Complete Solutions to Mixed Integer Programming

Ning Ruan
School of Science, Information Technology and Engineering, University of Ballarat, Ballarat, Australia
Email: n.ruan@ballarat.edu.au
Received April, 2013

ABSTRACT
This paper considers a new canonical duality theory for solving mixed integer quadratic programming problem. It shows that this well-known NP-hard problem can be converted into concave maximization dual problems without duality gap. And the dual problems can be solved, under certain conditions, by polynomial algorithms.

Keywords: Duality Theory; Double Well; Global Optimization; Canonical Dual Transformation; Combinatorial Optimization; NP-hard Problems

1. Introduction
Mixed integer nonlinear programming refers to optimization problems which involve continuous and discrete variables [8]. In this paper, we consider the following constrained mixed integer quadratic programming:

\[\min_{x, y} P(x, y) = f(x) + c^T y \]

s.t. \[g(x) + w^T y \leq 0, \]
\[-1 \leq y \leq 1, \]
\[x \in \mathbb{R}^n, y \in \mathbb{R}^n \]

where, \(f(x) = 1/2x^TAx, g(x) = 1/2x^TBx - bx - d, \) \(c, w, b \) are given vectors, \(d \) is a given scalar, and \(A, B > 0, c < 0. \) \(X_0 \) is a feasible space defined by

\[X_0 = \{ x \in \mathbb{R}^n, y \in \mathbb{R}^n | v_i \in \{-1,1\}, i = 1, \ldots, n \} \]

Problem of the form (1) has a broad spectrum of applications, including process industry (process design [2, 13, 18], production planning [14], supply chain optimization [1,3], logistics and so on), management science (scheduling problem), financial (portfolio optimization problems [22]), engineering (network design [23]), machine learning (semi-supervised support vector machines), and computational chemistry /biology (solvent design problems).

Various methods have been proposed for solving mixed integer programming, such as branch and bound [4,5,19,21,24], cutting plane, branch and cut [16], branch and reduce, outer approximation [6,7,15], hybrid methods, and penalty method [17]. But the difficulty for developing an efficient method for such mixed integer programming lies not only on the nonlinearity of the functions involved, but also on existence of both discrete and continuous variables [20]. But if we introduce the canonical duality with some strategy, we can find global optima in polynomial time [10, 11, 12].

The rest of paper is arranged as follows. In section 2, we demonstrate how to rewrite the primal problem as a dual problem by using the canonical dual transformation. In section 3, optimality criterions for global solutions are discussed. Finally, in the last section, we present some conclusions.

2. Canonical Dual Transformation
Canonical duality theory [9] is a potentially powerful methodology which can be used to solve a large class of non-convex and discrete problems in nonlinear analysis, global optimization, and computational science.

Since \(y \in \{-1,1\}^n \), one penalty term is added. Let a be a penalty factor, the original problem can be formulated

\[\min_P P(x, y) = f(x) + c^T y + \frac{1}{2}a(y \tilde{\psi} - e)^2 \]

s.t. \[g(x) + w^T y \leq 0 \]
\[y \tilde{\psi} - e = 0 \]
\[x \in \mathbb{R}^n, y \in \mathbb{R}^n \]

We choose the geometrically nonlinear operator \(\xi = \Lambda(y) = y \circ \tilde{\psi} \) then, the canonical function associated with this geometrical operator is

\[V(\xi) = \frac{1}{2}a(\xi - e)^2. \]

Let \(\zeta \in \mathbb{R}^n \) be the canonical dual variable corre-
sponding to \(\xi \), we have
\[
\zeta = \nabla V (\xi) = a(\xi - e),
\]
and the Legendre conjugates of the function \(V(\xi) \) defined by
\[
V^* (\zeta) = \{ \xi^T \zeta - V(\xi) : \zeta = \nabla V(\xi) \} = \frac{1}{2} a^{-1} \xi^T \zeta.
\]
Thus the total complementarity function can be defined by
\[
\Xi(x, y, \zeta, \sigma, \tau) = f(x) + c^T + \zeta^T \zeta - V(\xi) + \sigma(\bar{y}^T y - e) + \tau (g(x) + w^T y).
\]
By the criticality condition
\[
\delta_\zeta \Xi(x, y, \zeta, \sigma, \tau) = 0,
\]
we obtain
\[
y = \frac{- (c + \tau w)}{2(\zeta + \sigma)}.
\]
Therefore, the canonical dual problem can be proposed as the following:

