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In this research, we present the most important characteristics of the so called and so much explored Jes-
uit Edition of Newton’s Philosophiæ Naturalis Principia Mathematica edited by Thomas Le Seur and 
François Jacquier in the 1739-1742. The edition, densely annotated by the commentators (the notes and 
the comments are longer than Newton’s text itself) is a very treasure concerning Newton’s ideas and his 
heritage, e.g., Newton’s geometry and mathematical physics. Conspicuous pieces of information as to 
history of physics, history of mathematics and epistemology can be drawn from it. This paper opens a se-
ries of study concerning Jesuit Edition, whose final scope is to put in evidence all the conceptual aspects 
of such edition and its role inside the spread of scientific ideas and inside the complex relation science, 
popularization & society. 
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An Outline 
With regard to Newton literature, a premise is necessary: a 

systematic and very good work exists on this subject, Wallis 
and Wallis (Wallis & Wallis, 1977). This text is an indispensa- 
ble and complete reference point up to 1975. Therefore, in our 
bibliographical indications, we will refer only to those publica- 
tions concerning Newton and published before 1975 we con- 
sider particularly important. Instead, we will try to be more 
specific as to works published after 1975. Here we mention the 
most important editions of the Principia: first edition 1687 
(Newton, 1687). The second edition was published in 1713 
(Newton, 1713). It contained the general Scholium and a more 
complete theory of the moon, of the equinoxes and of the com- 
ets. The second edition was reprinted one year later in Amster- 
dam (Newton, 1714) and the text was corrected according to 
the Corrigenda. In 1723 the second edition was reprinted in 
Amsterdam including some mathematical papers, among them 
the Enumeratio linearum tertii ordinis. Newton (1726), third 
edition: new explanations in the second book as to the resis- 
tance in the fluids. In the third book, clearer explanations on the 
fact that gravity is responsible for the lunar orbit. New observa- 
tions on Jupiter and on the comets. In 1729, Motte translated 
into English the second edition. See Newton (1713-1729). In 
1739 the first volume of the so called Jesuit Edition was printed 
([1726] [1739-1742], 1822; 1760). There are the historical 
editions of the Principia. There are several modern editions. 
Among them the most important is maybe the reprint of the 
third edition (Newton, 1972) edited by Bernard Cohen (1914- 

2003) and Alexandre Koyré (1892-1964; see also Koyré, 
1965). 

Science and Society: Newton’s Principia in the 
17th-18th Century  

The events and popularization connected to Newton’s sci- 
ence in his Philosophiæ Naturalis Principia Mathematica (he- 
reafter Principia), to the publication of the book, and to the 
reactions of the scholars (not only physicists and mathemati- 
cians, but also philosophers and men of letters) are linked to a 
complex series of facts which show the deep interconnections 
between Newton’s life and personality, cultural-scientific and 
social context of the late 17th century and development of phy- 
sics—in particular—and European society—in general—in the 
18th century: Mainly: 

1) As to Newton biography, it is possible to identify a period 
of about 18 months (between 1665 and 1667) that was decisive 
for almost all his most important discoveries. In the summer of 
1665 the Trinity College, where Newton had become bachelor 
in April 1665, was closed because of a plague. Newton came 
back to his native manor of Woolsthorpe, where, for 18 months, 
he dedicated almost exclusively to develop his scientific ideas. 
The method of fluxions, the optical experiments and discover- 
ies, the basis of the theory of gravitation were discovered in 
those months. Furthermore Newton had the chance to rethink of 
the results obtained by Johannes Kepler (1571-1630), Galileo 
Galilei (1564-1642), René Descartes (1596-1650), Thomas 
Hobbes (1588-1679), Pierre Gassendi (1592-1655) and Robert 
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Boyle (1627-1691), authors he had studied during his perma- 
nence at the Trinity College, but whose results and methods he 
examined closely in those 18 months. Almost all Newton’s 
subsequent achievements were an extension and a refinement of 
the intense work carried out in those 18 months spent in Wools- 
thorpe.  

2) The scientific context in which Newton worked is strictly 
connected to the social-economical one. Three traditions con- 
verged in the Principia: 

a) Astronomy. For Newton, a fundamental reference point 
was Kepler. However Newton exploited the results, and above 
all the observations, of many astronomers lived before and after 
Kepler. The observations of those lived after Kepler were par- 
ticularly important because they offered a new and precise ma- 
terial on which Newton could prove the validity of his theories. 
Specifically the following ones have to be mentioned: Godefroy 
Wendelin (1580-1667), Johann Baptist Cysat (1587-1657) 
Richard Norwood (1590-1675), Giovanni Riccioli (1598-1671), 
Giovanni Alfonso Borelli (1608-1679), Johannes Hevelius 
(1611-1687), Jeremiah Horrocks (1618-1641), Jean Picard 
(1620-1682), Nicholas Mercator (1620-1687), Valentin Stancel 
(1621-1715), Adrien Auzout (1622-1691), Giovanni Domenico 
Cassini (1625-1712), Jean Richer (1630-1696), Marco Antonio 
Cellio (17th century, he was an optician, too), Samuel Cole- 
presse (17th century), Egidio Francesco Gottignies (1630-1689), 
Geminiano Montanari (1632-1687) Claude Antoine Couplet 
(1642-1722), John Flamsteed (1646-1719), Edmund Halley 
(1656-1742), Louis Feuillée (1660-1732), Giacomo Cassini 
(1677-1736), Charles Hayes (1678-1760). In the third book of 
the third edition of the Principia (1726) all these astronomers, 
their results, and (especially) their observations are quoted. 
They were exploited by Newton to have a precise idea of the 
intensity of gravity at different latitudes, of the moon position 
and of the planetary paths. They were important also for the 
tides-theory. All these arguments were dealt with in the third 
book. It is interesting to note that many of the observations 
carried out by these astronomers were possible only in the con-
text of the technical and social developments of the last 70 
years of the 17th century, not before. From a technical point of 
view, it is known that the telescopes got substantial improve- 
ments in this period, as to magnification and clearness of the 
produced imagine. This depended on a better theoretical know- 
ledge of the refraction-phenomena, by an improvement in the 
researches on lenses and mirrors and by a better grinding-tech- 
nique. Optiks1, and in particular applied optics (Newton, as well 
known, gave fundamental contributions both to theoretical and 
applied optics) was becoming an important science from a so- 
cial point of view. Good spy-glasses were required by the na- 
vies and the armies of the most important countries and they 
had significant civilian uses, too. This brought to quick im- 
provements, so that the telescopes available in the second half 
of the 17th century were not comparable with the telescopes 
used by Galileo and Kepler (Pisano & Bussotti, 2012). The 
consequence was that far better observations were available and 
could be exploited by a genius as Newton. In addition to that, it 
is necessary to underline that in the second half of the 17th cen- 
tury, the most powerful countries sent their experts (and in 
particular astronomers, and many of the above mentioned ones) 
to exotic regions in order to calculate the lengths of meridian 
arches and to measure the time of the pendulum oscillations at 

different latitudes. This was perfectly coherent with the logic of 
a complete control of space and time—to obtain with the help 
of scientific means and, hence, of the scientists—that was im- 
posing in the European society and politics. As a consequence 
the scientists acquired a new prestigious official social status 
and many data became available for theoretical researches, too, 
as Newton’s.  

b) Physics: physics, in the modern sense of the term, was a 
new science. Differently than astronomy, the ancient tradition 
in physics (considering both Aristotelian physics and impetus 
theory) had no utility for Newton’s aims. A part from Galileo, 
in the Principia Newton mentions almost exclusively Huygens’ 
(1629-1695) results. He also exploited astronomical observa- 
tions carried out by Huygens, but basically Newton discusses 
Huygens’ ideas and results on the gravity force. Another author 
whose researches are quoted and used by Newton is Christo- 
pher Wren (1632-1723). As know, Newton’s relations with Ro- 
bert Hooke (1635-1703) were rather controversial. Finally, the 
Principia can also be read as the book in which a decisive crit- 
ics is moved against Descartesian physics (Bussotti and Pisano 
2013), that was getting many adherents in the continental 
Europe. If theoretical physics was a science whose bases were 
uncertain before Newton’s works, in the 16th and in the first 
half of the 17th centuries many studies were developed in statics, 
ballistics, pneumatics and constructions of machineries (with- 
out considering optics). Only to mention the most important 
authors let us remember Niccolò Tartaglia (1499-1557), Gio- 
vanni Battista Benedetti (1530-1590), Simon Stevin (1548- 
1620), Otto von Guericke (1602-1686), Blaise Pascal (1623- 
1662), Robert Boyle (1627-1691) and mathematicians-engi- 
neers (see Pisano’s works) like Mariano di Iacopo called Tac- 
cola (1382-1458?), Leon Battista, Alberti (1404-1472), Fran- 
cesco di Giorgio Martini (1439-1502), Vannoccio Biringuccio 
(1480-1539?), Antonio da Sangallo il Giovane (1483-1546) 
Francesco de’ Marchi (1504-1576), Daniele Barbaro (1513- 
1570), Girolamo Maggi (1523-1572), Camillo Agrippa (1486- 
1535), Buonaiuto Lorini (1540-1611), Domenico Fontana 
(1543-1607), Galasso Alghisi da Carpi (1523-1573) etc.; and of 
course Leonardo da Vinci (1452-1519). The perspective in 
which Newton wrote the Principia was theoretical, but he did 
not forget to mention the practical consequences his research 
could have. In this sense the corollary II to the three laws 
(Newton, 1822: I, pp. 19-22) is extremely significant because 
Newton shows that, by the three laws and the decompositions 
of forces, all the problems concerning the functioning of the 
simple machines can be—in principle—solved in a uniform and 
general way. In the case of the development of physics, too, the 
relationship science and society are strong: starting from the 
beginning of the 16th century the passage from the world of 
approximation to the universe of precision induced and at the 
same time was inducted—in a situation of feed-back—by the 
work of the physicists and engineering who achieved quick 
improvements in the construction-machineries technique. The 
complex social transformations that brought to the geographical 
discoveries, to the technical improvements and—at least in a 
part of Europe—to a first stage of capitalistic economy were 
joined to a conceptually reach, but is a sense, disordered de- 
velopment of studies connected with physics and, in particular, 
to mechanics. One of the many aspects of Newton’s Principia 
is that this phase connoting physics in the 16th and first half of 
the 17th century can be considered—at least from a theoretical 
point of view—concluded. With the Principia we are in pres- 1Recently see Darrigol, 2012. 
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ence of a rare case in which a book is both foundational and 
inventive: foundational, because all the known results in me- 
chanics were inserted in a new frame based on few principles 
and laws; innovative, because most part of the discoveries ex- 
posed in the Principia were unknown at all2.  

c) Geometry and calculus. The two fundamental aspects of 
the mathematics in the Principia were: 1) theory of conic sec- 
tions; 2) the particular way in which Newton introduced infini- 
tesimal reasonings, always basing them on a geometrical sup- 
port. With regard to conics sections, Apollonius was a direct 
reference point and, among the modern mathematicians who 
dealt with this subject, Newton quotes Philippe De la Hire 
(1640-1718). With regard to the use made by Newton of infini- 
tesimal procedures in the Principia we refer to the literature and 
to this work itself.  

