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Abstract 
Rare earth elements are strategic commodities in many countries, and an im-
portant resource for the growing modern technology industry. As such, there is 
an increasing interest for development of rare earth element processing, and 
this work is a part of further development of chromatography as a rare earth 
element separation process method. Process optimization is pivotal for process 
development, and it is common that several competing objectives must be re-
garded. Chromatographic separation processes often consider competing objec-
tives, such as productivity, yield, pool concentration and modifier consumption, 
which leads to Pareto optimal solutions. Adding robustness to a process is of 
great importance to account for process disturbances and uncertainties but 
generally comes with reduced performance of the other process objectives as a 
trade off. In this study, a model-based robust multi-objective optimization was 
carried out for batch-wise chromatographic separation of the rare earth ele-
ments samarium, europium and gadolinium, which was considered highly 
un-robust due to the neighbouring peaks  proximity to the product pooling 
horizon. The results from the robust optimization were used to chart the re-
quired operation point changes for keeping the amount of failed batches at an 
acceptable level when a certain level of process disturbance was introduced. The 
loss of process performance due to the gained robustness was found to be in the 
range of 10% - 20% reduced productivity when comparing the robust and 
un-robust Pareto solutions at Pareto points with identical yield. The methodol-
ogy presented shows how to increase robustness to a highly un-robust system 
while still keeping multiple objectives at their optima. 
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1. Introduction 

Rare earth elements (REE) are extensively used in modern technological in-
dustries [1]-[7], and are considered as strategic commodities in many coun-
tries [4] [6] [7] [8]. REE minerals with varying compositions are found at de-
posits throughout the world [1] [2] [3] [4] [5] [7] [9], though most of the 
global REE supply comes from only a few sources [1]. By using liquid-liquid 
extraction methods, the elements are separated from the minerals and up-
graded to suitable purity levels for commercial applications [1] [2] [3] [4] [7]. 
However, several experimental and model-based studies have accentuated 
chromatography as an alternative method with considerable benefits [1] [5] 
[10]-[17]. This study is intended as a contribution to the work of developing 
chromatography as an REE separation method, and focuses on preparative 
chromatographic batch separation of the middle REE group, samarium (Sm), 
europium (Eu) and gadolinium (Gd), where Eu is the target product due to its’ 
higher commercial value. It is a continuation of an experimental optimization 
study [11], which was followed by a model based multi-objective optimization 
(MOO) study [18] where a process optimization strategy was presented. The 
current work complements the previous studies by introducing robust mul-
ti-objective optimization. This is utilized for mapping the required operation 
point changes, needed to keep the number of failed batches at an acceptable 
level when a certain level of process disturbance is introduced, as well as eva-
luating the performance change that is accounted for when formulating a ro-
bust counterpart problem. 

Since mathematical modelling offers a cost efficient and powerful approach 
for assessing preparative chromatography [10] [13] [14] [19]-[25], it has been 
employed as the preferred tool for evaluating and optimizing the chromato-
graphic system in this study. The optimization of a chromatography system is 
ordinarily cast in a bi-level framework [25]: 1) the upper level that administer 
the effects of the decision variables, such as load and elution gradient, that go-
verns the chromatogram, and 2) the lower level that establishes the pooling 
strategy for deciding the product pooling cut-times. A MOO method is needed 
when competing optimization objectives, such as productivity and yield, are 
considered. The MOO strategy in this work, as presented in [18], provides 
with an intact optimization objective for all levels of the bi-level optimization 
and firm objective values when evaluating the multi-objective optimization 
problem (MOP). However, the nominal solution for a MOP is not necessarily 
robust, and even small process disturbances may cause process failure. This 
calls for a transformation of the MOP into its’ robust counterpart problem 
[26] [27]. 

Approaches for introducing robustness to process optimizations are readily 
available in literature, and robust optimization for chromatography in particular 
are, amongst others, presented in [20] [24] [27]-[32]. The preferred robust op-
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timization method used in this work is similar to the methods presented in [29] 
[33], with the difference of that this study exclusively utilizes a stochastic me-
thod to obtain the model responses of the introduced process disturbances. 