\[
(P^d) \quad \text{max } P^d (\zeta, \sigma, \tau)
\]
s.t. \((\zeta, \sigma, \tau) \in S_a \) \tag{3}

and

\[
P^d (\zeta, \sigma, \tau)
= -\frac{1}{2} \tau^2 b^T (A + \tau B)^{-1} b - \tau d
- \frac{1}{4} \frac{(c + \tau w)^2}{(\zeta + \sigma)^2} - \frac{1}{2a} \xi^2 - e(\zeta + \sigma),
\tag{4}
\]
where \(a = 10, \ e \) is a vector with all its entry 1. Its dual feasible space \(S_a \) is defined as

\[
S_a = \{ \zeta \in R^+, \sigma \in R^+, \tau \in R | \tau \geq 0, \zeta + \sigma \neq 0 \}. \tag{5}
\]

The notation \(\text{sta}\{\} \) stands for finding all stationary points of \(P^d (\zeta, \sigma, \tau) \) over \(S_a \). The following theorem shows that \((P^d) \) is canonically (i.e., with zero duality gap) dual to the primal problem \((P) \).

3. Global Optimality Condition

Theorem 1 The problem \((P^d) \) is canonical dual to the primal problem \((P) \) in the sense that if \((\bar{z}, \bar{\sigma}, \bar{\tau}) \) is a KKT point of \((P^d) \), then \((\bar{x}, \bar{y}) \) defined by

\[
\bar{x} = \bar{\tau} (A + \bar{\tau} B)^{-1} b, \bar{y} = -\frac{c + \bar{\tau} w}{2(\bar{z} + \bar{\sigma})},
\tag{6}
\]
is a KKT point of \((P) \), and

\[
P(\bar{x}, \bar{y}) = P^d (\bar{z}, \bar{\sigma}, \bar{\tau}) \tag{7}
\]

Proof. By introducing a Lagrange multiplier
\[
(\epsilon, \xi) \in R^+ \times R^+ \quad (R^+ = \{ \epsilon \in R^+ | \epsilon \leq 0 \})
\]
the Lagrangian \(L : S_a \times R^+ \times R^+ \rightarrow R \) associated with the problem \((P^d) \) is

\[
L(\zeta, \sigma, \tau, \epsilon, \xi) = P^d (\zeta, \sigma, \tau) - \epsilon \tau - \xi^T \tau.
\]
The criticality conditions

\[
\nabla_\zeta L(\zeta, \sigma, \tau, \epsilon, \xi) = 0,
\]
\[
\nabla_\sigma L(\zeta, \sigma, \tau, \epsilon, \xi) = 0,
\]
\[
\nabla_\tau L(\zeta, \sigma, \tau, \epsilon, \xi) = 0
\]

lead to

\[
\xi = \nabla_\tau P^d (\zeta, \sigma, \tau) = \epsilon \bar{\sigma} - \bar{\tau}^T v,
\tag{9}
\]
and the KKT conditions

\[
0 < \sigma \perp e = 0, \tag{11}
\]
\[
0 < \tau \perp \xi = 0, \tag{12}
\]
where \(y = 1/2 \text{Diag}(\bar{z} + \bar{\sigma})^{-1} (c/2 - \bar{\tau} w) \), the notation \(s \otimes t = (s_1 t_1, s_2 t_2, \ldots, s_N t_N) \) denotes the Hadamard product for any two vectors \(s, t \in R^n \). This shows that \((\bar{z}, \bar{\sigma}, \bar{\tau}) \) is a KKT point of the problem \((P^d) \), and then \((\bar{x}, \bar{y}) \) is a KKT point of the primal problem \((P) \).