Here we refer the Principia published3 in the 1687. As 
known, the book was successful: England was already the most 
advanced country in Europe and, despite the great difficulties of 
the text, Newton’s work was recognized as a revolutionary 
contribution to science and it became famous also among 
scholars who were not physicians or mathematicians. The case 
of John Locke is famous. Scholars who criticized some aspects 
of Newton’s thought, could not anyway avoid to recognize the 
significance of his work. In the continental Europe, the situa- 
tion was a little bit different because the persistency of Des- 
cartesian physics was more lasting. Nevertheless the scholars 
who aimed to obtain concrete results in physics followed New- 

ton’s achievements and made them wider. Once again, most 
part of the researches in physics were carried out by scholars 
living in advanced countries from a social and economical point 
of view: only to limit to the scientists lived between the 17th 
and the 18th centuries: the Bernoulli family and Jacob Hermann 
(1678-1733) in Swizerland, Pierre Varignon (1654-1722) and 
de L’Hopital (1661-1704) in France, Willem Jacob’s Grave- 
sande (1688-1742) in Holland, David Gregory (1659-1708), 
Abraham de Moivre (1667-1754), John Keill (1671-1721), 
Stirling (1692-1770), Colin McLaurin (1698-1759) in Great 
Britain, only to mention the most famous and to limit to physics. 
However, rapidly after the publication of the first edition, there 
was a development of mathematical technique: the structure of 
the reasoning used to prove the theorems and to solve the prob- 
lems changed in respect to Newton. The geometrical-analytical 
methods by Newton were progressively replaced by analytical 
procedures. Therefore, starting from about the 30s of the 18th 
century, the results of Newton were kept and made wider, but 
his methods progressively disappeared and became difficult to 
be fully understood. This is the most important reason why, 
after the third edition, a series of commentaries on the Principia 
were published4. Inside this kind of literature the so wrongly 
called Jesuit Edition (Newton, 1726, 1739-1742, 1822 hereafter 
Newton 1822, and also abbreviated with JE), of the Principia, a 
reprint of the third edition, deserve a particular place at all. 
With its huge and systematic apparatus of notes to every single 
Newton’s proposition it represents a fundamental support to 
understand Newton’s mathematical technique, physical ap- 
proach and methodology. The incipit of the Monitum written by 
the commentators represents a clarifying introduction to their 
work because they wrote:  

All who had heard even only the name of the very famous 
author knew how secret and at the same time useful the 
doctrines exposed in the Philosophiae Naturalis Principia 
Mathematica are. The dignity and the sharpness of the 
subject, the more than geometric brevity of the reasoning 
are so conspicuous that that magnificent work looks writ-
ten only for a very little number of expert geometers5. 

As above mentioned, the tradition of the commentaries to the 
Principia is long and dates back to the first years after the pub- 
lication of Newton’s work (1687) until reaching some of the 
most modern researches on Newton6. In general all the com- 
mentators: 

1) Try to explain Newton’s propositions in a clearer manner 
than Newton did;    

2With regard to Newton’s biography, we limit to mention the fundamental 
Westfall (1983, 1995). For sake of brevity and without pretension to be 
exhaustive—as done in this section—we suggest the following accredited 
secondary literatures on scientific civilizing, science in society and on the 
spread of Principia and of Newtonianism in Europe in the 18th century: 
Agassi (1978), Agostino (1988), Ahnert (2004), Allen (1998), Arthur (1995)  
Axtell (1965), Baillon (2004), Barber (1979), Barker (2006), Beaver (1987), 
Berggren and Goldsein (1987), Biagioli (1998, 1999), Blay (1983), Boss 
(1972), Bourdieu (1975, 1999), Bricker and Hughes (1990), Briggs (1983), 
Brockliss (1992), Buchwald, Feingold (2011), Bussotti and Pisano (2013), 
Calinger (1968), Calinger (1969), Casini (1988), Champion (1999), Clark 
(1992), Clark (1997), Clark, Golinski and Schaffer (1997), Cohen (1990), 
Craig (1963), Crasta (1989), Coudert (1999), Cunningham and Williams 
(1993), Dear (1987, 1995, 1998), Ducheyne (2005), Durham and Purrington 
(1990), Elliott (2000), Fara and Money (2004), Feingold (2004), Fellmann 
(1988), Ferrone (1982), Force (1983, 1985, 2004), Force & Hutton, (2004), 
Friesen (2006), Gascoigne (1988), Gaukroger (1986), Goldish (1998), Gold-
ish (1999), Golinski J (1998), Guerlac (1981), Guerrini (1985), Hall (1978),  
Hampson (1981), Hankins (1990), Harman (1988), Harrison (1995), Hay- 
cock (2004), Heidarzadeh (2006), Heimann, McGuire (1971), Henry  
(1992), Hessen (1931), Hutton (2004a), Hutton (2004b), Iliffe (2004), Iltis  
(1977), Jackson (1994), Jacob (1976), Jacob (1977), Jacob (1978), King- 
Hele & Rupert Hall (1988), Leshem A (2003), Lord (2000), Lüthy (2000), 
Lynn (1997), Malet (1990), Mandelbrote (2004a), Mandelbrote (2004b), 
Marcialis (1989), Markley (1999), Mazzotti (2004), McMullin (1978), 
Montgomery (2000), Munby (1952), Osler (2004), Pagden (1988), Pater 
(1994), Phemister (1993), Phillipson (1981), Porter (1981), Porter and Teich 
(1992), Pulte, Mandelbrote (2011), Purrington and Durham (1990), Rattansi 
(1981), Rousseau and Porter (1980), Ruderman (1997), Rupert Hall (1999), 
Schama (1981), Smolinski (1999), Snobelen (1997), Snobelen (2004), 
Stewart (1992), Stewart (2004), Taylor (1981), Teich (1981), Thijssen 
(1992), Wall (2004), Westfall (1958), Westfall (1971), Whaley (1981), 
Wigelsworth (2003), Yolton (1994), Young (2004), Zambelli (1978), Zins- 
ser (2001). 
3In effect, the book was presented at The Royal Society of London for Im- 
proving Natural Knowledge (briefly known as The Royal Society) in April, 
28, 1686, and only in-between May, 19 and June, 30 The Royal Society 
firstly approved and then licensed by Pepys (President of The Royal Society) 
to publish it. Subsequently Edmond Halley (1656-1742) received the Book 
II and Book III respectively in March, 1, 1687 and in April, 11, 1687. The 
first edition, completed of the three volumes into Latin language, were 
published in July, 5, 1687. 

4For sake of brevity we only refer some of the most important of them rela- 
tive to the all Principia or to conspicuous part of them, because the number 
of commentaries and notes on single propositions or themes dealt with in the 
Principia is so huge that it is impossible to provide even an idea in this 
paper: Keill (1701); Gregory (1702); Whiston (1707); Desaguliers (1717); ‘s 
Gravesande (1720-1721); Pemberton (1728); Clarke (1730, 1972); Mc- 
Laurin (1748, 1971); Du Châtelet (1756-1759). Translation into French and 
commentary of the Principia. See also Zinsser (2001); Wright (1833). 
Wright is the same mathematician that edited the Glasgow version of JE. His 
commentary, in two books, is fundamental for the research on Newton and 
his mathematical technique in the Principia; Chandrasekhar (1995); Cohen 
(in Newton, 1999). A synthetic, but informative, overview on this subject is 
Zinsser (2003). 
5Newton, 1822: I, p. VII, lines 1-6. (The translations is ours). 
6We do not comment the development of mathematics in mechanics until the 
birth of modern science, e.g. Leonardo da Vinci, Tartaglia, Descartes, Gali- 
leo, Newton, etc. On that see: Pisano, 2013; Pisano & Bussotti, 2012; Pisano  
2013b; Pisano & Bussotti, 2013; Pisano, 2011; Pisano, 2007; Capecchi & 
Pisano, 2014; Pisano, 2013c. 
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(a)                                                           (b) 

Figure 1. 
(a) Frontispiece of the Glasgow Edition7; (b) Incipit of the Monitum written by the commentators8. 

 
2) Translate the properties given by Newton geometrically in 

more analytical terms;  
3) Sometimes explain the development of physics, based on 

Newton’s discoveries, after Newton. 
Some of these commentaries are detailed, but no one is as 

detailed as the JE and presented as single notes to Newton’s 
propositions.  

The scopes of the commentators is clear starting from their 
initial sentence (see Figure 1, right side), they claim that the 
Principia are a difficult book because of the dignity and subtil- 
ity of the subject dealt with (Newton, 1822: I, Incipit of the 
Monitum, p. vi, line 3). However this is not the sole difficulty 
connected to the way in which Isaac Newton (1642-1727) car- 
ried out his research. He used the geometrica brevitas (Newton, 
1822: I, p. vi, line 4) that is his demonstrations are in general 
based on geometrical classical reasoning: after having reached a 
certain result, Newton needs instantaneous quantities and be- 
cause of this he operates a passage to limit, but this happens 
after a series of steps based on the geometry of the figure con- 

sidered. The calculus is fundamental, but it is often applied in 
the last phase of a geometrical reasoning. The geometry obvi- 
ously plays a decisive role in the Principia, particularly with as 
the relations between geometry and calculus: 

The reason why Newton, in his Principia, used the for-
malism of fluxions theory and the concept of fluxion itself 
in a sporadic and local way (at least explicitly) has been 
often discussed. I have already indicated that, in my opin-
ion, this is the essential reason: so as Newton developed it 
in the period 1664-1671, the formalism of the theory of 
fluxions was not suitable to express both the direction of 
velocities and forces and the scalar components of forces. 
However, it is certain that there are other, so to say more 
extrinsic, reasons, too, that convinced Newton to avoid 
the trouble of looking for a convenient extension of the 
formalism so that it can be used in mechanics9. 

After the publication of Newton’s work—beginning with 
Pierre Varignon (1654-1722), Jakob Bernoulli (1654-1705), 
David Gregory (1659-1708), Johann Bernoulli (1667-1748), 7Newton, 1822: I, p. VII. 

8Newton, 1822. 9Panza, 2003: p. 192. Author’s italic. 
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John Keill (1671-1721), Jacob Hermann (1678-1733), to con- 
tinue with Daniel Bernoulli (1700-1782) and Leonhard Euler10 
(1707-1783), only to mention the most important mathemati- 
cians and physicists—the transcription of his results into com- 
pletely analytical terms11 was a long process that permitted to 
better understand Newton’s results and, as know, to obtain a 
series of further more general and extended results than New- 
ton’s. Nevertheless the difficulties in understanding the direct 
work of the English physicist persisted because of his mixed 
geometrical-analytical approach and because many demonstra- 
tions in his Principia are only outlined and are far from being 
complete. Therefore, the commentators had the aim to specify 
and clarify not only Newton’s results, but more than this, New- 
ton’s methods in every detail. The consequence was that the 
global apparatus of notes is more extended than Newton’s text 
itself. Therefore, the JE provides three fundamental pieces of 
information useful to: 

1) Understand Newton’s mathematical technique and physi- 
cal results;  

2) Get a clear idea of the development of physics and mathe- 
matical analysis in the 20 - 25 years after the publication of the 
third edition of the Principia (1726) because many results and, 
sometimes, the works of the most important physicists and 
astronomers are reported in the notes; 

3) Fully realize the profound difference between Newton’s 
physical-mathematical approach and the approaches of his suc- 
cessors.  

