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Abstract 
Hydrocracking is a catalytic reaction process in the petroleum refineries for 
converting the higher boiling temperature residue of crude oil into a lighter 
fraction of hydrocarbons such as gasoline and diesel. In this study, a mod-
ified continuous lumping kinetic approach is applied to model the hydro- 
cracking of vacuum gas oil. The model is modified to take into considera-
tion the reactor temperature on the reaction yield distribution. The model is 
calibrated by maximizing the likelihood function between the modeled and 
measured data at four different reactor temperatures. Bayesian approach 
parameter estimation is also applied to obtain the confidence interval of 
model parameters by considering the uncertainty associated with the meas-
ured errors and the model structural errors. Then Monte Carlo simulation is 
applied to the posterior range of the model parameters to obtain the 95% 
confidence interval of the model outputs for each individual fraction of the 
hydrocracking products. A good agreement is observed between the output 
of the calibrated model and the measured data points. The Bayesian ap-
proach based on the Markov Chain Monte Carlo simulation is shown to be 
efficient to quantify the uncertainty associated with the parameter values of 
the continuous lumping model. 
 

Keywords 
Hydrocracking, Continuous Lumping Kinetic Model, Bayesian Approach, 
Parameter Estimation, Markov Chain Monte Carlo 

 

1. Introduction 

Hydrocracking is a catalytic process in which the hydrocarbon molecules with 
longer chains break into lighter hydrocarbons with shorter chains. Hydrocrack-
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ing units in the petroleum refineries usually feed with the heavy fractions of re-
sidual oil that are not commercially valuable and instead produces more valuable 
lighter fractions of hydrocarbons like gasoline and diesel. The hydrocracking 
process is especially important due to maximizing the use of crude oil as its re-
sources are substantially reducing. Turning to use unconventional oil and gas 
reservoirs in recent years is an evidence of this importance [1] [2] [3]. Hydro-
cracking is a catalytic reaction at high-temperature and high-pressure conditions 
in the presence of hydrogen molecules [4]. Due to coke formation, poison depo-
sition, and solid state transformation, catalyst deactivation occurs during the 
process lifetime causing a reduction in the production yield. To compensate the 
catalyst deactivation’s effects during the catalyst lifetime, reactor operating tem-
perature should be adjusted (mainly increase) to maintain the desired produc-
tion yield [5]. In this point of view, simulation is an essential tool to adjust the 
operating temperature while keeping the production’s yields in an acceptable 
range. Process simulation is also necessary for reactor design to achieve selective 
intermediate distillate production [6].  

Hydrocarbons cover a broad range of molecular weights with different types 
of organic compounds that makes it difficult to monitor the consumption/ pro-
duction rates in the mixture of reactions in the hydrocracking process. Therefore, 
process engineers usually lump a group of organic compounds regardless of 
their molecular shape but based on their true boiling point (TBP) temperature 
having similar physio-chemical properties. Accordingly, kinetic modeling of 
heavy oil hydrocracking can be done based on the discrete or continuous lump-
ing approach [4] while each lump is indexed with its TBP temperature range.  

The discrete lumps kinetic model considers each lump characterized by its 
TBP temperature as one reactive species [6] [7] [8] [9]. For example, Sedighi et 
al. [10] studied a 6-lump kinetic model by considering the vacuum gas oil (VGO) 
having TBP temperature greater than 380˚C, diesel (260˚C - 380˚C), kerosene 
(150˚C - 260˚C), heavy naphtha (90˚C - 150˚C), light naphtha (40˚C - 90˚C), 
and gases (<40˚C) as discrete lumps of the process. In the discrete lumps ap-
proach, the heavier products associated with a higher TBP temperature can par-
tially convert to the lighter products in a parallel/series reaction chain while each 
reaction path has its own reaction kinetic rate. Therefore, the number of model 
parameters is directly proportional to the number of accounted lumps. When 
the number of model parameters is higher, the parameter estimation algorithm 
needs a higher amount of measured data in order to accurately estimate the pa-
rameter values. Balasubramanian et al. [11] considered a 5-lump model based on 
carbon number and ended up to estimate 40 unknown parameters for their 
model.  

The continuous lumping kinetic model [12] [13] [14] [15] can overcome this 
drawback where the number of parameters is independent of the number of 
lumped fractions in the model. In the continuous model approach, a distribution 
of reaction products over a range of TBP temperatures represents the model’s 
output. Integration over a discrete boiling point represents the concentration of 
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desired lump fractions [6]. Therefore, the continuous model has an advantage 
over the discrete lumped model, because any fraction of lumped products can be 
calculated from the same continuous distribution curve.  

