Nonstationary Wavelets Related to the Walsh Functions

Yuri A. Farkov, Evgeny A. Rodionov
Department of Mathematics, Russian State Geological Prospecting University, Moscow, Russia
Email: farkov@list.ru

Received March 29, 2012; revised April 25, 2012; accepted May 2, 2012

ABSTRACT

Using the Walsh-Fourier transform, we give a construction of compactly supported nonstationary dyadic wavelets on the positive half-line. The masks of these wavelets are the Walsh polynomials defined by finite sets of parameters. Application to compression of fractal functions are also discussed.

Keywords: Walsh Functions; Nonstationary Dyadic Wavelets; Fractal Functions; Adapted Multiresolution Analysis

1. Introduction

As usual, let $\mathbb{R}_+ = [0, +\infty)$ be the positive half-line, $\mathbb{N} = \{0, 1, 2, \cdots\}$ be the set of all nonnegative integers, and let $\mathbb{Z} = \{1, 2, \cdots\}$ be the set of all positive integers. The first examples of orthogonal wavelets on \mathbb{R}_+ related to the Walsh functions and the corresponding wavelets on the Cantor dyadic group have been constructed in [1]; then, in [2] and [3], a multifractal structure of this wavelets is observed and conditions for wavelets to generate an unconditional basis in L^p-spaces are studied. In the present paper, using the Walsh-Fourier transform, we construct orthogonal and biorthogonal wavelets on \mathbb{R}_+.

The masks of these wavelets are the Walsh polynomials defined by finite sets of parameters. Application to compression of fractal functions are also discussed.

The Walsh-Fourier transform of every function f that belongs to $L^p(\mathbb{R}_+) \cap L^q(\mathbb{R}_+)$ is defined by

$$\hat{f}(\omega) = \int_{\mathbb{R}_+} f(x) \chi(x, \omega) dx,$$

and extent to the whole space $L^2(\mathbb{R}_+)$ in a standard way. The intervals

$$\Delta_k = \left[k2^{-n}, (k+1)2^{-n}\right), \ k \in \mathbb{N}_+,$$

are called the dyadic intervals of range n. The dyadic topology on \mathbb{R}_+ is generated by the collection of dyadic intervals. A subset E of \mathbb{R}_+ which is compact in the dyadic topology will be called W-compact.

For any $j \in \mathbb{N}_+$ we define φ_j and ψ_j by the following algorithm:

Step 1. For each $j \in \mathbb{N}_+$ choose $n_j \in \mathbb{N}_+$ and $b_k(j) \in \mathbb{N}_+$, $k = 0, 1, \cdots, 2^{n_j} - 1$, such that

$$b_{k}(j)^2 = 1, |b_{k}(j)|^2 + |b_{k}(j')|^2 = 1$$

for all $k = 0, 1, \cdots, 2^{n_j} - 1$.

Step 2. Define the masks

$$m_{0}^{(j)}(\omega) = \frac{1}{2^{-\sum_{k=0}^{n_j}}} \sum_{k=0}^{2^{-n_j}-1} c_{k}^{(j)} w_{k}(\omega)$$

with the coefficients

$$c_{k}^{(j)} = \frac{1}{2^{n_j}} \sum_{k=0}^{2^{-n_j}-1} b_{k}(j) w_{k}(2^{-n_j} k), \ k = 0, 1, \cdots, 2^{n_j} - 1,$$

so that $m_{0}^{(j)}(\omega) = b_{k}(j)$ for all $\omega \in \Delta_k^{(j)}$ (cf. [15, Sect. 9.7]).

Step 3. For each $j \in \mathbb{N}_+$ put

$$\tilde{\phi}_{j}(\omega) = 2^{-j/2} \prod_{k=1}^{\infty} m_{0}^{(j)}(2^{-j} \omega),$$
so that
\[\varphi_j(x) = \frac{1}{\sqrt{2}} \sum_{k=0}^{2^j-1} c_{j+1}^{(k)} \varphi_{j+1}(x \oplus 2^{-j-1}k). \] (4)

Step 4. Define \(\psi_j \) by the formula
\[\psi_j(x) = \frac{1}{\sqrt{2}} \sum_{k=0}^{2^j-1} (-1)^{k} \psi_{j+1}(x \oplus \frac{k}{2^{j+1}}). \] (5)

Further, let us define subspaces \(V_j \) and \(W_j \) in \(L^2(\mathbb{R}_+) \) as follows
\[V_j = \text{span}\{ \varphi_{j,k} : k \in \mathbb{Z}_+ \}, \]
\[W_j = \text{span}\{ \psi_{j,k} : k \in \mathbb{Z}_+ \} \]
for all \(j \in \mathbb{Z}_+ \).