An Introduction to Principia’s Jesuit Edition 
The publication of JE dates to the years 1739-1742 (Newton 

1739-1742). The published edition is divided into four volume:  
1739. The first volume. It includes the first book of the Prin- 

cipia;  
1740. The second volume. It includes the second book of the 

Principia; 
1742. The third volume. It includes the initial 24 propositions 

of the third book of the Principia; 
1742. The fourth volume includes the propositions XXV- 

XLII, third book and General scholium. 
Thomas Le Seur (1703-1770) and François Jacquier (1711- 

1788) are the two commentators and they are mainly mathema- 
ticians. They were not Jesuits, but belonged to the “Gallicana 
Minimorum Familia” (Newton, 1822, Frontispiece), that is they 
were Minim Friars. Both of them were French. Basically they 
are known because of the JE, but they also wrote other essays, 
e.g., Elémens du calcul integral (Le Seur & Jacquier, 1768), 
Riflessioni de’ Padri Tommaso Le Seur, Francesco Jacquier de 
el’ Ordine de’ Minimi, e Ruggiero Giuseppe Boscovich della 
Compagnia di Gesù sopra alcune difficoltà spettanti i danni, e 
risarcimenti della cupola di S. Pietro (Le Seur, Jacquier, & 
Boscovich, 1743) and the Elementi di perspettiva, secondo i 
principii di Brook Taylor con varie aggiunte spettanti all’ottica 
e alla geometria (Jacquier, 1755). 

For the JE (Newton, 1726, 1739-1742, 1822) the contribu- 
tions of the Swiss scientist Jean-Louis Calandrini (1703-1758) 
were fundamental. He organized and financed the edition. Fur- 

thermore, inside the edition, many of the most important notes 
and comments are written by Calandrini himself. Le Seur and 
Jacquier are explicit at all in this sense: in the Monitum at the 
first volume, Le Seur and Jacquier spoke of Calandrini as “ver- 
satissimus in rebus mathematicis [very expert in mathematics]” 
and as the person who adorned and edited the edition in a very 
elegant manner (Newton, 1822: I, p. viii, lines 21-25). Calan- 
drini is also mentioned in the Monitum premised to the second 
volume. He is eulogized for the care and attention with which 
he controlled the publication of the second volume (Newton, 
1822: II, Monitum, one page without number, lines 16-20). 
Calandrini is also quoted in the Monitum to the third volume 
(Newton, 1822: III, Monitum, one page without number, lines 
9-13). Here Le Seur and Jacquier wrote that they cannot thank 
enough Calandrini for the contributions and the benefits he has 
given to the edition. The notes of Calandrini can be recognized 
because they are indicated by an asterisk. In the Editoris Moni- 
tum at the beginning of the third volume, the editor (that is 
Calandrini) explains that, in the fourth volume, he will avoid 
the asterisk because the distinction between his notes and the 
ones by Le Seur and Jacquier has been interpreted by someone 
as a critic of his to the notes-apparatus written by the two 
mathematicians, while it was not the case. On the other hand, in 
the same Editoris Monitum we read that, in the fourth volume, 
he hopes Newton’s Lunar theory and the difficult connected 
calculations will be made clear with the help of the notes 
(Newton, 1822: III, Editoris Monitum, one page without num- 
ber, lines 11-15). These words make it likely that the notes and 
addictions to Newton’s lunar theory are due to Calandrini. Fur- 
thermore, in contradiction to what Calandrini had written in the 
Editoris Monitum of the third volume, the asterisks are present. 
Hence the notes by Calandrini (and they are the majority as to 
the third book of Principia) can still be recognized. 

The second edition of JE was printed in Colonia Allobrogum 
(Geneva) in 1760 by the publishing house Cl. and An. Philibert. 
This edition corrects some mistakes (especially print-mistakes) 
of the first edition. It is in three volumes corresponding to the 
three books of the Principia (Newton, 1760). 

The third edition dates back to 1822 and was published in 
Glasgow by the publishers Andrew and John Duncan (Newton, 
1822). This edition, in four volumes as the original one, is very 
important because the editors analysed in depth the two previ- 
ous editions, compared them and emendated them, where nec- 
essary, eliminating some mistakes present in the two editions 
published in the 18th century. The mathematician who realized 
this hard work was John Wright, who examined in detail both 
the 18th-century editions. We have analysed this edition and the 
quotations and the imagines are drawn from it (Ibidem). 

The Structure of the Paper 
This article is an overview of an extended research we are 

carrying out on the JE. Despite this edition is celebrated be- 
cause of the explicative notes added by the commentators, it is 
not so much directly commented by secondary literature. Thus 
in order to offer a precise historical and epistemological pano- 
rama, our research concerns the reception, the influence and the 
spread of Newton’s ideas in the period between the publication 
of the first edition of the Principia (1687) and the half of the 
18th century. It is possible to summarize these kinds of studies 
into three categories:  

a) Editions of the Principia translated into various languages 

10Particularly from Newton’s mechanics to Euler’s equations see Darrigol 
2005. 
11This process can be considered as completed with Joseph-Louis La- 
grange’s (1736-1813) Mécanique Analitique (1788). See Pisano, 2013a; 
Pisano & Capecchi, 2013. 
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and commentaries directly tied to Newton’s text; 
b) Studies dedicated to the way in which advanced physics— 

in all its aspects—was influenced by the Principia and to the 
manner in which Newton’s physical results and mathematical 
methods were considered in England and in the continental 
Europe;  

c) Studies inherent to the way in which the Principia influ- 
enced the cultural environments at the end of the 17th and in the 
18th century.  

In this complex context, it is needed to clarify the scopes of 
our work. They are:  

1) To clarify the nature, the purposes and the structure of the 
notes added by the commentators to Newton’s text12. The en- 
quire on the notes will be a useful guide to understand the rele- 
vance of the specific mathematical methods used by Newton 
inside his physics. Therefore a mathematical analysis of the 
most important notes is necessary as well as a comparison be- 
tween the methods the commentators used to prove or to clarify 
some theorems by Newton and the methods used by other au- 
thors, lived before them or in their same epoch;  

2) To verify the hypothesis that the relationship between 
physics and mathematics changed in the dense period between 
1687 (year of publication of the first edition of the Principia) 
and the publication of the JE and to understand how physics 
itself changed in this period. The notes of the commentators of 
the JE are fundamental for this purpose because they often pre- 
sent the development in physics due to the greatest physicists 
and mathematicians of that period;  

3) To reconstruct the social environment in which the Jesuit 

Edition was conceived and developed; 
4) To present the structure of a series of texts that could be 

called physical-mathematical commentaries to Newton’s Prin- 
cipia and that reached their most complete expression in the JE. 

A series of papers will be published in which we will present 
the development of the research, whose final aim is the publica- 
tion of a book on this subject. This structural paper consists of 
the following sections: 

a) General view on the JE: the editors and the various edi- 
tions;  

b) General view on the Jesuit Edition: the content; 
c) Specific analysis of the initial six sections of the first book 

of Principia in the JE. 
These sections represent the foundation and the first steps of 

Newton’s rational mechanics. Hence an analysis of the notes 
added by the commentators is paradigmatic of their manner to 
precede and is a necessary introduction to understand the way 
in which they dealt with the problems deriving from the inter-
pretation and the clarification of every single passage of New- 
ton’s text needing of an explanation. 

The Four Volumes of Jesuit Edition 
In this section (Tables 1-4), we will provide a general picture 

of the way in which the footnotes and the addictions exposed in 
the JE were conceived. Every proposition of the Principia is 
annotated, therefore here we will focus on the most significant 
interventions, entering into details, as to the initial six sections 
of the first book, in the next section. 

 
Table 1. 
Volume I containing the first book of the Principia. 

Content Reference in the JE (Newton 1822) 

Long series of notes to the corollary II of Axiomata, sive leges motus, where Newton explains, in his classical 
synthetic style, how a correct application of the principle of decompositions of forces can explain the func-
tioning of all machines (even including the muscles and the tendons of the animals) composed of wheels, 
pulleys, levers, taut ropes and ascending or descending weights. The notes explain in many details the princi-
ple of decompositions of forces applied to many machines operating under the gravity force and refer results 
obtained by Pierre Varignon, Giovanni Alfonso Borelli (1608-1679) and Johann Bernoulli (note 49, p. 22).  

Ivi, Corollary II, notes 41-49, I, pp. 19-22. 
 
 
 
 
Ivi, Note 49, p. 22. 

Long series of notes to the corollaries III and IV of Axiomata, sive leges motus, where Newton in the corol-
lary III, explains the principle of conservation of the quantity of motion and shows its basic applications. The 
commentators analyse the use of this principle to explain the collision rules between two bodies that mutually 
hit with various angles of collision. They analyse the case of the elastic, inelastic and completely inelastic 
collisions. Once again they specify and clarify what Newton had exposed in general terms. 
The corollary IV is the fundamental proposition according to which the motion of the gravity centre of two or 
more bodies does not change its motion for the mutual interactions of the bodies ant it is at rest or moves with 
uniform rectilinear motion. Newton provides a correct, but synthetic demonstration expressed in words. The 
commentators analyses, in mathematical terms, all the single cases of which Newton spoke and provide more 
extended and fully comprehensible demonstrations of Newton’s statements.  

Ivi, Corollary III and IV, notes 50-73, pp. 
23-32. 
 
Ivi, Notes 50-57, pp. 22-26. 
 
 
Ivi, pp. 26-32. 
 
 
Ivi, Notes 58-73, pp. 26-32.  

Other interesting notes concern the Scholium of the Axiomata, sive leges motus. The commentators show how 
infinitesimal physical magnitudes of different order can be geometrically constructed and apply them to 
physical reasoning concerning the motion. 

Ivi, pp. 33-44. 
 
Ivi, Notes 83 and 84, pp. 34-35. 

Final notes to the first section (De methodo rationum primarum et ultimarum) of the first book of the Prin-
cipia. The commentators explain in analytical terms the bases of calculus of fluxions and fluents (differential 
and integral calculus) that Newton had explained resorting to geometry and passing to the limit in the last 
phase of the reasoning. 

Ivi, Notes 149-170, pp. 61-64. 

12As to more modern literature concerning the Principia, we can refer, without pretension to be exhaustive, (generally) to: Panza (2003); Ahnert (2004); Baillon 
(2004); Bricker & Hughes (1990); Buchwald & Feingold (2011); Calinger (1968); Calinger (1969); Carriero (1990); Casini (1998); Cohen (1990); Cohen & 
Smith (2002); Crasta (1989); Dear (1998); De Gandt (1995); Ducheyne (2005); Durham & Purrington (1990); Feingold (2004); Fellmann (1988); Ferrone 
(1982); Forbes (1978); Force (1983); Force (1985); Force (2004); Force & Hutton (2004); Guicciardini (1989 et succ.); Hall (1978); Hankins (1990); Haycock 
(2004); Heimann and McGuire (1971); Hutton (2004a); Hutton (2004b); Jacob (1977); Jacob (1978); KingHele & Rupert Hall (1988); Mandelbrote (2004); 
Marcialis (1989); Pulte & Mandelbrote (2011); Purrington & Durham (1990); Rattansi (1981); Rouse Ball (1893, 1972), Rupert Hall (1999); Shank (2008); 
Snobelen (1998); Stewart (2004); Westfall (1971); Westfall (1995); Wigelsworth (2004); Young (2004). We do not refer to unnumbered contributions dedicated 
to specific problems of Newton’s physics and mathematics. 
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After the first six propositions of the second section of the first book the commentators propose a two pages 
scholion in which they show the formula obtained by Newton through his geometrical-analytical way of 
reasoning can be obtained in a mere analytical way. They explicitly rely upon the works of Varignon, Johan-
nes Bernoulli, Hermann and Keill. 

Ivi, Notes 213-216, pp. 81-82. 