The main focus of this study was to perform a robust multi-objective optimi-
zation of chromatographic REE separation. In this context, an experimentally 
validated process model from a previous study [18] was used to generate the 
process system response. The results from the robust multi-objective optimiza-
tion were used to assess the robustness of the system, chart the process parame-
ter changes when robustness was introduced, and evaluate the expected loss of 
performance when robustness was applied. 

2. Chromatography Model 
2.1. Process Description 

The chromatography model in this work is based on an experimental study of 
batch chromatography separation of Sm, Eu and Gd [11]. The experimental 
study utilized an Agilent 1200 series HPLC system (Agilent Technologies, 
Waldbronn, Germany) and a Kromasil M3 (Eka, Bohus, Sweden) column with 
the dimensions 150 × 4.6 mm. An inductively coupled plasma mass spectrome-
try (ICP-MS) system (Agilent Technologies, Tokyo, Japan) was used for in-line 
post column REE detection. The column stationary phase was made of spherical, 
C18 coated, silica particles with a diameter of 16 μm and a pore size of 100 Å. 
Each column had a ligand concentration of 342 mM Bis (2-ethylhexyl) phos-
phoric acid (Sigma-Aldrich, St. Louis, USA), and the elution gradient concentra-
tion was set to vary between 6% - 13% (vol) of 7 M nitric acid over a gradient 
length of 5 column volumes (CV). 

2.2. Chromatography Model 

The chromatography model in this study has been presented in a previous 
publication [18], and is reproduced here for the purpose of clarity. The column 
separation was described through a kinetic dispersive model [34] with a 
Langmuir mobile phase modulator isotherm [13] [14] [20] [21]. The model 
equations, defined in the spatial, 0 , fz z z ∈   , and temporal, 0 , ft t t ∈   , 
domains are given by:   

( )
( )int app,

1
,

1
c

c c p

c c qc v
t z z t
α α α

α α

ε
ε ε ε

−∂ ∂ ∂∂  = − − − ∂ ∂ ∂ + − ∂ 
D           (1) 

{ }
kin, , max,

Sm,Eu,Gd max,

1 ,eq S

qq k c K q q c
t q

αγ να
α α α α α

γ γ∈

  ∂
 = − −  ∂    

∑         (2) 

where cα  and qα  are the mobile and solid phase concentration of component 
{ }Sm,Eu,Gd,Sα ∈ , intv  is the quotient of superficial velocity over total 

porosity, app,αD  the apparent dispersion coefficient, and cε  and pε  the 
column and particle void fractions. Here, Sc  denotes the concentration of the 
modifier (i.e. nitric acid), kin,k α  a parameter describing the kinetics, ,eqK α  the 
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equilibirum constant regarding adsorption and desorption, αν  a parameter 
describing the ion-exchange characteristics, and max,q α  the maximum 
concentration of adsorbed components. The model does not consider modifier 
ions on the solid phase, therefore Equation (2) and its associated part in 
Equation (1) are omitted (i.e. 0q tα∂ ∂ ≡ ) when Sα = . Equation (1) is 
complemented with Danckwert boundary conditions [35]:    

( ) ( )

( ) { }

0 int app,α 0

load, int 0 load

mix, int

, ,

, , if Sm,Eu,Gd ,
if ,S

cc t z v t z
z

c v t t t
c v S

α
α

α α
α

∂
−

∂
 Π ∆ ∈=  =

D

            (3) 

( ) { }, 0, Sm,Eu,Gd,Sf
c t z
z
α α

∂
= ∀ ∈

∂
               (4) 

where load,c α  is the injected load concentration, and ( ) { }0 load, , 0,1t t tΠ ∆ ∈  a 
rectangular function in the temporal horizon [ ]0 load,t t∆ . The dynamics of the 
modifier concentration in the upstream mixing tank, mix,Sc , are given by: 

( )( )mix,
mix,

mix

d 1 ,
d

S
S

c
u t c

t τ
= −                     (5) 

( ) ( )
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where mixτ  is the residence time, u  is the elution gradient described by the 
initial value, 0u , and the slope of the linear elution gradient, u∆ , expressed as  

( )
0

load wash

f

f

u u
u

t t t
−

∆ =
− ∆ + ∆

. 