We say that a polynomial \(n \) satisfies the modified Cohen condition if there exists a \(W \)-compact subset \(E \) of \(\mathbb{R}_+ \) such that
\[\int E \geq 0, \mu(E) = 1, E = [0,1)(\text{mod}\, \mathbb{Z}_+) \]
and
\[\inf \inf_{n \in \mathbb{Z}_+} \mu(2^{-j}/2) > 0. \] (6)

Theorem. Suppose that the masks \(m_n^{(0)} \) satisfy the modified Cohen condition with a subset \(E \) and there exists \(j_0 \in \mathbb{Z}_+ \) such that
\[m_n^{(0)}(\omega) = 1 \text{ for all } \omega \in [0,2^{-h}], \, n \in \mathbb{Z}_+. \] (7)

Then for any \(j \in \mathbb{Z}_+ \), the following properties hold:

a) \(\varphi_j, \psi_j \in L^2(\mathbb{R}_+) \) and \(\varphi_j \subseteq (0,1) \);

b) \(\{ \varphi_{j,k} : k \in \mathbb{Z}_+ \} \) and \(\{ \psi_{j,k} : k \in \mathbb{Z}_+ \} \) are orthonormal bases in \(V_j \) and \(W_j \), respectively;

c) \(V_j \subseteq V_{j+1}, \quad V_j \oplus W_j = V_{j+1} \).

Moreover, we have
\[\bigcup_{j=0}^\infty V_j = L^2(\mathbb{R}_+). \]

Corollary. The system
\[\{ \varphi_0(\cdot \oplus k) : k \in \mathbb{Z}_+ \} \cup \{ \varphi_{j,k} : j, k \in \mathbb{Z}_+ \} \]
is an orthonormal basis in \(L^2(\mathbb{R}_+) \).

We prove this theorem in the next section. Then using the notion of an adapted multiresolution analysis suggested by Sendoz [12], we discuss an application of the nonstationary dyadic wavelets to compression of the Weierstrass function and the Schwartz function.

2. Proof of the Theorem

At first we prove the orthonormality of \(\{ \varphi_{j,k} \}_{k \in \mathbb{Z}_+} \). In view of
\[\langle \varphi_{j,0}, \varphi_{j,n} \rangle = \langle \hat{\varphi}_{j,0}, \hat{\varphi}_{j,n} \rangle = \int_0^\infty \hat{\varphi}_{j,0}(\omega) \hat{\varphi}_{j,n}(\omega) w_n(2^{-j}\omega) d\omega, \]
we let show that
\[\int_0^\infty \hat{\varphi}_{j,0}(\omega) \hat{\varphi}_{j,n}(\omega) w_n(2^{-j}\omega) d\omega = \delta_{n,0}, \, n \in \mathbb{Z}_+. \]

Denote by \(1_E \) the characteristic function of \(E \). For each \(j \) we define
\[\hat{\varphi}_{j}^{(1)}(\omega) = 2^{-j/2} \sum_{n=1}^E m_n^{(j)}(2^{-j}\omega)1_E(2^{-j}\omega) \]
for \(s = j+1, j+2, \cdots \). Since \(0 \in \text{int} E \) and, for all \(j \in \mathbb{Z}_+ \), \(m_n^{(j)}(\omega) = 1 \) in some neighbourhood of zero, we obtain from Equation (3)
\[\lim_{k \to \infty} \hat{\varphi}_{j}^{(1)}(\omega) = \hat{\varphi}_{j}(\omega) \quad \text{for all } \omega \in \mathbb{Z}_+. \] (8)

