - c)} \exp \left(\frac{-E_4}{D} \xi \right) + c_{10},
\]

and consequently, we get

\[
\psi = \frac{3D^2 c_9}{E_4 (\beta A_1 + 3\gamma A_0 A_1 + k - c)} \exp \left(\frac{-E_4}{D} \xi \right) + c_{10},
\]

where \(c_9 \) and \(c_{10} \) are arbitrary constants of integration.

Substituting (76) and (77) into (10), we have the exact solution:

\[
\begin{align*}
u(\xi) &= \frac{\beta \pm \sqrt{\beta^2 + 4\alpha\gamma}}{-2\gamma} \sqrt{\frac{2}{D\gamma}} \left[\frac{\exp \left(\frac{-E_4}{D} \xi \right)}{c_{10} + \exp \left(\frac{-E_4}{D} \xi \right)} \right],
\end{align*}
\]

where \(c_9 = \frac{E_4 (\beta A_1 + 3\gamma A_0 A_1 + k - c)}{3D^2} \) and \(\frac{2}{D\gamma} > 0 \).

If \(c_{10} = \pm 1 \) and \(\frac{E_4}{D} > 0 \), we have the solitary wave solution.

\[
\begin{align*}
u(\xi) &= \frac{\beta \pm \sqrt{\beta^2 + 4\alpha\gamma}}{-2\gamma} \sqrt{\frac{2}{D\gamma}} \left[1 - \tanh \left(\frac{E_4}{2D} \xi \right) \right],
\end{align*}
\]
\[u(\xi) = \beta \pm \sqrt{\beta^2 + 4\alpha \gamma \nu} \frac{E_4}{2D\gamma} \left[1 - \coth \left(\frac{E_4 \xi}{2D\gamma} \right) \right], \tag{80} \]

while, if \(c_{in} = \pm 1 \) and \(\frac{E_4}{D} < 0 \), we have

\[u(\xi) = \beta \pm \sqrt{\beta^2 + 4\alpha \gamma \nu} \frac{E_4}{2D\gamma} \left[1 + \tanh \left(\frac{E_4 \xi}{2D\gamma} \right) \right], \tag{81} \]

\[u(\xi) = \beta \pm \sqrt{\beta^2 + 4\alpha \gamma \nu} \frac{E_4}{2D\gamma} \left[1 + \coth \left(\frac{E_4 \xi}{2D\gamma} \right) \right]. \tag{82} \]

3.4. Example 4. The Burgers-Huxley Equation

We consider a nonlinear partial differentail equation describing the burgers-Huxley equation \[36\]

\[u_t + au_x - vu_{xx} = \beta u(1-u)(u-\gamma), \tag{83} \]

where \(u \) is the concentration or density, \(c \) represents the convective velocity, and \(\alpha, \beta, \gamma \) are real constants in different contexts. In which \(v \) plays the role of diffusion-like coefficient. Note that Equation (83) reduces to Hodgkin-Huxley equation for \(\alpha = 0 \) and to Burgers equation for \(\beta = 0 \).

Substituting the wave transformation \(u(x,t) = u(\xi), \xi = x - \xi t \) into Equation (83) we get

\[\beta u(1-u)(u-\gamma) + ku - auu' + vu^* = 0, \tag{84} \]

where \(k \) is arbitrary constant.

Balancing between \(u^* \) and \(u^3 \) in Equation (84) yields \(N - 2 = 3N \Rightarrow N = 1 \). Consequently, we get the same formal solution (10).

Substituting Equations (10)-(12) into Equation (84) and equating the coefficients of \(\psi'^3, \psi'^2, \psi'^1, \psi'^0 \) to zero, we respectively obtain.

\[\psi'^3 : A_4 \psi'^3 \left[-\beta A^2 + \alpha A_4 + 2v \right] = 0, \tag{85} \]
\[\psi'^2 : A_4 \psi'^2 \left[(5\beta \gamma A_4 + \beta A_4 - k + \alpha A_4) \psi' - (\alpha A_4 + 3v) \psi^* \right] = 0, \tag{86} \]
\[\psi'^1 : A_4 \left[(2\beta A_4 - \beta A_4 - 2\beta A_4 \gamma - \beta \gamma) \psi' + (k - \alpha A_4) \psi^* + v \psi^* \right], \tag{87} \]
\[\psi'^0 : \beta A_4 \left[\gamma - A^2 + A_4 \gamma \right] = 0. \tag{88} \]