One of the most relevant insertion is the note 224. For, it is a brief treatise on the properties of conics sections 
used by Newton in his Principia. In the Monitum the commentators underline that Calandrini’s contribution 
to this note was decisive because Calandrini edited, ordered the material of the notes and, where necessary, 
emendated it. Newton often used formulas as “this follows from Conics”. For an expert reader, too, the un-
derstanding of the property to which Newton is referring is often difficult as well as the finding of Newton’s 
specific source (in general propositions by Apollonius (ca. 262 BC-ca. 190 BC), sometimes De La Hire 
(1640-1718)). So, this addition is very useful. As to its methodology, the properties of the conics are basically 
demonstrated through geometrical reasoning, but the explicit resort to trigonometry and to the use of limits is 
not missing. Therefore this is a precious document of a manner to frame the mathematical reasoning that was 
typical of the 17th century. Furthermore this treatise is very accurate from the philological point of view, too, 
because the commentators mention every single Apollonius’ proposition they are demonstrating in a manner 
different from Apollonius’. 

Ivi, Note 224, Ivi, pp. 86-103. 
 
Ivi, Monitum, p. VIII 

Another fundamental series of notes is given by notes 228-245. They concerns the proposition X (a body 
rotates in an ellipsis. What is the law of the centripetal force that tends to the ellipsis centre). These notes are 
particularly significant for the explanation of the way how Newton used the concept of osculating circle.  

Ivi, Notes 228-245, pp. 105-114. 

From a historiographic point of view the note 268 is important because the famous inverse problem of the 
forces is dealt with and solved, namely: given the inverse square law and the initial velocity, to prove that the 
trajectory is a conic section in which the centre of the forces is in one of the foci. It is well known that New-
ton reported this proposition in I, XIII, Cor 1 and in I, XLI. The historiography has debated whether he had a 
complete demonstration. Nowadays we think he had one. 

Ivi, Note 268, I, pp. 123-124. 
 
Ivi, Proposition XIII, Ivi, pp. 123-125. 
Ivi, Proposition XLI, Ivi, pp. 245-255.  
 

In Section V (how the orbits are to be found when neither focus is given), there is a lemma that is fundamen-
tal, the lemma XXI: here Newton uses a particular technique to which he also resorted in Enumeratio linea-
rum tertii ordinis. In the notes 310-316 the commentators explain in a very clear manner all the possible 
figures that can be generated applying the lemma XXI. Once again, in front of a general technique by New-
ton, they enter into specific examples to make the technique clear to the reader. 

Ivi, Section V, pp. 145-200. 
 
Ivi, Lemma XXI, pp. 155-160. 
Ivi, Notes 310-316, pp. 158-161. 

Lemma XXII is not less important: Newton explains how to transform a figure into another of the same kind, 
that is, given an algebraic curve, to transform it into another algebraic curve whose equation has the same 
degree as the first one. The notes 324-333 clarify Newton’s technique that in the text is explained in a very 
brachilogique way. 

Ivi, Lemma XXII, pp. 161-162. 
 
 
Ivi, Notes 324-333, pp. 169-173.  

In a Scholium of the fifth section Newton explains how to describe a conic section, given the centre or the 
asymptotes. His reasoning is completely right, but once again, extremely synthetic. The commentators clarify 
all the mathematical particulars.  

Ivi, Scholium, pp. 180-190. 
 
Ivi, Notes 339-354, pp. 181-192. 

In Section VI (how the motions are to be found in given orbits), the lemma XXVIII (“there is no oval figure 
whose area, cut off by right lines at pleasure, can be universally found by means of equations of any number 
of finite terms and dimensions”)13 presents one of the most genial reasoning by Newton. Newton uses no 
mathematical symbolism, he uses logic and refined original ideas. The commentators explain step by step 
Newton’s reasoning. In the following section we will analyse in depth this amazing reasoning. 

Ivi, Section VI, pp. 201-225. 
Ivi, Lemma XXVIII, pp. 203-227. 
 
 
Ivi, Notes 359-362, pp. 203-207.  

The notes 365-389 are a complex astronomical and mathematical itinerary to explain the problem posed and 
the techniques used by Newton in the proposition XXXI and in the following scholion more clearly than 
Newton did: given an elliptic orbit and the time, to determine the position of the planet. Here the commenta-
tors resort to the results and techniques by de l’Hôpital14 (1661-1704), Seth Ward (1617-1689), Ismael Boul-
liau (1605-1694), Giovanni Domenico Cassini (1625-1712), David Gregory (1659-1708), John Keill (1671- 
1721).  

Ivi, Notes 365-389, pp. 209-225. 

The proposition XXXIX (VII section) is particularly significant because Newton, given a centripetal force, 
and a body that descends or ascend along a straight line, asks to find a plane area proportional to the velocity 
and a plane area proportional to the time. The problem of the quadrature plays here an important role. The 
commentators explain in detail Newton’s procedure and, basing upon Varignon’s results, propose a more 
analytical approach. 

Ivi, Proposition XXXIX, pp. 236-240. 
 
 
 
Ivi, Notes 405-410, pp. 236-240. 

The 8th section is dedicated to the determination of the orbits given by centripetal forces. The orbits are not 
rectilinear. The fundamental proposition is the XLI, where, given a centripetal force, Newton explains how to 
determine the trajectory and the time. The problem is difficult. The commentators, according to their usual 
way of work, explain Newton’s methods in detail, propose an analytical approach (Hermann is mentioned) 
and examine a series of cases not specifically examined by Newton. The result is a sort of treatise on many 
problems of the central forces (general inverse problem of the forces).  

Ivi, Section VIII, pp. 241-257. 
Ivi, Proposition XLI, pp. 245-255. 
 
 
 
Ivi, Notes 417-442, pp. 245-255. 

Section X deals with the pendulum-movement and with the motion of the bodies in given surfaces. The fun-
damental propositions to solve the problem of the isochronism are the LI-LII. As to the motion on a surface, 
the proposition LVI establishes the trajectory of a body, given the force-law, the surface on which the body 
moves, its axis and the initial velocity. The commentators write a series of continuous and connected notes, in 
which-as to the problem of the isochronism-specify Newton’s way of reasoning and the results obtained by 
Huygens (1629-1695), Jakob Bernoulli, Johann Bernoulli and Hermann. With regard to the trajectory prob-
lem, they examine in detail a series of example in which the centripetal force is given by different laws and 
different initial conditions to determine the trajectory and viceversa, given a trajectory, they analyse in many 
cases what force and initial conditions are compatible with that given trajectory. Results of Clairaut 
(1713-1765) are quoted. 

Ivi, Section X, pp. 278-310. 
 
Ivi, Proposition LI and LII, pp. 285-289. 
 
Ivi, Notes 472-491, pp. 295-310. 
 
Ivi, These authors are mentioned at p. 300. 
 
 
Ivi, Clairaut mentioned at p. 307. 

 

 

13Translation drawn from Newton, 1729: 1, p. 145. 
14Guillaume François Antoine de Sainte Mesme, marquis de l’Hôpital, or de l’Hospital. 
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Another very treatise is posed inside the section XIII where Newton deals with the attractive forces of non 
spherical bodies. The fundamental propositions are the XCI (to find the attraction of a corpuscle in the axis of 
a round solid to whose several points there tend equal centripetal forces decreasing in any ratio of the dis-
tances whatsoever)15 and the XCII (An attracting body being given, it is required to find the ratio of the de-
crease of the centripetal forces tending to its several points)16. The scholion is important, too, because Newton 
teaches how to abbreviate some calculations resorting to the convergent series. The whole reasoning by 
Newton is correct both in the propositions and in the scholion, but, as often, it is very synthetic and geometri-
cal. Starting from note 541 until note 557, the commentators transcribe Newton’s reasoning in completely 
analytical terms, provide a series of examples to clarify all situations and analyse in depth the procedures 
outlined by Newton in the scholion. These pages are a masterpiece of clearness. 

Ivi, Section XIII, pp. 388-411. 
 
Ivi, Proposition XCI, pp. 395-402. 
 
Ivi, Proposition XCII, pp. 402-403. 
 
 
 
Ivi, Notes 541-557, pp. 395-411. 
 

 
Table 2. 
Volume II containing the second book of the Principia. 

Content Reference in the JE (Ibidem) 
The book is opened by a treatise by Calandrini (asterisk) concerning the general concepts on the motion 
in resistant means. Results due to Varignon, Johannes Bernoulli, Hermann, Euler (p. 5) are mentioned. A 
relevant part of the treatise (pp. 5-10) is dedicated to the examination of the logarithmic function that is 
fundamental for the study of the motion in resistant means. Page 12 is a series of brief considerations on 
the maxima and minima. 

Ivi, II, pp. 1-11. 
Results mentioned, Ivi, p. 5. 
Examination of logarithmic function, Ivi, pp. 
5-10. 
Considerations on maxima and minima, Ivi, p. 12 

In the proposition IV of Section I and in the seven subsequent corollaries, Newton examines the motion 
of a projectile subjected to the gravity, under the hypothesis that the resistance of the air is proportional 
to the velocity. The commentators explain all the passages trough which Newton constructs the figure in 
the text and develops his reasoning. But the most important contribution concerns the notes to Newton’s 
scholion. Here the commentators: a) clarify how, given the equation of a curve, it is possible to construct 
the curve exploiting the logarithmic function (notes 68-71) (here the technique of Varignon and Hermann 
is referred and also a letter by Newton to Oldenburg (1618-1677) in 1676, see, note 68); b) deal with the 
problem of the angulum elevationis, that is how vary the trajectory of a projectile in function of the angle 
with which the projectile is shot and of its initial velocity (notes 72-74); c) show how to describe a regu-
lar curve passing through a series of given points. This problem is difficult and, in general, if the kind of 
curve is not specified, it can be solved by approximation with convergent series. The commentators 
remind the reader (note 75) that Newton dealt with this problem in his Arithmetica Universalis, provid-
ing the method, but not the demonstrations. The long following notes (76, 77) concern the treatment of 
this question, also exploiting some results due to Hermann, Craig (died 1620) and Stirling (1692-1770).  

Ivi, Proposition IV, pp. 21-31. 
 
 
Ivi, Notes 54-67, pp. 23-31. 
 
 
Ivi, Notes 67-77, pp. 31-36. 
 
 
 
 
 
 
Results of Hermann, Craig, Stirling: Ivi, p. 36. 

In the II section, a fundamental proposition is the IX one with its seven corollaries: Newton, given a 
resistant means, shows how to determine the time of ascent and of descent of a body as a function of its 
speed (or better, of trigonometric functions proportional to the speed). The commentators do not limit to 
explain in every detail the assertions given by Newton in the corollaries, but also add two problems to 
complete Newton’s results, also exploiting Euler’s researches. 

Ivi, Proposition IX, pp. 52-62. 
Ivi, Notes 97-112, pp. 58-62. 
Ivi, The two problems, pp. 60-63. 
 
Ivi, Euler’s researches, p. 63.  

In conclusion at Section II, the commentators pose a general problem plus a series of connected corollar-
ies: given the gravity, acting perpendicularly to the horizon, in a uniform manner, to determine the tra-
jectory described by a projectile in a uniform resistant means, being the resistance proportional to an 
arbitrary power of the speed.  

 
Ivi, Notes 127-137, pp. 88-93. 

In Section IV, Newton deals with the circular motion in resistant means. In this context the fundamental 
curve is the logarithmic spiral. Calandrini poses two pages where he describes all properties of this curve 
necessary to understand Newton’s reasoning. 

 
Ivi, Notes 147-156, pp. 110-111. 
 

Section IV is closed by another problem posed and solved by the commentators: let the centripetal force 
tend to a centre C and in a point P let it be inversely proportional to a power of the distance CP. Let the 
resistance of the means be as the means-density and as a certain power of the velocity. The density of the 
means in every single point of the trajectory, its resistance and the speed of the body are required so that 
the body moves on a given curve. 