Let
\[I_{j}^{(1)}[n] = \int_0^\infty \hat{\varphi}_{j}(\omega) \hat{\varphi}_{j}(\omega) w_n(2^{-j}\omega) d\omega, \]
where \(k > j, \quad n \in \mathbb{Z}_+ \). Letting \(\zeta = 2^{-j}\omega \), we have
\[I_{j}^{(1)}[k] = 2^{-j/2} \int_0^\infty \sum_{n=1}^E m_n^{(j)}(2^{-j}\zeta) w_n(2^{-j}\zeta) d\zeta \]
\[= 2^{-j/2} \int_0^\infty \sum_{n=1}^E m_n^{(j)}(\zeta) w_n(2^{-j}\zeta) d\zeta \]
\[= 2^{-j/2} \left[\sum_{n=1}^E \sum_{n=1}^E m_n^{(j)}(\zeta) \right] + m_0^{(j)}(\zeta + 1/2) \]
\[\times \sum_{n=1}^E m_n^{(j)}(2^{-j}\zeta) w_n(2^{-j}\zeta) d\zeta, \]
that yields \(I_{j}^{(1)}[k] = I_{j}^{(1)}[k] \). By induction, we obtain
\[I_{j}^{(1)}[k] = I_{j}^{(1)}[k] = \cdots = I_{j}^{(1)}[k] = \delta_{k,0}. \]

According to Equation (8), by Fatou’s lemma, we have
\[\int_0^\infty \hat{\varphi}_{j}(\omega) \hat{\varphi}_{j}(\omega) d\omega \leq \lim_{j \to \infty} \int_0^\infty \hat{\varphi}_{j}^{(1)}(\omega) \hat{\varphi}_{j}^{(1)}(\omega) d\omega = \lim_{j \to \infty} I_{j}^{(1)}[0] = 1. \] (9)

Consequently, \(\varphi_j \in L^2(\mathbb{R}_+) \) and, in view of Equation (5), \(\psi_j \in L^2(\mathbb{R}_+) \). It is known that if \(f \in L^2(\mathbb{R}_+) \) is constant on dyadic intervals of range \(n \), then \(\text{supp} f \subseteq [0,2^n] \) (see [16, Sect. 6.2]). Therefore, each function \(\varphi_j \) is constant on \([k,k+1), \, k \in \mathbb{Z}_+ \), which implies \(\text{supp} \varphi_j \subseteq [0,1] \).

In view of Equation (7), there exists \(j_0 \in \mathbb{Z}_+ \) such that
\[m_n^{(j)}(2^{-j}\omega) = 1 \text{ for all } j > j_0, \, \omega \in \mathbb{R}_+ \]

Hence, for \(\omega \in E \),
\[\hat{\varphi}_{j}(\omega) = 2^{-j/2} \sum_{n=1}^E m_n^{(j)}(2^{-j}\omega). \]

It follows from Equation (6) that for some \(c_i > 0 \).
\[|m_{ij}(\omega')| \geq c_{i} \quad \text{for} \quad j \in \mathbb{N}, \quad \omega \in E. \]

Since \[c_{i}^{j-h} |\hat{\phi}_{j}(\omega)| \geq 2^{-j/2} \mathbf{1}_{E}(\omega), \quad \omega \in \mathbb{N}_{+}. \]

We have
\[|\hat{\phi}_{j}^{(i)}(\omega)| \leq c_{i}^{j-h} |\hat{\phi}_{j}(\omega)|, \quad \omega \in \mathbb{N}_{+}. \]

or, taking into account Equation (3),
\[|\hat{\phi}_{j}^{(i)}(\omega)| \leq c_{i}^{j-h} |\hat{\phi}_{j}(\omega)|, \quad \omega \in \mathbb{N}_{+}. \]

for \(s > j, \quad j \in \mathbb{N}_{+}. \)

Applying the dominated convergence theorem we obtain
\[
\left| \int_{\omega} \hat{\phi}_{j}(\omega) \int_{j}^{s} |\hat{\phi}_{j}^{(i)}(\omega)| w_{i} \left(2^{-j} \omega \right) d\omega \right|
= \lim_{x \to 0} \int_{x}^{\omega} \hat{\phi}_{j}^{(i)}(\omega) \int_{j}^{s} w_{i} \left(2^{-j} \omega \right) d\omega
= \delta_{0,k},
\]

which means that \(\{ \phi_{j,k} \}_{k \in \mathbb{N}_{+}} \) is an orthonormal system.

