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ABSTRACT 

In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in 
ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness 
of the each modified is verified by several examples. 
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1. Introduction 

Recently a great deal of interest has been focused on the 
application of Adomian’s decomposition method to solve 
a wide variety of linear and nonlinear problems [1]. This 
method generates a solution in the form of a series whose 
terms are determined by a recursive relationship using 
the Adomian polynomials. Researchers who have used 
the ADM have frequently enumerated on the many ad-
vantages that it offers. Since it was first presented in the 
1980’s, Adomian decomposition method has led to sev-
eral modifications on the method made by various re-
searchers in an attempt to improve the accuracy or ex-
pand the application of the original method. Adomian 
and Rach [2] introduced modified Adomian polynomials 
which converge slightly faster than the original polyno-
mials and are convenient for computer generation. Ado- 
mian also introduced accelerated Adomian polynomials 
[3], despite the various types of Adomian polynomials 
available, the original Adomian polynomials are more 
generally used based on the advantage of a convenient 
algorithm which is easily remembered. Recently, F. A. 
Hendi et al. [4] presented simple Mathematica program 
to compute Adomian polynomials. Wazwaz [5] used 
padé approximants to the solution obtained using a mo- 
dified decomposition method and found that not only 
does this improve the result, but also that the error de-
creases with the increase of the degree of the padé ap-
proximants. Another modification to ADM was proposed 
by Wazwaz [6] a reliable modification of the Adomian 
decomposition method. In 2005, Wazwaz [7] presented 
another type of modification to the ADM. New modifi-

cation was proposed by Luo [8,9], this variation sepa-
rates the ADM into two steps and therefore is termed the 
two-step ADM or ( TS ADM ). Another recent modifica-
tion is termed the restarted Adomian method [10,11], this 
method involves repeatedly updating the initial term of 
the series generated.  

Several other researchers have developed modifica-
tions to the ADM [12-17]. The modifications arise from 
evaluating difficulties specific for the type of problem 
under consideration. The modification usually involves 
only a slight change and is aimed at improving the con-
vergence or accuracy of the series solution. The main 
goal of this paper is to apply some modifications of 
Adomian decomposition method to the initial value 
problem in ordinary differential equation and compare 
the results of an original ADM to those with the modifi-
cations. As we know, we point out that restarted and 
two-step methods are applied on the initial value problem 
for the first time. Our numerical examples show which of 
these methods give best results.  

2. A General Description of the ADM 

A general nonlinear differential equation will be used for 
simplicity, we consider  

Fy f  

where F is a nonlinear differential operator and y and f 
are functions of x. Rewriting the equation in the operator 
form  

Ly Ry Ny f               (1) 

where L is an operator representing the linear portion of 
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F which easily invertible, R is a linear operator for the 
reminder of the linear portion, and N is a nonlinear op-
erator representing the nonlinear term in F.  

Applying the inverse operator , the equation then 
becomes  

1L

1 1 1 1L Ly L f L Ry L Ny       

since F was taken to be a differential operator and L is 
linear,  would represents an integration and with any 
given initial conditions,  will give an equation for 
y incorporating these conditions. This gives  

1L

1L Ly

    1 1y x g x L Ry L Ny              (2) 

where  g x  represents the function generated by inte-
grating f and using the initial conditions. 

Adomian decomposition method admits the decompo-
sition into an infinite series of components 

   
0

n
n

y x y x




                 (3) 

The nonlinear term  be equated to an infinite se-
ries polynomial  

Ny

0
n

n

Ny A




                   (4) 

nA  is the Adomian polynomials, which can be deter-
mined by  

 
0

1 d

! d

n

n nA Ny
n 






 
 

 


0
n

n

           (5) 

substituting (4) and (5) into (2) 

  1 1
0

0 0
n n

n n

y x y L Ry L A
 

 

 

   



  

the recursive relationship is found to be 

 0

1
1n n

y g x

y L Ry L 




  1
nA

0

             (6) 

Having determined the components , the so-
lution y in a series form follows immediately. The series 
may be summed to provide the solution in a closed form. 
However, for concrete problems, the n-term partial sum 
may be used to give the approximate solution. 

,ny n 

2.1. Convergence Analysis  

The concept of convergence of the solution obtained by 
Adomian decomposition method was addressed by [1,18], 
and extensively by [19,20]. Convergence of the ADM 
when applied to initial value problem in ordinary differ-
ential equation is discussed by many authors. For exam-
ple, K. Abbaoui and Y. Cherruault [21,22]. In [23] H. 
Alzumi et al. discussed the convergence of ADM. 