 
Ivi, Notes 158-167, pp. 125-127.  

Section VI concerns the motion and the resistance of the oscillating bodies. The whole section is densely 
annotated. The most relevant interventions are maybe the following ones: a) in the proposition XXIX and 
its three corollaries, Newton, given a body oscillating along a cycloid with a resistance proportional to 
the square of its velocity, finds the resistance in every point of the trajectory. Newton himself claims the 
complete calculations are very difficult and because of this, he adds another proposition to simplify them. 
Calandrini does not get discouraged and develops the whole calculation (he mentions Hermann); b) the 
section VI ends with a fundamental scholion where Newton shows a series of experiments carried out by 
him as to the oscillating movements in resistant means and connects these experiments with theory. 
Newton reminds the reader that, according to his previous results and given some initial conditions, the 
highest velocity during an oscillation is major in a cycloid than in a circle according a certain proportion, 
while the times are longer in the circle than in the cycloid according to the inverse proportion of the 
speeds. Calandrini examines these properties in all mathematical details so that the reader is guided to a 
full understanding of the problem; c) two problems are added to Newton’s scholion and solved: 1) to find 
the resistance of a tended oscillating thread in a resistance means in which the resistance itself is propor-
tional to the squares of velocity and of the diameter; 2) given the gravity, to determine the motion of a 
body ascending and descending in a curve under the condition that the resistance is proportional to an 
arbitrary function of the velocity. 

Ivi, Proposition XXIX, pp. 157-163. 
 
 
 
Ivi, p. 163. 
Ivi, General Scholium, pp. 170-190. 
 
 
Ivi, pp. 172-174. Really in these three pages there 
are only 13 lines of text. All the rest is composed 
of notes.  
 
 
 
Ivi, Note i, pp. 173-175. For the two problems, 
see note 184, Ivi, p. 179 and note 188, pp. 188- 
190. 

 

 

15Translation drawn from Newton, 1729: I, p. 302. 
16Translation drawn from Newton, 1729: I, p. 305. 
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Section VII concerns the motions in the fluids and the resistance of the projectiles. Newton deals with 
various problems connected to the resistance found by solids of different forms moving in fluids. The 
important problem to find the solid of rotation that, given some initial conditions, opposes the least resis-
tance to the movement in a resistant means is dealt with. The works by Johann Bernoulli (who solved the 
problem in general) and by Hermann are mentioned.  

Ivi, Notes 202-209, pp. 203-207. 
 
Ivi, p. 207.  

In the VIII section, Newton provides the fundamental propositions concerning the vibrating cords and the 
propagation of the motion in the fluids. The commentators add a series of further propositions on the 
vibrating cords, also connected with music and refer experiments and results, for example by ‘s Grave-
sande and Marin Mersenne (1588-1648). 

Ivi, Notes 300-311, pp. 262-265. 
 
Ivi, p. 263. 

The note 315 begins as a series of annotations to proposition XLVII where Newton shows the relations 
between the motion of the particles of a fluid to which a series of impulses have been given and the 
motion of a pendulum, but becomes a very treatise on the motion in a fluid. Every result is obtained 
following Newton’s methods. Euler and Gabriel Cramer (1704-1752) are mentioned. The note is written 
by Calandrini. 

Ivi, Note 315, pp. 271-287. 
 
 
 
Ivi, p. 273. 

 
Table 3. 
Volume III containing the initial 24 propositions of the third book of the Principia. 

Content Reference in the JE (Ibidem) 

The commentators premise to Newton’s work an introduction, that is a brief treatise on positional astronomy  
divided into three chapters: I) Quale oculo nudo appareat mundi systema paucis exponitur, et prima Astro-
nomiae Elementa breviter revocatur (brief exposition how the system of the world appears to naked eye and 
brief note on the initial elements of astronomy); II) Siderum refractio and parallaxis breviter explicatur 
(brief explanation of the stars-refraction and parallax); III) De Telescopii ac Micrometri usu et Phaenomenis 
horum Instrumentorum beneficio observatis pauca (Few considerations on the use of the telescope and of the 
micrometer and on the phenomena observed thanks to these instruments). 

Ivi, III, pp. IX-XXXVI. 
 
Ivi, pp. IX-XX. 
 
Ivi, pp. XXI-XXVIII. 
 
Ivi, pp. XXIX-XXXVI. 

In the section of the third book called Phaenomena, the first phenomenon described by Newton concerns the 
fact the Jupiter satellites respect the third Kepler law. Calandrini puts a long series of notes concerning the 
determination of the motion of Jupiter and Saturn satellites, the use of the telescope in these specific cases 
and the problem of the periodical times of the satellites (Cassini is mentioned as well as Huygens, Horrocks 
(1618-1641), Hevelius (1611-1687), Galletius and Halley (1656-1742)). With regard to the other five celes-
tial phenomena described by Newton, the notes are as profound as those concerning the first phenomenon.  

 
Ivi, Notes 51-56, pp. 5-10. 
 
Mention of Cassini: Ivi, pp. 6-7.  
Mentions of Huygens, Horrocks, Hevelius, 
Galletius, Halley: Ivi, p. 9. 

In the fifth corollary to proposition VI Newton briefly explains the qualitative differences between the grav-
ity and the magnetism. Calandrini in a five pages note (pp. 29-33) refers a series of experiments and conclu-
sions by Muschenbroek (1692-1761) and Winston (1667-1752) on the terrestrial magnetism. On the basis of 
these experiments and calculations Calandrini formulated the conjecture that the magnetic force decreases 
almost as the cube of the distance. He wrote: “From the previous [experiments and calculations], I think it is 
proved with a sufficient certainty that the magnetic force decreases almost as the cube of the distance from 
the magnet, at least according from what can be ascertained from those rather rude observations”17. 

Ivi, p. 29. 
 
Ivi, pp. 29–33. 
 
 
 
Ivi, p. 32, final four lines. 

Two interesting notes are the 72 and 73: Newton in the corollary two of proposition XIV claimed that the 
parallax due to the annual motion of the earth is insensitive. Calandrini in the mentioned notes dealt with the 
parallax-problem and exposed an attempt ideated by Huygens to calculate the distance-relation between the 
Sun and the fixed stars based on supposed parallaxes. 

Ivi, Notes 72 and 73, pp. 47-48. 

In the proposition XVII Newton proves that the diurnal movements of the planets are regular and that Moon 
libration is due to its diurnal movement. He claims that the libration theory exposed by N. Mercator 
(1620-1687) and published in 1676 is completely drawn from his own letters. The commentators refer a brief 
summary of the theory, written by Mercator himself, in which he clearly explains that his results are due to 
Newton’s letters.  

Ivi, Proposition XVII, pp. 51-54. 
 
 
 
Ivi, Note 78, pp. 53-54. 

The propositions XIX and XX concern, in substance the way in which the gravity changes in different points 
of the Earth and are hence strictly connected to the problem of the Earth form. A real treatise, presented as a 
series of notes to these two propositions and divided into different sections, on the problem of gravitational 
attraction, is presented by the commentators and by Calandrini in which the whole knowledge (year 1742) 
on this subject is exposed. These series of notes are dense. After a description of observations and experi-
ments due to authors mentioned by Newton himself (as Picard (1620-1682) and Cassini) and others not 
mentioned (as George Graham (1673-1751), de Mairan (1678-1771) and Maupertius (1698-1759)) a series 
of theoretical propositions follows in which the gravity of bodies of different form is analysed, considering 
the cases in which the density is uniform and the cases in which it varies in a given manner. An important 
problem is dealt with: given the equation of a curve, that rotating around an axis originates a solid of rota-
tion, to find the attractive force acting on a corpuscle posed in an arbitrary point of the solid-surface. 

Ivi, Proposition XIX, pp. 55-77.  
Ivi, Proposition XX, pp. 78-87. 
 
Ivi, pp. 55-87. 
 
 
Ivi, pp. 55-59. 
 
 
 
Ivi, p. 70. 

In the proposition XXIV Newton proves that the tides depend on Sun and Moon action. The commentators, 
after this proposition add the following treatises on the tides and on the form of the Earth inside the third 
volume: A) Daniel Bernoulli: Sur le Flux et Reflux de la Mer, 1740; B) Colin McLaurin (1698-1759): De 
causa physica fluxus et refluxus maris, 1740; Leonhard Euler: Inquisitio physica in causam fluxus ac re-
fluxus maris, 1740. These works had won the praise of the Académie royale des Sciences. 

Ivi, Proposition XXIV, pp. 92-98. 
 
Ivi, pp. 101-207. 
Ivi, pp. 209-245. 
Ivi, pp. 247-341. 

 

 

 

17Original Latin text: “In recessu a magnete vim magneticam decrescere in ratione fere triplicate quantum saltem crassis illis observationibus animadverti 
potest”. Our translation from Latin into English. 
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Table 4. 
Volume IV containing propositions XXV-XLII of the third book of the Principia and the General scholium. 

Content Reference in the JE (Ibidem) 

The volume opens with an introduction to Newton’s lunar theory written by the commentators. Ivi, IV, pp. III-VI 

Newton, in the proposition XXVI, poses and solves the problem to find the hour-increment of the area described by the 
moon in its revolution around the earth. The geometrical proofs given by Newton need a series of complicated calculations 
described in their general lines by Newton. Calandrini explains all calculations in details and adds a further problem: given 
the hypotheses of the proposition XXXVI, to expose the reasoning according to which the momenta of the considered area 
are described. 

Ivi, Proposition XXVI, pp. 4-10. 
 
 
Ivi, pp. 4-8. 
Ivi, pp. 9-10. 

In the proposition XXIX, Newton shows how to find the lunar inequality called variation. Calandrini adds a long series of 
notes, that are far longer than Newton’s explanation, and puts in evidence every single step of the whole problem develop-
ing every reasoning and calculation in a clear manner. 

 
Ivi, pp. 17-21. 

In the proposition XXX Newton tackles the difficult problem to find the motion of the moon nodes in a circular path. Once 
again the notes of Calandrini constitute a very treatise that provides the reader all details on this difficult problem. The 
same considerations can be developed as to the other three problems dealt with by Newton with regard to the motion of 
moon nodes; prop. XXXI: to find the motion of the moon nodes in an elliptic path; prop. XXXII: to find the average mo- 
tion of the moon nodes; prop. XXXIII: to find the real motion of the moon nodes. Actually, all notes concerning Newton’s 
theory of the motion of moon nodes represent a precious series of knowledge, useful both to understand the phenomenon, 
to realize how Newton reasoned and to understand the physical-mathematical set of problems behind this refined ques- 
tion. 

 
 
Ivi, pp. 22-30. 
 
 
 
 
Ivi, pp. 22-51. 

Maybe the most surprising insertion of the commentators is a 30 pages treatise whose first part is titled: De incremento 
motus medii Lunae, et eius aequatione annua, ex Solis actione pendentibus, primum hypothesi orbem Lunae esse circula-
rem, postea in hypothesi orbem Lunae esse ellipticum. Denique in orbe lunari ad eclipticam inclinato. (On the increment 
of the average motion of the moon, and that of its annual equation, depending on sun action, at the beginning in the hy-
pothesis that Lunar path is circular, then elliptic. Finally in the hypothesis that lunar path is inclined on the ecliptic). Here 
the concepts and the results known at that time as to the lunar theory are reported. The reader can get a complete under-
standing of Newton’s methods and its transcription into more analytical terms. 

Ivi, pp. 64-95. 