The first-order spatial derivative in Equation (1) was approximated using a 
method-of-lines and finite volume method with 100 grid points where 

kz k z= ∆  is the discretized spatial coordinate and [ ]1,100k∈ . The first order 
derivative was approximated as a two-point backward difference, and the 
second-order derivative was approximated as a three-point central difference. 
The model parameter values from [18] were used in this study, and are given 
in Table 1.  

3. Robust Multi-Objective Optimization  
3.1. Multi-Objective Optimization 

The multi-objecitve optimization problem formulation in this work resembles 
that of a previous study [18], with the difference of that this work only considers 
the two competing objectives yield and productivity. This is in order to benchmark 
the proposed robust optimization method with a previous bi-objective robust 
optimization method [30]. In this study, the column outlet concentration profile, 

( ), fc t zα  where { }Sm,Eu,Gdα ∈ , was used for evaluation of the competing 
objective functions yield, Yα  and productivity, Pα  for the target component 
Eu. The objective functions for the collected component, α , between the  
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Table 1. Model parameter values. 

Parameter Value Unit 

cε  0.4 - 

pε  0.6 - 

app,αD  125.4 10−×  m2/s 

kin ,k α  31 10×  ( )3 1m mol sαν −  

αν  2.3 - 

maxq  75.4 mol/m3 

,SmeqK  0.41 ( ) 13mol m αν −
 

,EueqK  0.81 ( ) 13mol m αν −
 

,GdeqK  1.27 ( ) 13mol m αν −
 

Q  0.5 ml/min 

mixV  0.1 ml 

mixτ  0.2 min 

 
cut-times ,c ft t    are defined as:   

( ) ( )load, int
d

, , , ,
d f c c f
Y c t z v A t t t
t
α

α αδ = Π                 (7) 
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d d1 1 ,
d dc f r

P Y
t V t t t
α α

αδ=
+

                    (8) 

where load, load, int loadcc v A tα αδ = ∆  is the total amount of injected sample, cA  and Vc 
the column cross-sectional area and volume, and 12r ct V Q−=   the regeneration 
and re-equilibration time following the final cut-time. Thus, the objective 
becomes to determine an optimal elution gradient, u , batch load, load,αδ , and 
pooling cut-times, ,c ft t   , that maximizes ( )fY tα  and ( )fP tα , while 
fulfilling the target component purity constraint given by:   

( ) ( )

{ }
( )

load,

load,
Sm,Eu,Gd

,f
f

f

Y t
X t

Y t
α α

α
β β

β

δ

δ
∈

=
∑

                 (9) 

where the numerator is the captured amount of the target component in 
,c ft t    and the denominator represents the total amount of captured 

components. 
The weighted sum scalarization method was used to combine the objectives in 

Equations (7)-(8) to a single objective with the weight for productivity defined as 
[ ]0,1ω∈ , and the weight for yield defined as 1 ω− . The decision variables are 

the free operating parameters, i.e. load 0, , ,c ft t t u∆  and fu , which in turn 
determine the trajectories  

( ) ( ) ( ) ( ) ( ) ( )( )mix, Eu Eu Eu( , ), , , , , , , ,k S k S kc t z c t z c t q t z P t Y t X tα α=x . The resulting 
optimization problem can then be set in the framework for min-min optimal 
control:      
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( )
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Eu Eud d
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( ) 2w.r.t. , ,c ft t ∈                                     

( )( ) ( )0 0s.t. , , , , , ,c ft t t t t= =x F x p x x             (10d) 

( )Eu, Eu 0,L fX X t− ≤                         (10e) 

, , , ,, ,c L c c U f L f f Ut t t t t t≤ ≤ ≤ ≤                 (10f) 

0 0, , , .f ft t t z z z   ∀ ∈ ∀ ∈                          

The solution of Equation (10) will result in a Pareto front situated on the 
boundary of the feasible region. This implies that a process disturbance, however 
slight, can cause a batch failure in terms of not meeting the purity constraint 
[26] [29]. In order to account for such disturbances it is necessary to formulate a 
robust counterpart problem, which in this study will be accomplished by 
introducing a back-off term to the purity inequality constraint in Equation (10e). 