Both the discrete and the continuous kinetic models have unknown parame-
ters that need to be estimated in order to calibrate the model. Regression tech-
niques have been successfully used to minimize the misfit between the modeled 
and measured data. Sadeghi et al. [16] and Elizalde et al. [6] applied the conti-
nuous lumping model over different sets of measured data to minimize the least 
square error between the modeled and measured points and obtained a point es-
timate of the model parameters. Kumar et al. [17] applied hybrid particle swarm 
optimization to estimate the continuous lumping parameter values. 

However, there are some uncertainties associated with the value of the para-
meters that are not considered in the point estimation methods. The measure-
ment errors, the model structural error (due to model simplifications), and er-
rors associated with the operating conditions (like isotherm reactor assumption) 
are the main sources of uncertainty in the hydrocracking kinetic models that can 
affect the value of the estimated parameters. To address the uncertainties in the 
parameter estimation, a probabilistic approach can be considered. Different 
techniques have been applied in scientific fields to deal with uncertainties. 
Commonly, Monte Carlo simulations over a pre-assumed range of parameters 
[18] [19] [20], the autoregressive moving average for uncertainty analysis asso-
ciated with the time series [21] [22] [23], the generalized likelihood uncertainty 
estimation (GLUE) method [24], and the Bayesian approach [25] [26] [27] [28] 
are used uncertainty quantification. Albrecht [29] studied four types of reaction 
models (with increasing complexity) including linearized second-order reaction, 
single elementary reaction, single elementary reaction coupled with temperature 
dependency, and catalytic reaction cycle aiming at evaluating the confidence in-
terval associated with each model parameters. He applied different techniques to 
regress the model parameters to experimental observations with artificially add-
ed noise; and concluded that for highly non-linear models, the Markov Chain 
Monte Carlo (MCMC) algorithms utilizing a Bayesian approach accurately esti-
mates uncertainty.  

Parameter estimation and uncertainty analysis by using Bayesian approach are 
widely used in different fields of science. Alikhani et al. [30] applied Bayesian 
inference to estimate the confidence interval of groundwater residence time dis-
tributions by using multiple groundwater age tracers as observed data points. 
Alikhani et al. [31] evaluated the information content of long-term measured 
data from a municipal wastewater treatment plant to evaluate the confidence in-
terval of activated sludge model parameters. They assessed the level of obtained 
information associated with the measured data points by comparing the entropy 
of the posterior distribution of parameters to their prior distributions. They con-
cluded that in multi-dimensional parameter estimation, the level of information 
obtained from a set of measured data is different for each parameter and there-
fore suggested to perform sensitivity analysis to select a subset of parameters to 
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be estimated. Sun et al. [32] applied the Bayesian approach to estimate the iso-
mer kinetic decay rate in the phytate (IP6) degradation pathway. Their reaction 
modeling network is conceptually similar to the discrete lumps kinetic models 
where higher order molecules in a hierarchical degradation pathway convert to 
lower order molecules. Therefore, the Bayesian inference approach is assumed to 
be suitable for this study to obtain the confidence interval of hydrocracking 
model parameters.  

Nonetheless, Bayesian parameter estimation framework needs to be solved by 
applying MCMC algorithms that usually requires a relatively larger number of 
model simulations. Therefore, an efficient numerical algorithm [33] should be 
selected to reduce the overall computation time of each simulation run.  

In this study, the continuous lumping kinetic model is slightly modified to 
take into consideration the temperature dependency of parameters. The Baye-
sian parameter estimation approach is applied to measured data obtained from a 
hydrocracking unit of a petroleum refinery to obtain the posterior credible in-
tervals of the model parameters. Finally, the Monte Carlo simulation is per-
formed by taking samples over the posterior range of estimated parameters to 
evaluate the confidence interval of the model output concentrations in different 
operating conditions.  