By using the equations (6) we have

\[
\partial_\tau P^d = \frac{1}{4(\bar{z} + \bar{\sigma})^2} - \frac{\bar{\tau} - e}{a},
\tag{13}
\]
\[
\partial_\sigma P^d = \frac{(c + \bar{\tau} w)^2}{4(\bar{z} + \bar{\sigma})} = 0,
\tag{14}
\]
\[
\partial_\tau P^d = \frac{1}{2} (c + \tau w) w \leq 0, \tag{15}
\]
and

\[
\bar{z} (\bar{y}^T \bar{y} - e) = 0,
\]
\[
\bar{\tau} (g(\bar{x}) + w^T \bar{y}) = 0. \tag{16}
\]

So, in terms of

\[
\bar{x} = \bar{\tau} (A + \bar{\tau} B)^{-1} b, \bar{y} = -\frac{c + \bar{\tau} w}{2(\bar{z} + \bar{\sigma})},
\tag{17}
\]
we have

\[
P^d (\bar{z}, \bar{\sigma}, \bar{\tau}) = \frac{1}{2} \bar{x}^T A \bar{x} + \tau \left(\frac{1}{2} \bar{x}^T B \bar{x} - \bar{x}^T b - d \right)
- \frac{(c + \bar{\tau} w)^2}{4(\bar{z} + \bar{\sigma})^2} - \frac{1}{2a} \bar{\xi}^2 - e(\bar{z} + \bar{\sigma})
\]
\[
\begin{align*}
&= f(x) + r g(x) - \frac{(e + \tau w)^2}{4(\zeta + \sigma)^2} - \frac{1}{2a} \zeta^2 \\
&\quad - e(\zeta + \sigma) \\
&= f(x) + e^T \psi + (y + y_r) - \frac{(1 - e^2 + e \zeta)^2}{2a} \\
&\quad + \sigma (y_r - e) + f(x) + w^T y.
\end{align*}
\]

From (13), we have
\[
\bar{y} + e = \frac{\zeta + e}{a}.
\]

Therefore,
\[
(\bar{y} + e)^2 - \frac{\zeta^2}{2a} = \frac{a}{2}(\bar{y} - e)^2.
\]

Due to the fact that \(y_i \in \{-1,1\}, i = 1, \ldots, n \), we have
\[
P^d(\zeta, \sigma, \tau) = P(x, y).
\]

This proves the theorem.

This theorem shows that there is no duality gap between the primal problem and its canonical dual. In order to identify the global minimize, we need to introduce a useful feasible space
\[
S^*_v = \{(\zeta, \sigma, \tau) \in S_v | \zeta + \sigma > 0\}
\]
be a subset of \(S_v \), and we have the following theorem.

Theorem 2 Suppose that the vector \((\bar{\zeta}, \bar{\sigma}, \bar{\tau})\) is a critical point of the canonical dual function \(P^d(\zeta, \sigma, \tau) \). Let
\[
\bar{x} = \bar{r} (A + \tau B)^{-1} b, \quad \bar{y} = -\frac{c + \tau w}{2(\zeta + \sigma)}
\]
If \((\bar{\zeta}, \bar{\sigma}, \bar{\tau}) \in S^*_v \), then \((\bar{\zeta}, \bar{\sigma}, \bar{\tau})\) is a global maximize of \(P^d(\zeta, \sigma, \tau) \) on \(S^*_v \), the vector \((\bar{x}, \bar{y})\) is a global minimize of \(P(x, y) \) on \(R^n \), and
\[
P^d(x, y) = \min_{(x, y) \in R^2} P(x, y)
\]

By the fact that the canonical dual function \(P^d(\zeta, \sigma, \tau) \) is concave on \(S^*_v \), the critical point \((\bar{\zeta}, \bar{\sigma}, \bar{\tau})\) is a global maximize of \(P^d(\zeta, \sigma, \tau) \) over \(S^*_v \), this proves the statement (23).

This theorem provides a sufficient condition for a global minimizer of the primal problem.

4. Conclusions

In this paper, the canonical duality theory has been applied to solve mixed integer programming problem. Theorems show that by the canonical dual transformation, primal problems can be converted into canonical dual problem. By the fact that the canonical dual function is concave on the dual feasible space, so the dual problem can be solved by well-developed deterministic optimization methods.

5. Acknowledgements

Dr. Ning Ruan was supported by a funding from the Australian Government under the Collaborative Research Networks (CRN) program.

REFERENCES