3.2. Robust Multi-Objective Optimization Problem Formulation 

In order to formulate a robust counterpart of Equation (10), we consider a set of 
bounded distributed disturbances, p , on the free operating parameters, p  (i.e 

load 0,t u∆  and fu ), and define EuX  as the cumulative purity distribution of the 
model responses that are produced from p . A purity constraint back-off term, 

BFX , is introduced in order to make the purity constraint robust with respect to 
the disturbances. The back-off term can essentially be seen as a safety margin 
that amplifies the purity inequality constraint in Equation (10e) so that the 
purity requirement, Eu,LX , still can be met for the considered set of bounded 
disturbances. The success rate is defined as the fraction of batches in the 
disturbance set that fulfil the purity requirement, Eu,LX , and 

EuXΦ  signifies 
the desired success rate. The following robust counterpart of Equation (10) is 
then given by: 

Eu, BF

EuEu Eumin. d ,
LX X

XX X
+

−∞

−Φ∫                                  (11a) 

BFw.r.t. ,X                                                     
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                                    (11b) 

( )2~ , ,σ pp p N                                       (11c) 
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( ) 3
load 0w.r.t. , , ,ft u u= ∆ ∈p                                  

s.t. ,L U≤ ≤p p p                                      (11e) 

( ) ( )
0 0

Eu Eud d
, , argmin. d 1 d ,

d d

f ft t

c f
t t

P Yt t t t
t t

ω ω
 

= − + −  
 
∫ ∫x  (11f) 

( ) 2w.r.t. , ,c ft t ∈                                  

( )( ) ( )0 0s.t. , , , , , ,c ft t t t t= =x F x p x x          (11g) 

( ) ( )Eu, BF Eu 0,L fX X X t+ − ≤               (11h) 

, , , ,, ,c L c c U f L f f Ut t t t t t≤ ≤ ≤ ≤              (11i) 

0 0, , , .f ft t t z z z   ∀ ∈ ∀ ∈                       

A decomposition strategy was adopted to transform the robust MOP into 
three levels: 1) the upper-level optimization problem given by Equations 
(11a)-(11c) with respect to BFX , 2) the mid-level optimization problem given by 
Equations (11d)-(11e) with respect to p, and 3) the lower-level optimization 
problem given by Equations (11f)-(11i) and constrained by the ODE system, 
F , governed by Equations (1), (2), (5), (7), (8), (9). Essentially, Equation (11) 
was solved by using the simulated system response, x , for an uncertainty set of 
the free operating parameters, p , to evaluate the cumulative distribution 
function of EuX . The back-off term, BFX , in the purity inequality constraint, 
Equation (11h), was then incrementally increased to gain more successful 
batches in EuX , and thereby achieving a more robust process. This procedure 
was repeated iteratively until Equation (11a) was fulfilled, at which point 
Equation (11) was considered to be solved. 

In this study, the desired success rate, 
EuXΦ , was set to 0.95, and the decision 

variable boundaries are presented in Table 2. 

3.3. Optimization Method 

The robust optimization method in this study is similar to the methods 
presented in [29] [33]. The main difference is that the model responses of the 
introduced disturbances in this study are obtained stochastically, instead of 
alternatively utilizing a deterministic approach through linearization of the 
uncertainty set. The stochastic approach has the benefit of being more 
straightforward, at the expense of an increased demand of computation power. 
This increased demand was accommodated for by using a parallel computing  
 
Table 2. Decision variables. 

Decision variable Lower boundary Upper boundary 

Batch load, load, mixδ , (CV) 0.001 1 

Initial elution acid conc., 0u , (% of 7M HNO3) 0 15 

Final elution acid conc., fu , (% of 7M HNO3) 0 100 

https://doi.org/10.4236/aces.2017.74034


H.-K. Knutson et al. 
 

 

DOI: 10.4236/aces.2017.74034 484 Advances in Chemical Engineering and Science 
 

methodology as described in [19]. 
As a first step, the nominal and non-robust Pareto front was obtained by 

solving the MOP as defined in Equation (10). This was carried out through 
MATLAB’s fmincon function with a sequential quadratic programming 
algorithm, the BFGS formula for updating the approximation of the Hessian 
matrix, and central differences to estimate the gradient of the objective function 
and constraint functions. Then an uncertainty set, p , with a normal distribution, 
assuming no covariance between the free operating parameters p , a standard 
deviation σ , and sampling size of 10.000 was obtained via MATLAB’s lhsnorm 
function. The uncertainty set was applied to the investigated operating points on 
the nominal Pareto front, and the model responses were used to evaluate the 
cumulative purity distribution, EuX , of the uncertainty set. 