2.2. The Noise Terms Phenomenon 

In this section, we will present a useful tool that will ac-
celerate the convergence of the Adomian decomposition 
method. The noise terms phenomenon provides a major 
advantage in that it demonstrate a fast convergence of the 
solution. A useful summary about the noise terms phe-
nomenon can be drawn as follows:  
 The noise terms are defined as the identical terms 

with opposite signs that may appear in the compo-
nents y  and y . 0 1

 The noise terms appear only for specific types of in-
homogeneous equations whereas noise terms do not 
appear for homogeneous equations. 

 Noise terms may appear if the exact solution is part of 
the zeroth component y . 0

 Verification that the remaining non-canceled terms 
satisfy the equation is necessary and essential. 

For further reading about the noise terms phenomenon 
see [24-27]. 

3. Some Recent Modifications of ADM 

Several authors have proposed a variety of modifications 
to ADM. The modifications arise from evaluating diffi-
culties specific for the type of problem under considera-
tion. We begin with the Adomian’s modification.  

3.1. Modified Adomian Method (M1): [1,28] 

Power series solutions of linear homogeneous differential 
equation in initial-value problems yield simple recur-
rence relations for the coefficient, but they are generally 
not adequate for nonlinear equations, although applicable 
to some simple cases such as the Riccati equation. To 
clarify the procedure, consider the general inhomogene-  

ous nonlinear form (1), where L will be chosen as 
2

2

d

dx
, 

and operate with We now have     1

0 0
. . d

x x
L    d .t t

    1 1 10 0y y y x L f L Ry L Ny            (7) 

Let  

0

n
n

n

y c x




  , 
0

n
n

n

f f x




  , and    (8) 
0

n
n

n

Ny A x




 

Now from (8) in (7), we obtain  

   

   

    

1

0 0

1 1

0 0

1

0

0 0

0 0

1 2

n n
n n

n n

n n
n n

n n

n

n n n
n

c x y y x L f x

L R c x L A x

y y x

x
f Rc A

n n

 


 

 
 

 





  

 

 

  
 

 

 


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or  

   

   

0 1
2

2 2 2
2

0 0

1

n
n

n

n

n n n
n

c c x c x y y x

x
f Rc A

n n







  


   

  





 

Equating coefficients, leading to: 

 
 

 

0

1

2 2 2

0

0

, 2
1

n n n
n

c y

c y

f Rc A
c n

n n
  





 
 



        (9) 

where  0 1, , ,n n nA A c c c  . 

3.2. Wazwaz Modifications 

3.2.1. Reliable Modification (M2): [6,29] 
The reliable modification form based on the assumption 
that the function g in (2) can be divided into two parts, 
i.e. 

0 1g g g                 (10) 

Accordingly, a slight variation was proposed only on 
the components 0  and 1 . The suggestion was that 
only the parts 0

y y
g  be assigned to the component 0 , 

whereas the remaining part 
y

1g  be combined with other 
terms given in (6) to define . Consequently, the recur-
sive relation,  

1y

   
   

0 0

1 1
1 1 0 0

1 1
2 1 1 , 0n n n

y g

y g L Ry L A

y L Ry L A n

 

 
  



  

   

     (11) 

Although this variation in the formation of 0  and 

1  is slight, however it plays a major role in accelerating 
the convergence of the solution and in minimizing the 
size of calculations. 

y
y

Furthermore, there is no need sometimes to evaluate 
the so-called Adomian polynomials required for nonlin-
ear operators. Two important remarks related to the 
modified method were made in [6]. First, by proper se-
lection of the function 0g  and 1g , the exact solution y 
may be obtained by using very few iterations, and some-
times by evaluating only two components. The success of 
this modification depends only on the choice of 0g  and 

1g , and this can be made through trials, that are the only 
criteria which can be applied so far.  

Second, if g consists of one term only, the standard 
decomposition method should be employed in this case. 

3.2.2. The New Modification (M3): [30] 
As indicated earlier, although the modified decomposi-
tion method may provide the exact solution by using two 
iterations only, and sometimes without any need for 

Adomian polynomials, but its effectiveness depends on 
the proper choice of 0g  and 1g . In the new modifica-
tion, Wazwaz replaces the process of dividing g into two 
components by a series of infinite components. He sug-

sts that g be expressed in Taylor series ge

0
n

n

g g




                    (12) 

Moreover, he suggest a new recursive relationship ex-
pressed in the form  

   
0 0

1 1
1 1 , 0n n n n

y g

y g L Ry L A n 
 



   
    (13) 

It is important to note that if g consists of one term 
only, then scheme (13) reduces to relation (6). Moreover, 
if g consists of two terms, then relation (13) reduces to 
the modified relation (11). It is easily observed that algo-
rithm (13) reduces the number of terms involved in each 
component, and hence the size of calculations is mini-
mized compared to the standard Adomian decomposition 
method only. Moreover, this reduction of terms in each 
component facilitates the construction of Adomian poly-
nomials for nonlinear operators. 