Now, let us prove an orthonormality of \(\{ \psi_{j,k} \}_{k \in \mathbb{N}_{+}} \).

For any \(k \in \mathbb{N}_{+} \) denote \(d_{ij}^{(j)} = (-1)^{i-k} c_{i}^{j} \). Then
\[
j_{,k}(x) = \frac{1}{\sqrt{2}} \sum_{k \in \mathbb{N}_{+}} d_{ij}^{(j)} \phi_{j+1,k}(x). \tag{10}\]

Since
\[
\psi \sum_{k \in \mathbb{N}_{+}} d_{ij}^{(j)} \mathbf{1}_{2^{i}\mathbb{N}_{+}} = 2\delta_{0,k},
\]

We have
\[
\{ \psi_{j,k}, \psi_{j,k}^{*} \} = \frac{1}{2} \sum_{k \in \mathbb{N}_{+}} d_{ij}^{(j)} d_{ij}^{(j)} \{ \phi_{j+1,k}, \phi_{j+1,k}^{*} \}
= \delta_{k,k}.
\]

Then from Equation (10)
\[
V_{j} \subset V_{j+1}, \quad W_{j} \subset V_{j+1}. \tag{11}\]

Let us define
\[
m_{ij}^{(j)}(\omega) = \frac{1}{2} \sum_{k \in \mathbb{N}_{+}} d_{ij}^{(j)} w_{k}(\omega).
\]

Denote \(\omega' = 2^{-j} \omega \). Under the unitarity of the matrices
\[
\begin{bmatrix}
m_{ij}^{(j)}(\omega') & m_{ij}^{(j)}(\omega' + 1/2) \\
m_{ij}^{(j)}(\omega') & m_{ij}^{(j)}(\omega' + 1/2)
\end{bmatrix},
\]

We can write
\[
\hat{\phi}_{j+1}(\omega) = \hat{\phi}_{j+1}(\omega) \\
= \sqrt{2} \sum_{k \in \mathbb{N}_{+}} d_{ij}^{(j)} \phi_{j+1,k}(\omega) \\
+ \sqrt{2} \sum_{k \in \mathbb{N}_{+}} d_{ij}^{(j)} \phi_{j+1,k}(\omega).
\]

Using the inverse Fourier-Walsh transform, we have
\[
\phi_{j+1}(x) = \sqrt{2} \sum_{k \in \mathbb{N}_{+}} \sqrt{2} \sum_{j \in \mathbb{N}_{+}} d_{ij}^{(j)} \phi_{j+1,k}(x) + d_{j}^{(j)} \phi_{j+1,k}(x)
\]
or,
\[
\phi_{j+1}(x) = \sqrt{2} \sum_{k \in \mathbb{N}_{+}} \sqrt{2} \sum_{j \in \mathbb{N}_{+}} d_{ij}^{(j)} \phi_{j+1,k}(x) + d_{j}^{(j)} \phi_{j+1,k}(x)
\]

With Equation (11) it yields \(V_{j} \subset V_{j+1} \). To conclude the proof it remains to show that
\[
\bigcup_{j=0}^{\infty} V_{j} = L_{2}(\mathbb{N}_{+}). \tag{12}\]

Note, that by Equation (7) for any \(\omega \in \mathbb{N}_{+} \) there exist \(J \in \mathbb{N}_{+} \) such that \(\hat{\phi}_{j}(\omega) = 2^{-j/2} \) and, consequently,
\[
\bigcup_{j=0}^{\infty} \text{supp} \hat{\phi}_{j} = \mathbb{N}_{+}. \tag{13}\]

For any \(x \in \mathbb{N}_{+} \) the subspace \(\bigcup_{j=0}^{\infty} V_{j} \) is invariant with respect to the shift \(f(\cdot) \mapsto f(\cdot + x) \). Actually, an arbitrary \(x \in \mathbb{N}_{+} \) can be approximated by fractions \(2^{-j} \), with arbitrary large \(j \). Besides, each \(V_{j} \) is invariant with respect to the shifts \(2^{-i} \). By Equation (4) it is clear that \(V_{j} \subset V_{j+1} \).