Then, an initial investigation of the back-off terms impact on EuX  was 
conducted by creating new Pareto fronts with an incrementally increased back-off 
and observing how EuX  changes when p  is applied to the investigated points 
on the new Pareto fronts. At this stage, it is of particular interest to investigate 
how the fraction of batches that fulfil the purity requirement in the perturbed 
set, changes with an increased back-off. This provides an estimate of the 
required back-off to meet a certain success rate for a given purity constraint. 

The required back-off for a given point on the nominal Pareto front was 
obtained by applying MATLAB’s fminbnd function on the upper level of the 
robust counterpart problem in Equation (11), with suitable boundaries obtained 
from the previous back-off investigation. The mid- and lower-level optimization 
problems in Equation (11) were solved by MATLAB’s fmincon function with a 
sequential quadratic programming algorithm, the BFGS formula for updating 
the approximation of the Hessian matrix, and central differences to estimate the 
gradient of the objective function and constraints. The procedure comprises an 
evaluation of the cumulative distribution function of EuX  based on x  and 
p , as obtained from the mid- and lower-level optimization problem for a given 

initial BFX . BFX  is then varied for the upper level optimization problem 
through MATLAB's fminbnd function, resulting in new x , p  and cumulative 
distribution functions of EuX  to be evaluated. This continues until a BFX  that 
produces a cumulative distribution function of EuX  corresponding to the 
desired success rate 

EuXΦ  is obtained. 

Optimization Method Benchmarking 
The proposed optimization method was compared with a previous optimization 
method [30] that focuses on the nominal Pareto front and optimizes the pooling 
time horizon for each investigated point on the front so that the purity 
requirement is met for a given uncertainty set. The main difference between the 
two methods is that the proposed method will find new optimal operation points 
by changing the free operating parameters, and achieve robustness by increasing 
the purity requirement back-off for each point on the Pareto front, whereas the 
previous method keeps the decision variables from the nominal Pareto front 
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intact, with the exception of the cut-times that are optimized to find a fixed 
pooling time horizon that will fulfil the purity requirement for the entire 
uncertainty set. 

3.4. Robust Multiobjective Optimization Results 

The robust multiobjective optimizations of the studied system were carried out 
with a product purity requirement, Eu,LX , of 0.95 and 0.99 respectively, and the 
target success rate, 

EuXΦ , was set to 0.95. The perturbed process parameters 
were the injected load concentration, load,c α , and the modifier concentration in 
the upstream mixing tank, mix,Sc . Several values for the uncertainty set standard 
deviation, σ , were investigated. However, a standard deviation exceeding 0.01 
did not result in achieving the target success rate even when the back-off was set 
to the maximum limit, i.e. Eu, BF 1LX X+ = . Therefore, only results for 0.01σ =  
are presented in this study. This should be interpreted as that the system is very 
un-robust, and sensitive to even the slightest process disturbances. However, this 
was expected since the studied elements are extremely similar in both chemical 
and physical properties, resulting in a minute separation selectivity which in 
turn makes the separation very difficult and unforgiving towards process 
perturbations. 

The nominal un-robust Pareto fronts are presented by the outermost fronts in 
Figure 1, and it is shown how the Pareto front decreases with an increased 
back-off on the purity requirement. It should be noted that we only present the 
impact of an increased back-off on four Pareto points to avoid overtly crowded 
figures. The objective weight, ω , for these points correspond to 1 (i.e. 
productivity as single objective), 0.5, 0.3 and 0 (i.e. yield as single objective) 
respectively. 