3.3. Restarted Adomian Method (M4): [10,11] 

The restarted ADM was used in [10] as a new method 
based on standard ADM for solving algebraic equations. 
In [11], E. Babolian et al. applied the restarted Adomian 
method to nonlinear integral equations and nonlinear 
integro-differential equations. The author in [31] applied 
the method to solve a system of nonlinear Fredholm in-
tegral equations of the second kind.  

In this method, we use the modified Adomian method 
which proposed a slight variation only on the compo-
nents 0  and 1 , and restarted Adomian method ap-
plied to algebraic equations. The rate of the method is 
more accelerate than standard adomian method. If we 
consider a general nonlinear equation of the form (1) and 
applied ADM to solve it we get the recursive relationship 
(6), we introduce the algorithm of restarted Adomian 
method as the following: 

y y

Choose small natural numbers . ,m k
Apply the Adomian method on Equations (6) and cal-

culate  0 1 2, , , , ky y y y
y ySet 0 1 ky      

Let Z be the proper function which will be determined 
next for 2 :j m , 1jZ    

0

1 0

2 1

1

0 1 2

k k

j
k

y Z

y f Z A

y A

y A

y y y y




  





    
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Remarks: 
 m  can be considered as an approximation of (1). 
 The Adomian method usually gives sum of the some 

first terms as an approximation of y, in this algorithm 
we can update 0y  in each step, but we don’t calcu-
late the terms with large index, so m and k are con-
sidered small.  

3.4. Two-Step Adomian Method (M5): [8,9] 

The Two-step Adomian decomposition method (TSADM) 
is derived by separate the standard ADM into two steps. 
The main ideas of two-step Adomian decomposition 
method for the differential Equation (1), are:  

Applying the inverse operator  to f, and using the 
given conditions, we obtain  

1L

1L f     

where the function   represents the terms arising from 
using the given conditions, all are assumed to be pre-
scribed. 

To achieve the objectives of this study, we set   

0 1 m       

Based on this, we define  

0 k ky     s

k

.

 

where . 0,1, , , 0,1, ,k m s m  
Then, we verify that 0  satisfies the original equation 

and the given conditions by substitution, once the exact 
solution is obtained we finish. Otherwise, we go to the 
following step two.  

y

We set 0  and continue with the standard Ado- 
mian recursive relation  

y  

   1 1
1 , 0n n ny L Ry L A n 
      

Compared to the standard Adomian method and the 
modified method, we can see that the two-step Adomian 
method may provide the solution by using one iteration 
only. Further, the (TSADM) avoids the difficulties aris-
ing in the modified method. Furthermore, the number of 
the terms in  namely m, is small in many practical 
problems. 



4. Numerical Examples 

In this section, some initial value problems are consid-
ered to show the efficiency of each modified.  

Example 1 

 cos sin sin ,  0 0y y x x x x x y       

MS (Standard Adomian Method): 
Applying  to both sides yields 1L

   1sin cos siny x x x x x x L y x     

The recursive relationship 

0

1
1

sin cos sin

, 0n n

y x x x x x

y L y n


  

 
 

So  

 1
1 0 cos sin sin 2 cos 1y L y x x x x x x        

Other components can be evaluated in a similar man-
ner. It is easily observed that the noise terms  cosx x  
and  sin x  appear in 0  and 1  with opposite signs. 
Canceling these noise terms from 0  gives the exact 
solution 

y y
y

  siny x x x  that can be justified through 
substitution. It is worth noting that other noise terms that 
appear in other components vanish in the limit.  

M1: Let 

,n n
n ny c x f f x    

Then 

0

1 1

0

, 1n n
n

c

f c
c n

n
 




 
 

So that  

 
4 6 3 5

2 sin
3! 5! 3! 5!

x x x x
y x x x x x

 
         

 
  x  

M2: 

0

1
1 0

1
1

sin

cos sin 0

0, 0n n

y x x

y x x x L y

y L y n








   

  


 

Then the exact solution is   siny x x x  
M3: The Taylor expansion for  
  sin cos sinf x x x x x   x  is given by  

 
3 4 5 6

2 4
2

3! 3! 5! 5!

x x x x
f x x       

Then the recursive relationship 

2
0

3
1

1 0

4 4
1

2 1

3

6

4

2
0

3!