Let \(f \in \bigcup_{j=0}^{\infty} V_{j} \). There exist \(j_{i} \) such that \(f \in V_{h} \) and hence \(f(\cdot + 2^{-j}) \in V_{j} \) for all \(j \geq j_{i} \). The continuity of \(\| f(\cdot + x) \| \) implies that \(f(\cdot + x) \in \bigcup_{j=0}^{\infty} V_{j} \). If \(g \in \bigcup_{j=0}^{\infty} V_{j} \), then approximating \(g \) with \(f \) from \(\bigcup_{j=0}^{\infty} V_{j} \) and using the invariance of a norm with respect to the shift, we obtain \(g(\cdot + x) \in \bigcup_{j=0}^{\infty} V_{j} \).
Denote by $\left(\bigcup_{j=0}^{\infty} V_j \right)^{\perp}$ the set of all \hat{f} such that $f \in \bigcup_{j=0}^{\infty} V_j$. By the Weiner’s theorem we can write
\[
\left(\bigcup_{j=0}^{\infty} V_j \right)^{\perp} = L_2(\Omega) , \quad \text{for some measurable } \Omega \subset \mathbb{R}^+ . \]
It is clearly that $\bigcup_{j=0}^{\infty} \text{supp } \phi_j \subset \Omega$ and, in view of Equation (13), we have $\Omega = \mathbb{R}^+$. Hence, the Equation (12) holds. The theorem is proved.

3. Numerical Experiments

For any $N \in \mathbb{R}$, let $\Delta_j(N) := \left[0,(2N-1)2^{-j}\right]$, \quad $j \in \mathbb{R}$.

According to [12] an adapted multiresolution analysis (AMRA) of rank N in $L_2(\mathbb{R})$ is a collection of closed subspaces $V_j \subset L_2(\mathbb{R})$, \quad $j \in \mathbb{R}$, which satisfies the following conditions:
1. $V_j \subset V_{j+1}$ for all \quad $j \in \mathbb{R}$;
2. $\bigcup_{j=0}^{\infty} V_j = L_2(\mathbb{R})$;
3. For every \quad $j \in \mathbb{R}$ there is a function ϕ_j in $L_2(\mathbb{R})$ with a finite support \quad $\Delta_j(N)$ such that $\{\phi_j(\cdot - k2^{-j}):k \in \mathbb{N}\}$ is an orthonormal basis of V_j;
4. For every \quad $j \in \mathbb{R}$ there exists a filter $c(j) = \{c_k(j)\}_{k=0}^{2N-1}$ such that
\[
\phi_{j-1}(x) = \sum_{k=0}^{2N-1} c_k(j) \phi_j(x - k2^{-j}) , \quad j \in \mathbb{R} . \tag{14}\]

The sequence $\{\phi_j\}$ from condition (4) is called a scaling sequence for given an AMRA. The corresponding wavelet sequence $\{\psi_j\}$ can be defined by
\[
\psi_{j-1}(x) = \sum_{k=0}^{2N-1} (-1)^k c_{2N-k-1}(j) \phi_j(x - k2^{-j}) . \tag{15}\]

Denote by W_j the orthogonal complement of V_j in V_{j+1}. It is known that, under some conditions, the system $\{\psi_j(\cdot - k2^{-j}):k \in \mathbb{N}\}$ is an orthonormal basis of W_j (for more details, see, e.g., [14, Sect. 8.1]). Moreover, if $f \in L_2(\mathbb{R})$ is a function in the subset $A \subset L_2(\mathbb{R})$, then f can be written as $f = f_{R} + f_{W}$, where f_{R} is the restriction of f in A, and f_{W} is the orthogonal projection of f in W_j. The expression for the size of W_j is given by
\[
\|f\|^2 = \|f_{R}\|^2 + \sum_{j=0}^{\infty} \|f_{W_j}\|^2 ,
\]

and
\[
\|f_{W_j}\|^2 = \|f_{j-1}\|^2 + \|f_{W_{j-1}}\|^2 . \tag{16}\]

Let us denote
\[
h_k(j) = c_k(j)/\sqrt{2}
\]
and
\[
g_k(j) = (-1)^k h_k(j) .
\]