 

 
Figure 1. The nominal Pareto fronts are presented by the solid lines for a purity requirement of 0.95 in (a) and 0.99 in (b). The 
cross marks indicate how a Pareto point, with the weight ω , changes with an increased back-off. The dashed lines indicate the 
Pareto front outlines for an increasing back-off, and it can be seen that the Pareto front decreases as the back-off is increased. 
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The results from the initial investigation on how the success rate, 
EuXΦ , for 

the investigated points on the nominal Pareto front increases with an increased 
back-off are shown in Figure 2. The figure provides with an estimation of the 
required back-off to achieve the desired success rate for a given disturbance set, 
and it can be seen that an objective leaning more towards yield (i.e. ω  decreases) 
results in a lower success rate for a given back-off. 

It should be noted that the Pareto point corresponding to yield as a single 
objective, i.e. 0ω = , has been omitted since the point for maximum yield is 
considered as an undesirable operating point due to the drastic decrease in 
productivity. 

It is somewhat counter intuitive that the success rate should decrease with an 
increased objective weight for yield, since a higher yield typically is associated 
with an increased peak separation which in turn should result in an increased 
robustness. The decrease of robustness can be explained by observing how the 
decision variables change with an increased back-off for the 0.95 purity 
requirement case in Figure 3, where the pooling cut-time trends become very 
interesting. The decision variable trends show that the initial elution 
concentration and elution gradient slope are quite similar as long as productivity 
is a part of the weighted objective. However, a higher productivity is favoured by 
a larger batch load, a pooling horizon occurring earlier in the chromatogram 
(i.e. first and last pooling cuts occur earlier) and a smaller pooling volume. The 
increased batch load is reasonable since it will allow for a higher productivity 
due to an increased throughput. The early first cut comes from that a higher 
batch load will capacitate the elements to start eluting earlier. The earlier final 
cut makes the cycle time shorter, which is favourable for productivity, but it is 
also a trade of in terms of decreased yield. 

 

 
Figure 2. Results from the investigation of how the success rate increases with an increased back-off for a purity requirement of 
0.95 in (a) and 0.99 in (b). The dashed line indicates the target success rate, 

EuXΦ , and helps to provide an initial estimation of the 

required back-off, BFX , for a Pareto point with the objective weight ω . 
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Figure 3. Plots of decision variable changes due to an increasing back-off for Pareto points with different objective weights, ω , 
and a purity requirement of 0.95. (a) Batch load, (b) Initial elution concentration, (c) Elution gradient slope, (d) First cut time, (e) 
Final cut time, (f) Pooling volume. 

This has the important implication of that a high objective weight on 
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productivity will result in pooling cut times occurring closer to the Eu elution 
peak centre and farther away from the neighbouring peaks. When a higher yield 
is desired, the pooling horizon will increase in order to capture more of the 
target molecules, and this will move the pooling close to, and even into, the 
neighbouring elution peaks as long as the purity requirement is met. For this 
reason, a higher weight on yield will demand a higher back-off on purity in 
order to meet the desired success rate. This is due to that when a perturbation is 
introduced, the neighbouring peaks may move closer to, and even intrude, the 
pooling horizon, and a higher purity requirement will move the pooling cut 
times farther away from the neighbouring peaks. The farther away the cut times 
are from the neighbouring peaks in the nominal case, the higher disturbance can 
be tolerated since there is more room available for the neighbouring peaks to 
move before they impact the purity of the target peak. This is illustrated in 
Figure 4 where we can see a case with high productivity (smaller pooling 
horizon) and a case with high yield (larger pooling horizon) and observe how 
the introduced process disturbances make the neighbouring peaks creep into the 
pooling horizon to a larger extent for the high yield case.  

The results from the robust optimizations can be seen in Figure 5 where the 
nominal un-robust Pareto front is plotted along with the robust Pareto front 
produced by the proposed method, and the front from the benchmark method. 
It should be noted that both methods provide with robust operating points that  

 