2. Materials and Methods 
2.1. Description of the Model 

The continuous lumping kinetic model in this study is explained in detail in [6] 
and [13] based on the original model presented in Laxminarasimhan et al. [15]. 
The model is defined based on a dimensionless temperature (θ) valued between 
0 to 1 showing the range of TBPs between the lowest ( lowTBP ) to highest 
( highTBP ) TBP values in the hydrocracking process:  

low

high low

TBP TBP
TBP TBP

θ
−

=
−

                      (1) 

The first-order reactivity (k) of each component can be related to its θ  by: 

( )
1

max

Tk
k

αθ=                           (2) 

where maxk  is the reactivity of the component with the highest TBP ( 1θ = ), 
and α  is the model parameter in the operating temperature T. The mass bal-
ance equation is then can be obtained as: 

( ) ( ) ( ) ( ) ( )maxd ,
, , , d

d
k

k

c k t
kc k t p k K Kc K t D K K

t
= − + ∫          (3) 

where the right-hand side shows the consumption (the first term) and produc-
tion (the second term) rate of the ( ),c k t  as the concentration of the compo-
nent with reactivity k. ( )D K  is the species-type distribution function that 
transfers the system with N discrete components to a continuous lumping space 
with the following equation: 
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The model is called continues because a cumulative distribution is assigned to 
the fraction yield of the species. ( ),p k K  represents the production yield of 
component with reactivity k from cracking of component with reactivity K and 
is given by: 
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where A and B are defined as: 
( )( )210.5e a TA −=                          (6)
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where 0a , 1a , and δ  are the model parameters. 0S  is the condition that sa-
tisfies the ( ) ( )

0
, d 1

K
p k K D K K =∫ , and can be obtained as: 
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Solving the continuous model results in a distribution of the component con-
centrations ( ),c k t . To obtain the weight fraction of each discrete fraction, the 
following integration can be performed: 

( ) ( ) ( ), , dj

i

k
i j k

c t c K t D K K= ∫                    
(9) 

where ( ),i jc t  is the concentration of a specific fraction between the iTBP  and 

jTBP .  
To take into consideration the temperature effect on the model parameters, an 

Arrhenius-type relationship [34] is adopted into the model parameters as: 

( ) ( ) ( )e rT T
rT T βη η −=                      (10) 

where ( )Tη  and ( )rTη  are the parameter values at temperature T  and re-
fetrence temperature rT , respectively. β  is the temperature dependency coef-
ficient for any model parameter η . By this modification, the model can be ap-
plied to a broader range of operating temperatures with a unique set of parame-
ter values. The continuous kinetic model is theoretically applicable for a broad 
range of hydrocracking products and operating conditions if the model outputs 
are in a good agreement with the experimental results. 

2.2. Bayesian Parameter Estimation 

The main idea of the Bayesian inference application in the parameter estimation is 
extracted from the work by Alikhani et al. [31]. In this approach, a prior distribu-
tion for each parameter should be assigned first. The prior range can be obtained 
by using the values reported in other studies for the similar operating conditions. 
The confidence about the prior range can be improved by applying the Bayes’ 
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theorem given the measured data points. The Bayes’ theorem can be shown as: 

( ) ( ) ( ), | | ,p p pσ σ∝Y Y λ λ λ
                 

(11) 

The results of applying Bayes’ theorem would be obtaining the posterior dis-
tribution ( ), |p σ Yλ  of model parameters λ  given a measured data set of Y ; 
while ( )p λ  represents the prior distribution. A normal distribution is consi-
dered for all the parameters in this study.  

In Equation (2), ( )| ,p σY λ  represents the likelihood function. By assuming 
Gaussian distribution of errors, the likelihood function can be shown as: 

( )
( )( )21

22
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2π
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i ii y y

nP

λ

σ
σ

σ

=
 − −  
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∑
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

 λ
               

(12) 

where n is the total number of measured data points, iy  is a single measured 
point while ( )iy λ  is its corresponding model output for a certain parameter 
set of λ . σ  is the likelihood standard deviation, representing the quantified 
uncertainty associated with the measured data points. λ  represents the five ki-
netic parameters ( maxk , α , 0a , 1a , and δ ) at reference temperature ( )rT  
plus five temperature dependency coefficients (

maxkβ , αβ , 
0aβ , 

1aβ , and δβ ).  
The Bayesian parameter estimation is particularly useful for the system of 

unknown parameters that are highly dependent on the operating conditions in 
which the calibrated parameter value of other studies is not suitable to be used in 
another study. Nonetheless, the information about the parameter values in other 
studies can be used to construct the prior distributions; and Bayesian approach 
can extract the information in the observed data set to enhance our confidence 
about the parameter values [31]. To obtain the posterior distribution by using 
the Bayesian approach, the mechanistic model needs to be solved by using Mar-
kov Chain techniques in a random walk approach [30]. Metropolis-Hasting al-
gorithm is applied in this study to sample parameter sets of λ  from posterior 
distribution ( )| ,p σY λ  [19].  