For a given array
\[
A(j) = \{a,j,0,a,j,1,\ldots,a,j,2^j-1\},
\]
the direct non-stationary discrete wavelet transform
\[
a_{j-1,k} = \sum_{l \in \mathbb{Z}} h_{l-2^j}(j)a_{j,l} , \quad d_{j-1,k} = \sum_{l \in \mathbb{Z}} g_{l-2^j}(j)a_{j,l} ,
\]
maps it into
\[
A(j-1) = \{a,j-1,0,a,j-1,1,\ldots,a,j-1,2^{j-1}-1\}
\]
and
\[
D(j-1) = \{a,j-1,0,a,j-1,1,\ldots,a,j-1,2^{j-1}-1\} .
\]

The inverse transform is defined as follows
\[
a_{j,l} = \sum_{k \in \mathbb{Z}} h_{l-2^j}(j)a_{j-1,k} + g_{l-2^j}(j)d_{j-1,k}
\]
and reconstructs $A(j)$ by $A(j-1)$ and $D(j-1)$. According to [12] in order to choose the filter $c(j)$ to maximize $\|f_{j-1}\|^2$ in Equation (16), we must solve the following problem.

Problem 1. Let $U_N^{(i)}$ be the subset of the $2N$-dimensional Euclidean space \mathbb{R}^{2N}, which consists of the points $u = (u_0,u_1,\ldots,u_{2N-1})$ satisfying the conditions
\[
\sum_{k=0}^{2N-1} u_k^2 = 1 , \quad \sum_{k=0}^{2N-1} u_k^2 = 0 . \tag{17}\]
for $i = 0,1,\ldots,N-1$. Find a point u^* for which
\[
\sum_{m,k=0}^{2N-1} u_m^* u_k^* F_{m,k} = \sup_{u \in U_N^{(i)}} \left\{ \sum_{m,k=0}^{2N-1} u_m u_k F_{m,k} \right\} , \tag{18}\]
where $F_{m,k}$ is a $2N \times 2N$ symmetric matrix.

Problem 1 has a solution since U_N is a compact. But, as noted in [12], the numerical solution of this problem is not trivial even for $N = 2$.

Concerning the standard Haar and Daubechies (with 4 coefficients) discrete transforms see, e.g., [17]; we will denote them as SWTH and SWTD, respectively. We write NSWH for the simplest case of a multiresolution analysis of rank 1 which is considered in [12, Sect. 3] (see also [13]). The nonstationary Daubechies discrete wavelet transform which corresponds an AMRA of rank N are defined in [12] and we will use the symbol NSWTHD2 to denote this transform (see NSWTD1 and NSWTD2 in the tables below).

Method A associated with one of the mentioned above discrete wavelet transforms (cf. [17, Chap. 7]) consists of the following steps:
Step 1. Apply the discrete wavelet transform \(j \) times to an input array \(A(j) \) and get the sequence
\[
A(0), D(0), D(1), \ldots, D(j-1).
\]

Step 2. Allocate a certain percentage of the wavelet coefficients with largest absolute value (we choose 10%) and nullify the remaining coefficients.

Step 3. Apply the inverse wavelet transform to the modified arrays of the wavelet coefficients.

Step 4. Calculate \(\|A(j) - A(j)\| \), where \(A(j) \) is a reconstructed array.

In Method B the second step is replaced on the uniform quantization and the forth step is replaced on the calculation of the entropy of a vector, obtained in the third step.

We recall that \(y = \{y_1, \ldots, y_n\} \) is a vector uniform quantization for given vector \(x = \{x_1, \ldots, x_n\} \), if
\[
y_j = \begin{cases}
0, & |x_j| < \Delta, \\
\Delta \left(\frac{x_j}{\Delta} + \text{sign}(x_j) \frac{\Delta}{2} \right) |x_j| \geq \Delta,
\end{cases}
\]
where \(\Delta \) is the length of the quantization interval.

The value \(\Delta \) will be calculated by
\[
\Delta = \left(\max_{1 \leq j \leq n} x_j - \min_{1 \leq j \leq n} x_j \right) / 50.
\]

The Shannon entropy of \(x \) is defined by the formula
\[
H(x) = -\sum_{j=1}^{n} p_j \log_2(p_j),
\]
where \(p_j \) is frequency of the value \(x_j \).