3! 3!
0

5!

y x

x
y L y

x x
y L y

y

x
y








  

 
  







 

The solution in a series form is given by  
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 
4 6 3 5

2 sin
3! 5! 3! 5!

x x x x
y x x x x x

 
         

 
  x



 

M4: Let  

0

1
1 0

sin

cos sin 0

y x x

y x x x L A



  
 

Then  
1 sinx x   

Then the exact solution is siny x x . 
M5: Let 

0 1 2

0 1 2sin , cos , sinx x x x

  
  
   

    x
 

Clearly 0 1,   and 2  satisfy , by selecting 

0 0

 0 0y 
y   and by verifying that  justified the differen-

tial equation. 
0y

Then, the exact solution is obtained immediately 
siny x x . 

Example 2 
Consider nonlinear initial value problem  

 cos tan ,  0 0yy e x x y      

With the exact solution ln cosy x . 
Ms: 

 1 1

1

cos tan

sin ln cos

y

y

y L x x L e

x x L e

 



  

  
 

nA s  is Adomian polynomials of nonlinear term ye  

0

0

0

1

0

1 1

2
2 1

1

2!

y

y

y

A e

A y e

A y y e





   
 



 

with standard ADM, we obtained the recursive relation-
ship  

 
  

0

0

0

1 1 sin
1 0

1 1 2sin sin
2 1 1

sin ln cos

1

1
1 1

2

y x

y x x

y x x

y L A L e e

y L A L y e e e

 

 

 

      

       





n
n

 

It is easy to see that the standard Adomian decomposition 
method converges to the exact solution very slowly, com- 
parison of absolute errors between the exact solution and 
approximate solutions Ms introduce in Table 1 and Fig-
ure 1. 

M1: Let 

0 0 0

, ,n n y
n n

n n n

y c x f f x e A x
  

  

      

Then 

1 1

0 0 0

1
0 1

1 1 1

n n n
n n n

n n n

n n
n

n n n
n n n

c x L f x L A x

1

x x
c c x f L A

n n

  
 

  

  


 
  

 

  

  

  
 

So  

0

1 1

0

, 0n n
n

c

f A
c n

n
 




 

 

From this relation we get  
3 5 7

1
1

2 4 6

2 3 4 5 6

3! 5! 7!

2 16
2 4! 6!

2 16
2 3! 4! 5! 6! 7!

n

n
n

x x x x
f f x

n

x x x

7x x x x x x
x






 
     

 
 

     
 

      

 

  

This yield  

0 2 2 3

1 1
1, 1, , ,

2 3
f f f f

 
       

So the ic s  coefficients 

0

0 0
1

1 1
2

3

4

0

1 1 0
1

1

2 2
0

2

4

c

f A
c

f A
c

c

c




   


  








 

The series solution  obtained as  
0

n
n

n

y c x




 
2 4

2 ln cos
2 4!

x x
y x     

M2: 0 1ln cos sin , ln cos , sing x x g x g x     

0

1 1 ln co
1 0

ln cos

sin sin 0

0, 2

x

n

y x

y x L A x L e

y n

 


s    

  

 

Then ln cosy x . 
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Table 1. Comparison of absolute errors between the exact solution and approximate solutions Ms and M3. 

t  Me  Ms  M3

 

sE

 

3E

 0.0 0.0 3.10862 × 10−15 0.0 3.10862 × 10−15 1.54811 × 10−11 

0.1 −0.00500836 −0.00500836 −0.00500836 1.48548 × 10−11 1.9028 × 10−9 

0.2 −0.0201348 −0.0201348 −0.0201348 2.19203 × 10−8 7.46429 × 10−7 

0.3 −0.0456917 −0.0456934 −0.0456917 1.75982 × 10−6 2.90542 × 10−5 

0.4 −0.082229 −0.0822708 −0.082229 4.18148 × 10−5 4.39705 × 10−4 

0.5 −0.130584 −0.131082 −0.130584 4.98158 × 10−4 3.96416 × 10−3 
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0.06
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exacty　Ms　t　
 

1
0 1 ln cosy y x     

Then the exact solution is ln cosy x . 
M5: Let 

1 2

1 2

sin ln cos

ln cos , sin

x x

x x

 
 
    
 

 

Clearly 1  satisfy  0 0y   and by verifying that 1  
justified the differential equation. 

Figure 1. Comparison between the exact solution and ap-
proximate solutions Ms. Hence, 1 ln cos x   is the exact solution. 
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