2.3. Measured Data Points 

Measured data points obtained from the case study introduced in [5]. The 
measured data were collected from a hydrocracking unit of a petroleum refinery 
where VGO feeds in 395˚C and 20 Mpa into 2 reactors in series. Reactors are 
filled with a NiO-WO3/SiO2-Al2O3 catalyst having the density of 790 kg/m3, spe-
cific surface area of 235 m2/g, and porosity of 0.5. The hydrocracking products 
were collected (Table 1) in the form of light petroleum gas, LPG, (<39˚C), 
naphtha (39˚C - 150˚C), kerosene (150˚C - 250˚C), diesel (250˚C - 380˚C), and 
VGO (>380˚C). The measured data points at four different reactor temperatures 
(390˚C, 410˚C, 430˚C, and 450˚C) and six different residence times are shown in 
Table 1. Part of the measured data points is also shown in Figure 1 and Figure 2.  

3. Results and Discussion 

Genetic algorithm (GA) used to obtain the point estimates of the modified con-
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tinuous kinetic model parameters by maximizing the likelihood function (Equa-
tion (12)). In total, 10 model parameters plus the likelihood standard deviation 
treated as unknown parameters to be estimated by applying the observed meas-
ured data. The results from GA for two operating temperatures at 390˚C and 
450˚C are shown in Figure 1. The results from GA optimization indicate that 
the continuous lumping model is reasonably able to capture the trend and mag-
nitude of the measured data. Moreover, results in Figure 1 show that applying 
the temperature dependency of parameters into the kinetic model works very 
well for the same set of parameter values at all the four reactor temperatures. In 
this study, 390˚C is considered as the reference temperature and the five main 
parameters of the continuous model ( maxk , α , 0a , 1a , and δ ) are estimated 
in this temperature. The observed data points at the other temperatures are ap-
plied to estimate the temperature dependency values of the parameters.  

The parameter values obtained by GA optimization were used as starting 
 

Table 1. Measured data points of hydrocracking process used in this study [5]. 

Temp (˚C) t (hr) %LPG %naphtha %kerosene %diesel %VGO 

390 0.34 1.35 1.77 3.45 4.10 89.33 

390 0.4 1.55 2.01 3.91 4.82 87.71 

390 0.5 1.80 2.39 4.73 5.97 85.11 

390 0.66 2.29 3.09 6.05 7.67 80.90 

390 1 3.20 4.06 8.72 11.25 72.77 

390 2 5.61 5.89 15.15 19.35 54.00 

410 0.34 2.37 3.20 5.40 5.86 83.17 

410 0.4 2.87 4.14 5.84 7.01 80.14 

410 0.5 3.33 5.00 6.73 8.94 76.00 

410 0.66 4.97 5.82 8.84 11.03 69.34 

410 1 6.42 7.98 12.64 14.75 58.21 

410 2 8.81 9.67 21.23 25.28 35.01 

430 0.34 4.81 5.95 7.26 8.70 73.28 

430 0.4 5.85 6.65 8.25 10.55 68.70 

430 0.5 6.01 8.89 10.51 12.21 62.38 

430 0.66 7.61 11.73 12.23 14.73 53.70 

430 1 9.72 14.99 16.32 19.62 39.35 

430 2 13.05 19.55 22.84 28.26 16.30 

450 0.34 5.81 11.55 12.59 15.94 54.11 

450 0.4 6.92 13.78 14.30 16.80 48.20 

450 0.5 8.31 16.40 16.62 18.49 40.18 

450 0.66 10.02 19.80 18.82 21.51 29.85 

450 1 14.78 38.42 13.22 17.03 16.55 

450 2 20.61 51.68 11.15 13.75 2.81 
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Figure 1. Modeled (lines) vs. measured (symbols) for the reactor temperature at left) 390˚C, and, right) 450˚C. The GA’s point 
estimate of the model parameters is used to obtain the modeled data.  
 

 
Figure 2. 95% model output confidence interval (floating bars) vs. measured data (circles) at four different operating temperatures 
with three different residence times.  
 

points of 10 parallel Markov chains aiming at sampling 100,000 posterior set of 
parameter values in the Bayesian parameter estimation approach. The first 
10,000 of total samples discarded due to burn-in period [31]. Statistical analysis 
performed on the remaining 90,000 samples to obtain the 95% credible intervals 
of the parameters.  

Values of 2.5th, 50th and 97.5th percentile plus the standard deviation of each 
model parameter are shown in Table 2. The negative values of δβ  and 

1aβ  

show that the value of δ  and 1a  decrease when operating temperature increase.  
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Table 2. 95% Bayesian credible interval and the standard deviation of the modified con-
tinuous lumping kinetic model parameters. 