Let us consider a similar approach associated with the following problem:

Problem 2. Let \(N = 2^{n+1} \). Denote by \(U(N) \) the set of all points \(u = (u_0, u_1, \ldots, u_{2^{n+1}-1}) \in \mathbb{R}^{2N} \) such that
\[
(u_i)^2 + (u_{i+N})^2 = 1, i = 1, 2, \ldots, N - 1.
\]

For every \(u \in U(N) \), we define
\[
c_k(u) = \frac{1}{N} \sum_{j=0}^{2N-1} u_j w_j(k/(2N))
\]
for \(k = 0, 1, \ldots, 2N-1 \). Find a point \(u^* \) for which
\[
\sum_{m,k=0}^{2N-1} c_m(u^*) c_k(u^*) F_{m,k} = \sup_{u \in U(N)} \left\{ \sum_{m,k=0}^{2N-1} c_m(u) c_k(u) F_{m,k} \right\}.
\]
Table 1. Values of the square error corresponding to Method A.

<table>
<thead>
<tr>
<th></th>
<th>SWTH</th>
<th>NSWTH</th>
<th>NSWTL1</th>
<th>SWTD</th>
<th>NSWTD1</th>
<th>NSWTD2</th>
<th>NSWTL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>0.166547</td>
<td>0.123983</td>
<td>0.123980</td>
<td>0.248311</td>
<td>0.167071</td>
<td>0.128120</td>
<td>0.122886</td>
</tr>
<tr>
<td>(W_{n+5})</td>
<td>16.813738</td>
<td>15.932313</td>
<td>15.932307</td>
<td>15.378600</td>
<td>15.171461</td>
<td>14.782221</td>
<td>15.130797</td>
</tr>
<tr>
<td>(W_{n+7})</td>
<td>15.887306</td>
<td>13.631379</td>
<td>13.631383</td>
<td>15.595433</td>
<td>16.649683</td>
<td>12.724437</td>
<td>12.674001</td>
</tr>
</tbody>
</table>

Table 2. Values of the entropy obtained by Method B.

<table>
<thead>
<tr>
<th></th>
<th>SWTH</th>
<th>NSWTH</th>
<th>NSWTL1</th>
<th>SWTD</th>
<th>NSWTD1</th>
<th>NSWTD2</th>
<th>NSWTL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>0.320865</td>
<td>0.327626</td>
<td>0.310639</td>
<td>0.863949</td>
<td>0.299818</td>
<td>0.304861</td>
<td>0.241210</td>
</tr>
<tr>
<td>(W_{n+3})</td>
<td>4.486757</td>
<td>3.810555</td>
<td>3.772764</td>
<td>4.152313</td>
<td>3.822598</td>
<td>3.525294</td>
<td>3.466450</td>
</tr>
<tr>
<td>(W_{n+5})</td>
<td>4.688737</td>
<td>3.874187</td>
<td>3.848227</td>
<td>4.224801</td>
<td>4.106692</td>
<td>3.766994</td>
<td>3.707672</td>
</tr>
<tr>
<td>(W_{n+7})</td>
<td>4.392570</td>
<td>3.371864</td>
<td>3.344916</td>
<td>4.001358</td>
<td>4.435942</td>
<td>3.232151</td>
<td>3.197167</td>
</tr>
</tbody>
</table>
Y. A. FARKOV, E. A. RODIONOV 87

denote these discrete transforms as NSWTL1 if \(N = 1 \)
and as NSWTL2 if \(N = 2 \).

Let us recall that the Weierstrass function is defined as
\[
W_{\alpha, \beta}(x) = \sum_{n=1}^{\infty} a^n \cos(\beta^n \pi x), \quad 0 < \alpha < 1, \beta \geq \frac{1}{\alpha},
\]
and the Swartz function is defined as
\[
S(x) = \sum_{n=-\infty}^{\infty} \frac{h(2^n x)}{4^n},
\]
where \(h(x) = [x] - \sqrt{x} [x] \). We will consider arrays \(A(8) \) with elements \(a_{nk} = W_{1/2}(k/128) \) or \(a_{nk} = S(k/256), \quad k = 0, \ldots, 255 \). Then we use the Matlab function fminsearch to solve the optimization problems in Equations (18) and (19). The results of these numerical experiments are presented in Tables 1 and 2. We see that in several cases the introduced nonstationary dyadic wavelets have an advantage over the classical Haar and Daubechies wavelets.

REFERENCES