From Equations (85) and (89), we deduce that

\[A_4 = -\alpha \pm \frac{\sqrt{\alpha^2 + 8Bv}}{2\beta}, \quad A_0 = 0 \text{ or } A_0 = \frac{\gamma}{2} \left[1 \pm \sqrt{1 + \frac{4}{\gamma}} \right]. \]

where \(\alpha, \beta, \gamma \) are nonzero real constants.

Let us now discuss the following cases.

Case 1. If \(A_0 = 0 \).

In this case, we deduce from Equations (86) and (87) that

\[\psi' = \frac{\alpha A_4 + 3v}{\beta A_4 - \beta A_4 \gamma - k} \psi^*, \tag{89} \]

and

\[v \psi^* + k \psi' - \beta \psi \psi' = 0, \tag{90} \]

Equations (89) and (90) yield

\[\frac{\psi''}{\psi^*} = \frac{-E_3}{v}. \tag{91} \]
where \(E_s = \left[\frac{(\alpha A_1 + 3v)(-\beta \gamma)}{\beta A_1 + \beta A_1 \gamma - k} \right] \neq 0 \).

Integrating (91) and using (89), we have
\[
\psi' = F_1 c_{11} \exp\left(\frac{-E_s}{v} \xi\right),
\]
where, \(F_1 = \frac{\alpha A_1 + 3v}{\beta A_1 + \beta A_1 \gamma - k} \),
\[
\psi = \frac{-F_1 c_{11}}{E_s} \exp\left(\frac{-E_s}{v} \xi\right) + c_{12},
\]
where \(c_{11} \) and \(c_{12} \) are arbitrary constants of integration.

Substituting (92) and (93) into (10), we have the exact solution:
\[
\begin{align*}
\mathit{u}(\xi) &= \frac{-E_s}{-2\beta v} \left[\exp\left(\frac{-E_s}{v} \xi\right) \right], \\
&= \frac{-E_s}{-2\beta v} \left[\exp\left(\frac{-E_s}{v} \xi\right) \right] + c_{11},
\end{align*}
\]
where \(c_{11} = -\frac{E_s}{F_1 v} \).

If \(c_{12} = \pm 1 \) and \(\frac{E_s}{v} > 0 \), we have the solitary wave solution
\[
\begin{align*}
\mathit{u}(\xi) &= \frac{-E_s}{-4\beta v} \left[\exp\left(\frac{-E_s}{v} \xi\right) \right], \\
&= \frac{-E_s}{-4\beta v} \left[1 - \tanh\left(\frac{E_s}{2\beta v} \xi\right) \right],
\end{align*}
\]
while, if \(c_{12} = \pm 1 \) and \(\frac{E_s}{v} < 0 \), we get
\[
\begin{align*}
\mathit{u}(\xi) &= \frac{-E_s}{-4\beta v} \left[\exp\left(\frac{-E_s}{v} \xi\right) \right], \\
&= \frac{-E_s}{-4\beta v} \left[1 + \coth\left(\frac{E_s}{2\beta v} \xi\right) \right],
\end{align*}
\]

Case 2. If \(A_0 \neq 0 \).

In this case, we deduce from Equations (86) and (87) that
\[
\psi'' = F_2 \psi^*,
\]
where \(F_2 = \frac{\alpha A_1 + 3v}{-3\beta A_0 A_1 + \beta A_1 + \beta A_1 \gamma - k + \alpha A_0} \).

and
\[
\psi'' + (k - \alpha A_0) \psi^* + \left(2\beta A_0 - 3\beta A_0^2 + 2\beta A_1 \gamma - \beta \gamma \right) \psi' = 0.
\]

Equations (99) and (100) yield
\[
\frac{\psi''}{\psi'} = -E_6 \frac{v}{v},
\]

where

\[
E_6 = \left[(k - \alpha A_0) + F_1 \left(2\beta A_0 - 3\beta A_0 + 2\beta A_0 \gamma - \beta \gamma \right) \right] \neq 0.
\]

Integrating (101) and using (99), we deduce that

\[
\psi' = F_2 c_{13} \exp \left(-E_6 \frac{v}{v} \xi \right),
\]

and consequently, we get

\[
\psi = -v F_2 c_{13} \exp \left(-E_6 \frac{v}{v} \xi \right) + c_{14},
\]

where \(c_{13} \) and \(c_{14} \) are arbitrary constants of integration.