The further long series of notes concern Newton’s theory on the comets. Here the notes between pages 147 and 157 repre- 
sent a brief treatise whose first part is on this subject, where Newton’s theory is clarified in many details. Ivi, pp. 147-157. 

 
In the following based on the previous tables we provide the 

analyses of the main parts of Newton’s content and JE’s notes.  

Analysis of the Notes in the First Six 
Sections of the First Book 

The first six sections of the first book provide the initial 
foundations of Newton’s rational mechanics. They are hence 
particularly important because of the basic character of the 
results dealt with. Therefore the way in which the commenta- 
tors annotated these sections highlights their general style and 
is paradigmatic of their work. Schematizing, we can distinguish 
three kinds of notes:  

1) Notes strictly connected to the text, that is notes whose 
scope is a direct clarification of Newton’s reasoning;  

2) Notes in which notions that are not present in Newton’s 
book, but that are necessary for its comprehension, are intro- 
duced;  

3) Notes in which the solutions of Newton’s problems pro- 
vided by authors who operated after the publication of Prin- 
cipia are presented.  

We supply three examples we believe significant for the un- 
derstanding of the kind of contributions provided by the com- 
mentators.  

Example 1. Book I, Section II, Proposition VI: The 
Relation between Centripetal Forces, 

Versed Sine and Time  
Let us begin with a proposition whose demonstration is not 

difficult and that is a good introduction to the work of the 
commentators. Here we have an example of the notes of kind 1) 
and 3) above cited. The proposition is the VI of the second 

section (Newton, 1822: I, p. 79, see Figure 2): 
Newton supplies a five-line demonstration in words. Of 

course this is enough if the scope is to provide correct proofs. 
But, if the scope is to put the reader in the best possible condi- 
tion to understand every detail of the text, then the note (New- 
ton, 1822: I, note 207, p. 79) of the commentators is useful13: 
They explain the reasoning in detail in this manner: let us sup-
pose that two bodies P and p rotate around the curves APQ 
(Figure 3) and apq (Figure 4, the points a and q are not indi- 
cated and P has to be replaced with p. This is a print mistake of 
the edition). 

Let DH and dh be the chords described in the minimum (in- 
finitesimal) time. This means that Newton is looking for in- 
stantaneous quantities. Let the radio vectors SP and sp divide 
these chords in two equal parts. The segments PC and pc are 
hence the versed sins. But (Principia, Lemma VII, Cor. 2), 
given evanescent quantities, the chords and the arcs tend to a 
reason of equality, hence DC CH arcDP arcPH= = = . When 
the points C and P, c and p, converge, the points D and H, d 
and h, tend to respectively coincide with the points P and p. 
Therefore the last position of the evanescent chords DH, dh is 
the same as the position of the tangents FL, fl, so that the lines 
DH, FL and dh, fl tend to become parallel. Thus, the last reason 
of DF and CP is a reason of equality as well as that of df and cp. 
Given these premises the proof runs as follows: let us suppose 
that the arcs PD and pd are described in the same time. In the 
Prop. I, Corollary 422 (Newton, 1822: I, p. 67), Newton proved 
that, under this condition, the forces in P and p are as the versed 
sins CP and cp. On the other hand, let us suppose that the 
forces in P and p are equal, but that the time in which the in- 

18To facilitate the comprehension of the reasoning, we report the two imag-
ines in a bigger format than in Figure 2. 
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Proposition VI. Theorem V 
In a space void of resistance, if a body revolves in any orbit about an 
immoveable centre, and in the least time describes any arc just then 
nascent; and the versed sine of that arc is supposed to be drawn, 
bisecting the chord, and produced passing through the centre of force: 
the centripetal force in the middle of the arc, will be as the versed 
sine directly and the square of time inversely.  

Figure 2. 
Proposition VI. Theorem V19. 

 

  
Figure 3. 
Particular of Figure 220. 

  
Figure 4. 
Particular of Figure 221. 

 
finitesimal arcs are described is different and let the arc PQ be 
described in the same time as the arc pd. Furthermore since the 
forces in P and p are supposed to be equal, the spaces QR, fd, 
PK and pc are described in the same time because the action of 
the forces (these spaces indicate in fact the deviation from a 
rectilinear trajectory) are equal. For Lemma XI, Cor. 2 and 3 
(Newton, 1822: I, pp. 54-55) the following relation holds:  

2 2: :PD PQ DF QR= ,              (1) 

with QR = fd. Furthermore, if an arc is evanescent, the motion 
describing it, can be considered uniform, therefore the evanes- 
cent arcs are as the times and if T indicates the time in which 
the arc PD is described we have, also considering (1): 

( )2 2 2 2: : :PD PQ T t DF QR fd= = = .        (2) 

Since DF = PC and df = pc, one has: 
2 2: :T t PC pc=                    (3) 

That is: the versed sins are as the squares of the times. But, 
for a given time, the versed sins are as the forces. Therefore, if 
both times and forces vary, the versed sins are as the product of 
the forces and of the squares of time. Hence if V and v indicate 
the forces we have:  

2 2: :PC pc V T v t= ⋅ ⋅               (4) 

And finally 

2 2: :PC pcV v
T t

= .                 (5) 

In its ease, this is a good example of the kind A) of notes and 
of the way in which Newton used the method of the first and 
last reasons.  

The five corollaries to this proposition provide a good example of 
notes of kind C). The corollaries are the following (See Figure 5): 

The point S = centre of the force; curved line APQ = trajec- 
tory; ZPR = tangent in P; QR parallel to SP; QT perpendicular 
to SP; SY perpendicular to ZPR, then: 

Cor 1: when Q tends to P (namely QP becomes infinitesi- 
mals), the centripetal force is inversely proportional to the solid  

(today we say simply to the quantity) 
2 2SP QT
QR
⋅ ; 

19Newton, 1822: I, p. 79. English translation from Newton, 1729: p. 68. 
20Newton, 1822: I, p. 79. 

21Newton, 1822: I, p. 79. 
22The commentators write corollary 1, but this is clearly a mistake, the 
corollary to consider is the number 4. 
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Figure 5. 
Corollaries 1, 2, 3 to the proposition VI23. 
 

Cor 2: the centripetal force is inversely proportional to 
2 2SY QP
QR
⋅ ; 

Cor 3: let PV be a chord of the circle osculating the trajectory 
in P, then the centripetal force is inversely proportional to 

2SY PV⋅ ; 
Cor 4: under the same conditions, the centripetal force is di- 

rectly proportional to the speed-square and inversely propor- 
tional to the chord PV; 

Cor 5: it is a summary of the previous corollaries.  
The proof of these corollaries is not difficult and the com- 

mentators add only some brief notes. But they write five notes 
(Newton, 1822: I, 212-216, pp. 81-82; the notes 213-216 are 
included in a Scholium) in which the methods used by other 
authors to determine the centripetal force are referred: 

In the note 212 (Figure 6), being FVP the circle (whose cen- 
tre is C and radius CP = R) osculating the trajectory in P, Jo- 
hann Bernoulli, Abraham de Moivre (1667-1754) and Guido 
Grandi (1671-1742) proved that the centripetal force is in- 

versely proportional to 
3SY R

SP
⋅                      (6) 

This depends on the fact that 
3

2 SY RSY PV
SP
⋅

⋅ =                   (7) 

The not difficult proof is referred. 
 

  
Figure 6. 
Final reasoning of the note 21224. 

 
Newton’s proposition VI with its corollaries and the note 212, 

too, provides a form of the centripetal force that is really a dif-
ferential form because the time and the distance PQ tend to 0, 
but this form is presented as a relation between segments (that 
are in fact traced on a figure). In the Scholium (Newton, 1822: I, 
notes 213-216) the commentators arrive at a form of the cen- 
tripetal force that is explicitly a differential form, from the no- 
tational point of view, too. Things work like this (Newton, 1822: 
I, note 214, see Figure 7): 

23Newton, 1822: I, p. 80. 24Newton, 1822: I, p. 81. 
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Figure 7. 
The Scholium of the commentators to proposition VI25. 

 
BpP = trajectory; C = centre and CP = radius of osculating 

circle in P; pP = infinitesimal arch; S = centre of the force; SQ 
and Sq perpendiculars in Q and q to the tangents PO and pO 
respectively. The point r belongs to the tangent; mP is perpen- 
dicular to Sp. Through a geometrical reasoning referred by the 
commentators it is possible to prove that  

3 3

SP rq
PC SQ mp SQ

=
⋅ ⋅

                (8) 

This means that the centripetal force is as  

3

rq
mp SQ⋅

                     (9) 

Let us now indicate the force by v and SP by z. If p and P 
converge, then mp dz= , and posed SQ = p, it is rq dp= , 
therefore 

3

dpv
p dz

=  and z dzCP r
dp
⋅

= =           (10) 

The commentators underline that these formulas are due to 
the Epistola de legibus virium centripetarum by Keill to Halley 
and to the Phoronomia, chapter 22 by Hermann. Varignon (see 
(Newton, 1822: I, note 215) refined the expression for dp by 
constructing an orthogonal system of reference in which 
mp dz= ; mP dy=  and Pp ds=  is the arc differential. Since 
the triangles pPm and PSQ are similar, it is : :ds dy z p= ,  

namely zdyp
ds

= . The fluxion (derivative) of this expression  

is: 

2 2

2

dz dy ds z ds d y z dy d sdp
ds

⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅
=          (11) 

Since 
3

3 3 3

dp dp dsv
p dz z dy dz

⋅
= =

⋅ ⋅
 and zdyp

ds
= , one concludes  

that  
2 2 2 2

3 3

dz dy ds z ds d y z dy ds d sv
z dy dz

⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅
=

⋅ ⋅
     (12) 

Through an easy passage, it is possible to express the value 
of the radius of the osculating circle (note 216) as 

2

2 2

z dz dsr
dz dy ds z ds d y z dy d s

⋅ ⋅
=

⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅
        (13) 

Here the commentators add an interesting mathematical 
consideration: if the centre of the forces S is posed ad infi- 
nitum, it is easy to see that the quantity dz dy ds⋅ ⋅  is in- 
finitesimal in respect to 2z ds d y⋅ ⋅  and 2z dy d s⋅ ⋅ , so that 
one obtains 

2

2 2

dz dsr
ds d y dy d s

⋅
=

⋅ − ⋅
              (14) 

This formula, the commentators add, is hence valid for the 
radius of the osculating circle when the ordinates SP are mutu- 
ally parallel and when they are perpendicular to another straight 
line assumed as the other coordinate-axis. The last formula is 
exactly the one we use nowadays for the radius of the osculat- 
ing circle. In fact, it is  

( ) ( )
3 22x y

r
xy yx

 + =
−

 

 

               (15) 

And this formula is obtained from the previous one posing x  

= z and ( ) ( )2 2+ds x y=   . 