 
Figure 4. Sections of chromatograms with focus on the collection of the Eu product pool. The purity requirement, EuX , was set 
to 0.95 for the productivity objective weights 1ω =  (a) and 0.3ω =  (b). The pooling cut times are indicated by the dotted lines, 
and the elution order is Sm, Eu and Gd. The unit for the nitric acid elution gradient (black dashed line) on the vertical axis is 
mol/l. The shaded areas indicate the span of concentration profile variations due to process disturbances with 0.01σ = , and the 
solid black lines indicate the concentration profiles for the nominal case. The chromatograms demonstrate that an operation point 
with a higher objective weight for productivity (a), is more robust than an operation point with a lower weight (b). This can be 
seen by observing how the larger pooling horizon in (b) allows for more collection of the neighbouring elements when 
disturbances are introduced, and thereby causing an increased number of batches with failed purity requirement. This is 
particularly noticeable for the Gd peak which intrudes the collected pool to a larger extent when process disturbances are 
introduced in (b). 
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Figure 5. Pareto fronts resulting from the optimizations with a purity requirement of 0.95 (left) and 0.99 (right). (a) indicates the 
nominal Pareto front, (b) the robust Pareto front according to the proposed method and (c) the robust front from the benchmark 
method. The dots indicate the system response of the distributed uncertainty set associated with the respective Pareto points. The 
dashed lines indicate the loss of productivity for a given yield when robustifying the nominal Pareto front according to the 
proposed method. 

 
handle the given process disturbances satisfactorily. However, the proposed 
method should be favoured since it produces a robust Pareto front with higher 
objective values compared to the benchmark method, which implies that the 
benchmark method should be considered more restrictive. Further, the 
benchmark method generates operating points that cannot be considered Pareto 
optimal, which is the case for the points with 1ω =  on front (c) in Figure 5. 
For the sake of fairness and as mentioned in [36], these points should be 
disregarded when generating a robust Pareto front with the benchmark method.  

Applying robustness to a point on the nominal Pareto front with a given ω  
will result in a change of both productivity and yield, as can be seen in Figure 1, 
and this makes the evaluation of performance loss when introducing robustness 
slightly ambiguous. In order to resolve this, the productivity for a given yield on 
the nominal Pareto front is compared to the productivity on the robust Pareto 
front given the same yield, as indicated by red dashed lines in Figure 5. The loss 
of productivity is presented in Table 3, and it shows that a productivity loss in 
the range of 10% - 20% can be expected. It should be mentioned that the 
robustness can be increased further during operation by applying a variable 
pooling cut time control strategy as described in [31], and thereby decrease the 
loss of productivity. 

The required back-off, that meets the robustness requisite according to the 
proposed method, is presented in Table 4 for the investigated Pareto points. The 
results show that a higher purity requirement calls for a larger back-off term to 
achieve a robust Pareto point, and a lower objective weight on productivity also 
necessitates an increased back-off. 

https://doi.org/10.4236/aces.2017.74034


H.-K. Knutson et al. 
 

 

DOI: 10.4236/aces.2017.74034 490 Advances in Chemical Engineering and Science 
 

Table 3. Loss of productivity. 

Purity  
requirement, 

( Eu,LX ) 

Yield, 
(-) 

Nominal  
productivity, 

( )3 1
columnkg m ,h−  

Robust  
productivity, 

( )3 1
columnkg m ,h−  

Loss of  
productivity, 

nominal robust

nominal

prod prod
prod

 −
 
 

 

0.95 

0.79 0.96 0.87 0.09 

0.90 0.87 0.74 0.15 

0.97 0.64 0.52 0.19 

0.99 

0.78 0.74 0.67 0.10 

0.90 0.66 0.55 0.17 

0.98 0.45 0.35 0.22 

 
Table 4. Required back-off. 

Purity requirement, 
( Eu,LX ) 

Objective weight, 
(ω ) 

Back-off, 
( BFX ) 

0.95 

1 0.0207 

0.5 0.0324 

0.3 0.0385 

0.99 

1 0.0456 

0.5 0.0474 

0.3 0.0481 

4. Conclusion 

This study has shown that the proposed optimization method can be used for 
robust multi-objective optimization of chromatographic rare earth element 
separation, and provided with expected performance changes for the 
robustification of the studied process. It has been highlighted that the studied 
system is highly un-robust, and that the system’s lack of robustness is largely due 
to the neighbouring peaks’ proximity to the product pooling horizon. The 
system can only cope with slight process disturbances, which in turn demands 
use of process equipment with high reliability. We show how the optimal 
solution of a chromatographic separation is affected by introducing robustness 
in a brute force manner. For future studies, it would be of interest to employ the 
proposed optimization method on additional chromatography schemes, as well 
as other chromatography separation applications than rare earth elements. 
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