Substituting (102) and (103) into (10), we have the exact solution:

\[
u(\xi) = \frac{\gamma}{2} \left[1 \pm \sqrt{1 + \frac{4}{\gamma}} \right] - \frac{E_6}{\gamma} \left[-\alpha \pm \sqrt{\alpha^2 + 4\beta \gamma} \right] \left\{ \begin{array}{l}
\tanh \left(\frac{E_6}{2v} \xi \right), \\
\coth \left(\frac{E_6}{2v} \xi \right),
\end{array} \right.
\]

where \(c_{13} = -\frac{E_6}{v F_2} \). If \(c_{14} = \pm 1 \) and \(\frac{E_6}{v} > 0 \), we have the solitary wave solution.

\[
u(\xi) = \frac{\gamma}{2} \left[1 \pm \sqrt{1 + \frac{4}{\gamma}} \right] - \frac{E_6}{\gamma} \left[-\alpha \pm \sqrt{\alpha^2 + 4\beta \gamma} \right] \left\{ \begin{array}{l}
\tanh \left(\frac{E_6}{2v} \xi \right), \\
1 - \coth \left(\frac{E_6}{2v} \xi \right),
\end{array} \right.
\]

while, if \(c_{14} = \pm 1 \) and \(\frac{E_6}{v} < 0 \), we get

\[
u(\xi) = \frac{\gamma}{2} \left[1 \pm \sqrt{1 + \frac{4}{\gamma}} \right] - \frac{E_6}{\gamma} \left[-\alpha \pm \sqrt{\alpha^2 + 4\beta \gamma} \right] \left\{ \begin{array}{l}
1 + \tanh \left(\frac{E_6}{2v} \xi \right), \\
1 + \coth \left(\frac{E_6}{2v} \xi \right),
\end{array} \right.
\]

4. Conclusion

The modified simple equation method has been successfully used to find the exact traveling wave solutions of some nonlinear evolution equations. As an application, the traveling wave solutions for Bogoyavlenskii equation and a diffusive predator-prey system which have been constructed using the modified simple equation method. Let us compare between our results obtained in the present article with the well-known results obtained by other authors using different methods as follows: Our results of a diffusive predator-prey system and Bogoyavlenskii equation are new and different from those obtained in [42]-[44] and also our results of the generalized Fisher equation and Burgers-Huxley equation are new and different from those obtained in [45]. It can be concluded that this method is reliable and propose a variety of exact solutions NPDEs. The performance of this method is effective and can be applied to many other nonlinear evolution equations. Figures 1-3 represent the solitary traveling wave solution for a di usive predator-prey system and Bogoyavlenskii equation and the generalized Fisher equation and Burgers-Huxley equation.
Figure 1. Solution of Equations (24)-(27). (a) Equation (24); (b) Equation (25); (c) Equation (26); (d) Equation (27).
Figure 2. Solution of Equations (69)-(72). (a) Equation (69); (b) Equation (70); (c) Equation (71); (d) Equation (72).

Figure 3. Solution of Equations (95)-(98). (a) Equation (95); (b) Equation (96); (c) Equation (97); (d) Equation (98).
Finally, the physical meaning of our new results in this article can be summarized as follows: the solutions (24), (25), (35), (36) (53), (54), (68), (69), (79), (81), (95), (97), (105), (107) represent the kink shaped solitary wave while the solutions (26), (27), (37), (38), (55), (56), (70), (71), (3.76), (80), (82), (96), (106), (108) represent the singular kink solitary wave.

Acknowledgements
The author thanks the referees for their suggestions and comments.

References

tering Problems. *Inverse Problems*, 13, 1463-1476. http://dx.doi.org/10.1088/0266-5611/13/6/004