Example 2. The Commentators’ Treatise on Conic 
Sections: A Theorem on Hyperbola 

The addiction concerning the conic sections (Newton, 1822: 
I, pp. 86-102) is surely one of the most conspicuous interven- 
tions of the commentators to Newton’s text. The aim is to pro- 
vide a sort of handbook in which the properties of the conics 
useful to understand the Principia without resorting to the di- 
rect reading of Apollonius’ work are referred. By the way the 
commentators quote the exact reference to Apollonius for every 
proposition they are proving, while Newton often writes simply 
“this derives from conics”, without any further reference. The 
treatise is divided into four parts: 1) general properties of conics 
sections (Newton, 1822: I, pp. 86-92); 2) hyperbola (Newton, 
1822: I, pp. 92-96); 3) ellipsis (Newton, 1822: I, pp. 96-100); 4) 
parabola (Newton, 1822: I, pp. 100-102). There are many in- 
teresting aspects, in particular: a) many properties are treated 
with a projective approach; b) trigonometric and, still more 
important, infinitesimal concepts are used, while this is not the 
case in Apollonius. We will deal with a demonstration showing 
the aspect b) and also developing a comparison with Apollo-
nius’ original proof. The proposition we analyse is the theorem 
1 De Hyperbola (Newton, 1822: I, pp. 92-93). It sounds like 
this: “All lines drawn from the intersection of the asymptotes 
with a given angle are diameters of the hyperbola. Their part 25Newton, 1822: I, pp. 81-82. 
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comprehended between the two sides of the hyperbola is told 
transverse diameter and it is divided into two equal parts by the 
intersecting point of the asymptotes, that hence is called the 
centre of the hyperbola. The segments of tangent drawn in the 
two vertices of the diameter and comprehended among the 
asymptotes are equal and parallel and are divided into two equal 
parts by that diameter. Hence they are told conjugate tangents to 
the diameter”. The proof is conceived in this manner (Figure 8): 

 

  
Figure 8. 
Commentators’ treatise on conic sections: the first theorem on hyper- 
bola26. 

 
Let FY and ZR be the asymptotes and let SCT a straight line 

drawn through their intersection point C. Let us assume the 
lines CZ and CY mutually proportional to the sins of the angles 

ˆoCY  and ˆZCo  respectively. Given this construction, the 
segment ZY is divided into two equal parts by SCT. For, let us 
consider the triangle CZY. It holds  

: sin : sin sin : sinˆ ˆˆ ˆCZ CY Y Z oCY ZCo= =          (16) 

Therefore 
sin : sin sin : sinˆ ˆˆ ˆY oCY Z ZCo=              (17) 

On the other hand, in the triangle CoY, it is 

sin : sin :ˆŶ oCY Co Yo=                 (18) 
And in the triangle CoZ, it is  

sin : sin :ˆẐ ZCo Co Zo=                  (19) 

Therefore, on the basis of 17), we deduce from 18) and 19) 
that 

: :Co Yo Co Zo=                    (20) 

Namely Yo = Zo. 
This proposition is valid for a complete system of lines par- 

allel to ZY, that is for lines as HN, bk and so on. On the other 
hand, in Lemma I (Newton, 1822: I, pp. 87-88) of the same 
treatise on the conics, the commentators had proved that, given 
a hyperbola, and drawn a straight line between the two asymp- 
totes, the two parts comprehended between the hyperbola and 
the asymptotes are equal. This proves the first part of the theo- 
rem. Let us consider for example the line HON, for the already 
exposed reasoning HO = ON, for Lemma I, HP = GN, hence 
PO = OG. This means exactly that SCT, dividing into two equal 
parts the system of lines whose direction is ZY, is a diameter 
conjugated to that direction (Lemma V of the treatise). With 
this it is not yet proved that CA = CD and that, hence, C is the 
centre of the hyperbola. This will be the last step of the demon- 
stration. 

Let A and D be the points in which the line SCT touches the 
hyperbola. Let us trace the lines BAK and FDR, parallel to the 
system of lines ZY, HN, bk and so on. Since they are parallel to 
the ordinates Zo, HO, etc to the diameter DA, they are the tan- 
gents in the vertices A and D (because of the Lemma IV of the 
treatise on conics). It is first necessary to prove that BK = FR. 
The commentators reason in this manner: let us trace the paral- 
lels bik, fqr. The commentators use the words “ipsis proxi- 
mae”27 (that can be translated as “infinitely near to them”) to 
the two tangents. Because of the above mentioned Lemma I, it is 

fq qr bi ik⋅ = ⋅                   (21) 

Now, let us tend the two lines bik and fqr respectively to the 
tangents BAK and FDR and “tandem”, namely “at the end” one 
has fq = FD; qr = RD; bi = BA; ki = KA, so that  

FD RD BA KA⋅ = ⋅               (22) 
Furthermore FD = DR and BA=KA (because DA is a diame- 

ter), hence 2 2FD BA=  and DR FD BA KA= = = . Finally the 
triangles CAK and CDF are similar, so that  

: :CA CD KA FD=               (23) 

but, since KA = FD, it is CA = CD. This proves completely the 
theorem. 

In this demonstration the concept of limit plays an essential 
role because it allows the replacements from Equation (21) to 
Equation (22). The limit is seen in a typical Newtonian manner, 
that is as a process in motion that brings at the end from the 
secants fr and bk infinitely near at the tangents FR and BK 
themselves and this implies that the least reason of the secants 
(when they become tangents) is a reason of equality. This proof 
is a good example of how the commentators, trying to remain 
faithful the style of Newton himself, inserted a passage to 

26Newton, 1822: I, p. 92. 27Newton, 1822: I, p. 93, first column, line 4. 
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the limit inside a substantially synthetic geometrical reason- 
ing.  

The commentators refer that the exposed propositions coin- 
cides with three propositions by Apollonius: I, 30 and II, 3 and 
19. It is interesting to compare Apollonius’ demonstrations with 
those of the JE. This gives the idea how different are the proves 
of the same propositions when different mathematical concepts 
are introduced. In this sense the JE is also a fundamental con- 
tribution for history of mathematics.  

The proposition I, 30 is: “In a hyperbola or an ellipsis any 
chord through the centre is bisected at the centre”28. To prove 
this proposition, Apollonius proceeds in a completely different 
way than the commentators, without resorting to the notion of 
asymptote, but to a series of other propositions and definitions 
(Figure 9. Inside the figure the imagine referred to the hyper- 
bole is the one on the left side):  

Let PP'  be the diameter, C the centre and QQ'  a chord 
passing through the centre. Let ,QV Q'V '  be the so called 
ordinates to the diameter PP' . For the hyperbola (Ivi, prop. I, 
21, in its turn a consequence of the fundamental proposition I, 
12 where the notion of latus rectum or parameter and transverse 
diameter are introduced for the hyperbola), and for the circle 
and the ellipsis, too, it holds that 2QV  is proportional to 
PV P'V⋅ . Therefore the identity holds 

2 2: :PV P'V P'V ' PV ' QV Q'V '⋅ ⋅ =           (24) 

The triangles CQV and CV ' Q'  are similar for construction, 
hence it is  

2 2 2 2: : :PV P V P V PV QV Q V CV CV′ ′ ′ ′ ′ ′ ′⋅ ⋅ = =   (25) 

For the hyperbola, decomposing one has 
2 2 2 2:CV PV P V : CV CV P V PV CV′ ′ ′ ′ ′ ′− ⋅ = − ⋅    (26) 

But 2 2CV PV P V CP′− ⋅ = . We stress that to reach this con- 
clusion it is necessary that PP′  is a diameter. For, CV = CP + 
PV, hence the expression 2CV PV P V′− ⋅  is equal to 
( )2CP PV PV P V′+ − ⋅ , that is  

( )2 2CP PV PV CP P V′+ + −             (27) 

Of course 0PV ≠ , but since PP′  is a diameter and C the 
centre of the hyperbola, it is 2P V CP PV′ = + , so that, it is 

2 2CV PV P V CP′− ⋅ = . Since 2 2CP CP′= , it is CV CV ′=  
and for the parallels ,QV Q V′ ′ , it follows CQ CQ′= . 

The proof of Apollonius (Figure 9) needs the concept of 
diameter (and the existence of, at least, one diameter), of 
centre and resorts to two previous proposition. There is no 
resort to infinitesimal reasoning (either in the proof of the 
proposition itself, as we have seen, or in that of I, 12 and I, 
21). 

The proposition II, 3 sounds: “If a straight line touch a hy- 
perbola at P, it will meet the asymptotes in two points ,L L′ ; 

LL′  will be bisected at P, and 2 1
4

PL p PP′= ⋅ ”29. The last  

part of this proposition concerns the parameter p, a concept that 
will be dealt with by the commentators in their theorems 2 and 
3, not in theorem 1. Apollonius’ reasoning is the following 
(Figure 10): 

if the tangent does not meet the asymptotes in the points 
,L L′ , let us take two segments 

  
Figure 9. 
Proposition I, 30 of Apollonius’ Conics30. 

 

1
2

PK PK p PP′ ′= = ⋅ . 

Given this construction, the proposition II, 1 ensures that CK 
and CK ′  are asymptotes, but proposition II, 2 shows that no 
straight line through C within the angle between the asymptotes 
can itself be an asymptote. This absurdity implies that ,K K ′   

coincides with LL′ , and it is 1
2

PL PL p PP′ ′= = ⋅ . In the  

proposition II, 5 Apollonius proves that if the diameter of a 
parabola or of a hyperbola cuts a chord into two equal parts, the 
tangent at the vertex of that diameter is parallel to the chord 
divided into two equal parts. From here it is easy to prove (us- 
ing the same symbols as the commentators) that  

DR FD BA KA= = = . 
The procedure of the commentators is different from Apollo- 

nius’ who, particularly, introduces the concepts of diameter and 
of latus rectum (parameter) of a conic section (in our case the 
hyperbola) from the beginning, while the commentators intro- 
duce at first the concept of asymptote (which is postponed by 

28Apollonius, 1896: p. 21. 
29Apollonius, 1896: p. 56. 30Apollonius, 1896: p. 21. 
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Figure 10. 
Apollonius’ proposition II, 3. From Apollonius, 1896: p. 56. 
 
Apollonius in the first proposition of the second book). This 
generates—as we have seen—a different way to prove the same 
propositions, also considering that Apollonius wants to provide 
a complete treatise on the conics, while the commentators want 
to show the properties useful to understand Newton’s text. 
However the great difference between Apollonius and the com- 
mentators consists in one aspect: the use of the concept of limit 
and of the connected infinitesimal calculus in some part of the 
demonstrations, that simplifies otherwise difficult proofs. There 
are many examples; one of them concerns proposition II, 2, 
used, as we have seen, to prove the Proposition II, 3. The pro- 
position II, 2 aims to prove that no straight line through the 
centre of a hyperbola within the angles can itself be an asymp- 
tote31. With the concept of limit (a posteriori) it is enough to 
think that the  

0

1lim
x x→

= ∞  and that 1lim 0
x x→∞

=  

It is sufficient to refer to the first quadrant and to the equilat- 
eral hyperbola, because if a hyperbola is not equilateral the 
reasoning does not change from a conceptual point of view. Its 

meaning is: 1) when x tends to 0, the difference between the 
y-axis and the hyperbola can become smaller than every given 
value, if x is—told intuitively—small enough; 2) the difference 
between the x–axis and the hyperbola can become smaller than 
any given value if x tends to the infinity. Therefore every 
straight line inserted within the angles of the asymptotes 
through the centre will cut the hyperbola. Apollonius cannot 
use the concept of limit and hence, to prove the proposition II, 2 
resorts to an elegant, but relatively complicated ad absurdum 
reasoning, based on a series of steps also exploiting previous 
propositions, as the reader can see in Figure 1132. 

 

 
 

Figure 11. 
Apollonius’ proposition II, 2. From Apollonius, 1896: p. 55. 

 
On the other hand the resort to ad absurdum demonstrations 

is a typical procedure for the problem of insertions, when one 
cannot exploit directly the concept of limit. The case of the ex- 
haustion method is typical. This should hence induce to a great 
prudence with regard to the idea that the ancients—and in par- 
ticular Archimedes—possessed in nuce the concept of limit. 
Even if the concept of limit was not expressed in modern nota- 
tion, as we have made, it was known and used by the commen- 
tators and, of course, by Newton himself, albeit the word limit 

31Apollonius, 1896: p. 55. 