Parameters Units 2.5% tile 50% tile 97.5% tile Std 

δ  ×105 (390˚C) [-] 0.20 2.26 4.88 1.50 

α  (390˚C) [-] 0.54 0.61 0.68 0.04 

maxk  (390˚C) hr−1 2.00 2.28 2.91 0.26 

0a  (390˚C) [-] 32.89 57.27 78.85 10.67 

1a  (390˚C) [-] 59.85 87.52 119.04 14.50 

δβ  ˚C −1 −0.0005 −0.0105 −0.0360 −0.0099 

αβ  ˚C −1 0.0075 0.0098 0.0122 0.0013 

maxkβ  ˚C −1 0.0047 0.0099 0.0134 0.0024 

0aβ  ˚C −1 0.0001 0.0028 0.0141 0.0038 

1aβ  ˚C −1 −0.0427 −0.0686 −0.0800 −0.0114 

σ  %wt. 0.025 0.028 0.032 0.002 

 
This finding is in good agreement with the parameter-temperature correlation 
presented in Elizalde et al. [6]. The small value for the likelihood standard devia-
tion (σ ) shows that the level of uncertainty in the presented system is low; in-
dicating that the errors associated with the measured data and model structural 
errors are low. 

In Table 2, the posterior range of the parameters can dynamically be reeva-
luated by introducing a new measured data set. In this way, the current posterior 
range can be introduced as a given prior range to the Bayesian approach and the 
modified posterior range can be obtained by applying new observed data.  

To evaluate the ability of the model to meet the observed data, the Monte 
Carlo simulation is performed and 5000 realization parameter sets randomly 
sampled from the 95% posterior range. The model outputs were statistically 
analyzed and the 95% confidence interval of weight fraction of hydrocracking 
products are obtained and illustrated in Figure 2.  

Results in Figure 2 show that most of the measured data points are fall inside 
the 95% model output range (shown as floating bars). The results also show that 
for the lightest fraction (LPG), continuous lumping model weakly predicted the 
observed data. Nonetheless, the model is predicting the moderate and heavy 
fractions with a good agreement.  

The model confidence intervals reflect the uncertainty level associated with 
the parameter values and can be used in decision-making step, obtaining factors 
of safety in designing step, and increasing the level of accuracy in the data mea-
suring (and sampling) step; and generally, can enhance the modeling and simu-
lation efficiency.  

4. Conclusions 

In this study, the parameter estimation of the hydrocracking process model is 
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assessed. One system consists of five fractions (LPG, naphtha, kerosene, diesel, 
and VGO) is modeled by using continuous lumping approach. The continuous 
model is modified by considering the effect of reactor temperature in the para-
meter values.  

The Genetic Algorithm and the Bayesian parameter estimation approach are 
applied to obtain the point estimate and the credible interval of the model para-
meters. A good agreement between the calibrated model output and the meas-
ured data is observed showing that the continuous lumping model is able to si-
mulate the presented hydrocracking process. The results also show that the 
modified continuous lumping model considering the temperature dependency 
of the parameters extends the ability of the model on different operating tem-
perature. Applying the Bayesian approach resulted in the 95% credible interval 
of model parameters reflecting the uncertainty associated with parameter values.  

A probabilistic simulation is also performed by using the posterior range of 
the parameters to obtain the confidence interval of model outputs. The results 
show that for the studied process unit, the uncertainty associated with the meas-
ured data and the model structural error is quantitatively low. The Bayesian ap-
proach based on the Markov Chain Monte Carlo simulation is shown to be effi-
cient to quantify the uncertainty associated with the parameter values of the 
continuous lumping model. 

The following general conclusions obtained from the presented study: 
1) Continuous lumping kinetic model was able to simulate the hydrocracking of 

VGOs in the range of 390˚C to 450˚C, and the residence time of up to 2 hr.  
2) The model parameters were estimated by maximizing the likelihood function 

between the model outputs and measured data points.  
3) The temperature dependency of the model parameters was successfully em-

bedded into the continuous lumping model and the temperature dependency 
coefficients were estimated.  

4) The uncertainty associated with the parameter values was evaluated by ap-
plying Bayesian theorem, and MCMC technique and the posterior range of 
parameters were obtained.  

5) Monte Carlo simulations were performed to evaluate the confidence interval 
of hydrocracking products’ yield. 
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