32In particular the propositions I, 21 (Apollonius, 1896: pp. 19-20) and II, 1 
(Apollonius, 1896: pp. 53-54). 
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was not utilized by him, rather the expression “method of first 
ratios of nascent quantities and last ratios of vanishing quanti- 
ties”, as well known. We have given a clear example of how 
Newton and the commentators used the concept of limit in the 
previous section 5.1. of this paper. 

The other consideration in a comparison between the treat- 
ment of the conics in the XVII century and Apollonius’ con- 
cerns the projective geometry, and in particular, the concept of 
ad infinitum point. Newton himself and the commentators 
use—even if not in a formalized manner—this notion. Let us 
think of the Scholium (Newton, 1822: I, pp. 180-190) inserted 
in the section V by Newton, where he explicitely writes: “As- 
ymptotos autem pro tangente habenda est, et eius terminus infi- 
nite distans (si ita loqui fas sit) pro puncto contactus” (Newton, 
1822: 1, p. 181, lines 2-3). In this sense the work by La Hire 
where many results by Desargues are written in a more com- 
fortable form than Desargues’, exerted a certain influence on 
Newton and on the commentators. For, La Hire is mentioned. 

Example 3. Lemma XXVIII: Ovals and Equations 
Let us finally analyse one of the most genial propositions and 

reasoning exposed in the Principia, but maybe in the whole 
history of science and mathematics: the Lemma XXVIII in the 
6th section of the Principia. Newton proves that: “there is no 
oval figure whose area, cut off by right lines at pleasure, can be 
universally found by means of equations of any number of fi- 
nite terms and dimensions” (translation drawn from Newton, 
1729: I, p. 145; Newton, 1822: I, pp. 203-207). Newton does 
not define the concept of oval, but it is clear that he is referring 
to never self-intersecting curves that are continuous, whose arc 
is never a segment of a straight line and with a finite curvature. 
The conclusions drawn by Newton from this lemma are that, 
given the time, it is possible to find the place of a body moving 
along an elliptic trajectory: 1) either by means of transcendental 
curves as the trochoid (Newton, 1822: I, Section VI, prop. 
XXXI, pp. 209-212); 2) or by methods of approximations 
(Newton, 1822: I, Section VI, Scholium, pp. 213-225). There- 
fore he was mainly interested in conclusions concerning as- 
tronomy, and this is only natural taking into account the scopes 
of the Principia. However, as Pesic remarks33, this lemma is 
fundamental for theoretical mathematics, too, because one of its 
most evident consequence is that the area of the circle—that is 
an oval—cannot be expressed as the solution of an algebraic 
equation of finite degree whose coefficients are rational in re- 
spect to the radius of the circle. It is well known that the prob- 
lem of the transcendence of π  is very complicated and was 
solved only at the end of the 19th century through an analytical 
method (Lindemann, 1882). Nevertheless, the reasoning by 
Newton shows intuitively that π  is transcendent in respect to 
the radius. This lemma represents hence a great occasion to 
discuss what intuitive means in mathematics and in what sense 
Newton’s genial proof can be considered rigorous and inside 
which limits it can be considered valid. All these are important 
epistemological and methodological questions with which we 
cannot deal with in this context, but that, certainly, have to be 
posed. Let us now see the bases of Newton’s reasoning and 
some interventions of the commentators. Newton resorts neither 
to figures nor to symbols. The steps are the following:  

1) given a point P in an oval, a line r rotating with a uniform 
motion around P and a mobile point starting from P and mov- 

ing along r with a speed which is proportional to the square of 
the distance (calculated along r) between P and the oval, the 
mobile point describes a spiral. Given these conditions, a pro- 
portionality exists between sectors of the oval area and points 
of the spiral, that represent the distance from P along r of the 
mobile point. Hence if a portion of the oval area cut off by the 
line r can be found by a finite equation, then the intersection of 
the line r with the spiral will be found through a finite equation 
of the same degree, as well;  

2) Every line cuts the spiral in an infinite number of points;  
3) The solutions of an irreducible equation indicating the in- 

tersections between two lines allow to find all these intersec- 
tions, therefore such equation has the same degree as the num- 
ber of intersections between the two lines;  

4) Thus, the equation indicating the intersections between a 
straight line and a spiral has an infinite degree;  

5) As a consequence the degree of the equation indicating the 
area of the oval figure has an infinite degree, too.  

Every step is justified in words and Newton is, as often, quite 
synthetic. We will consider the intervention of the commenta- 
tors as to the first step, that is the basis of Newton’s reasoning 
and that, in a sense, is the most refined part of this proof. 

 

  
Figure 12. 
Newton’s Lemma XXVIII and commentators’ demonstration34. 

33Pesic, 2003, chapter 4 presents an interesting discussion and analysis of 
this Newtonian lemma. 34Newton, 1822: I, p. 203. 
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The commentators deal with the first part of Newton’s dem- 
onstration in the notes 359 and 360 (pp. 203-204; see Figure 
12). Let ACBA be the oval and P the pole around which the line 
SP (we have indicated such line as r) rotates with a uniform 
motion, so that the point A, intersection between the oval and r, 
and also belonging to the circle AamX (whose centre is P and 
whose radius is PA) describes equal arcs of such circle in an 
equal time. The different positions of r are indicated by PA, Pa, 
Pm, … Let p be the mobile point that gets out from P, whose 
position is always on the rotating line r ≡ SP and whose speed 
is as the square of the distance between the point P and the 
intersection of r with the oval (for example when r is in the 
position PpQa such distance is PQ). The spiral is the dotted 
line. The fundamental passage for the demonstration is that the 
segment Pp (with p belonging to the spiral) is always propor- 
tional to the area of the oval sector PAQ. The explanation given 
by the commentators is the following: let us suppose the circle 
AamX divided into infinitesimal equal arches as am. Let Pa and 
Pm be two radiuses cutting respectively the spiral in p and n 
and the oval in Q and q. Let Qr and PL be perpendicular to Pq. 
Now a very important consideration: in the same time in which 
the point a covers the arch am (that is, we add, in the time in 
which the line r passes from the position Pa to the position Pm), 
the mobile point has moved in the spiral from the point p to the 
point n, namely the segment Ln. Brief our explanation of the 
passage: in the time 1t  let the mobile point be in the point p, 
belonging to the spiral and to the mobile line r. In the time 2t , 
this mobile point will be in the point n, belonging to the spiral 
and to the line r in its new position. Since pL is perpendicular 
to Pm, then if we consider the motion of the point on the mo-
bile straight line r, in the time interval ( )1 2,t t  the segment Ln 
is covered. Now, the commentators continue, since the speed of 
the line is constant, the segment Ln will be at the nascent arch 
am as the square of PQ (since the speed of the mobile point is, 
by hypothesis, proportional to the square of the distance P-oval). 
Furthermore, the triangles Pam and PQr are similar and hence 
it is 

: :Pa PQ am QR= , 

from which, it follows PQ amQr
Pa
⋅

= . Since PQr is an infini- 

tesimal sector, its area is  
21

2 2
PQ amQR PQ

Pa
⋅

⋅ = . 

The quantities am and 2Pa are constant, the oval nascent (in- 
finitesimal) sector PQq, which is the fluxion of the oval area 
PAQ, is proportional to 2PQ  and hence to Ln, which is the 
fluxion of the line Pp. Therefore the all fluent area PAQ (that is 
the integral of the infinitesimal oval arch PQq) is as the whole 
fluent line Pp. This is the clear explanation of the commentators 
(plus some additions of ours we have underlined) that makes 
the first and fundamental part of Newton’s reasoning clear. 
Furthermore it shows a significant example of how, at that time, 
the concepts of fluxion and fluent were used. This is a classical 
example of how the calculus can be useful in a substantially 
geometrical reasoning because the basis and the structure of 
Newton’s argumentation and proof in completely geometrical, 
the calculus plays and important role in some phases of the 
demonstration, but its basis and inspiration are geometrical. 

Conclusion 
Final Remarks on Science as Cultural Phenomenon 

within the Society  
The Science from ancient times (generally speaking) to 

nowadays, usually built a perception within society according 
with the idea that science is synonymous of progress & moder- 
nity; especially during period of materializations. We know that 
anomalies, inversions and controversies also belong up cited 
erroneously so called progress & modernity. Then it would in- 
teresting to investigate author per author to understand effetely 
how science worked and how society worked35, i.e., the concept 
of civilization (Buchwald and Feingold). 

Newton’s science certainly produced a strong impact on hu- 
manity, particularly on the Western civilization both concerning 
the scientific and supernatural background of the laws of nature, 
including mathematical interpretations of phenomena like non- 
physical laws; sometimes outside the context of the theory (i.e. 
providence, religion etc.). Certainly by combining scientific 
traditions and contributions of scholars, i.e., like Copernicus, 
Kepler, Galileo and Descartes (Schuster, 2000, 2013) he pro- 
vided to create a scientific framework based on an adequate 
mathematics (and geometry) for interpreting terrestrial and 
celestial physical phenomena which, a priori, were geometri- 
cally idealized to be easily citizens in his new revolutionary, a 
posteriori so called, mathematization of the nature. On the 
other hand, a parallel problem related to a dialogue as commu- 
nication-language between specialists (advanced and applied 
researches) and non-specialists (versus a scientific civilization) 
is a trouble matter, i.e. how is it possible to pass from science to 
technique and to technologies? And who was really able to be 
mediator in any other context of society?  

Finally the popularization of Newton’s Jesuit editions is a 
historical scientific attestation. The idea that a human mind can 
produce an intellectual revolution within science and its ap- 
proaches (methods and methodologies also integrated with con- 
tradictions and criticisms) strongly crossed like a paradigm 
both in the history of sciences and disciplines-literatures (rea- 
sonings, early enlightenment, positivism, etc.). Newton’s sci- 
ence and Newtonian science in the history made comprehensi- 
ble both the science according his physical paradigm (mechan- 
ics) and sciences alternative to his paradigm, i.e. Lazare Can- 
tot’s mechanics, geometry and mathematics (Carnot, 1786, 
1803a, 1803b, 1813; Gillispie & Pisano, 2013; Pisano & 
Capecchi, 2013; Pisano, 2013). In this sense the birth of mod- 
ern science and science in general, in all its contradictions, 
anomalies and developments certainly also represent a cultural 
phenomena. 

Final Remarks on Newton’s Jesuit Editions 
This paper has an introductory character for a research we 

are carrying out. The final purposes of the research are:  
1) A clear delineation of the relations between mathematics 

and physics inside the Principia. In other terms: how the par- 
ticular way in which Newton used geometry and infinitesimal 
procedures influenced his physics; 

2) The comprehension why and how Newton’s mathematical 
methods were progressively, but rapidly, replaced by more 
analytical methods. This second part has profound connections 
with the development of science and mathematics in the soci- 
35Our research on the fourth volumes is in progress. 
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ety. 
The Jesuit Edition will be the fundamental text to which we 

will refer because the commentators enter deeply into Newton’s 
mathematical argumentations. Conspicuous part of our work 
will consist in explaining the procedures used by Newton and 
the methods followed by the commentators in their notes. This 
will make it clear Newton’s way of thinking and the passage to 
his mentality to the purely analytical one, that was acquired 
definitively with Lagrange’s work. A part from the two general 
purposes that we exposed, we also aspired to clarify some ellip- 
tical and difficult Newton’s procedures, relying upon the expli- 
cative note of the commentators. This could be a useful contri- 
bution to history of physics and mathematics. In this paper we 
have given a synthetic model of our future research. 
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