Insufficiency of Cellular Energy (ICE) May Precede Neurodegeneration in Alzheimer’s Disease and Be Treatable via the Alternative Cellular Energy (ACE) Pathway

W. John Martin

Institute of Progressive Medicine, South Pasadena, CA, USA
Email: wjohnmartin@ccid.org

Abstract

The term neurodegeneration emphasizes the destruction of neuronal cells as the primary explanation of many major neurological illnesses, including Alzheimer’s disease. Specialized functioning of cells requires more cellular energy than is needed for basic cell survival. Cells can acquire energy both from the metabolism of food and from the alternative cellular energy (ACE) pathway. The ACE pathway is an added dynamic (kinetic) quality of the body’s fluids occurring from the absorption of an external force termed KELEA (Kinetic Energy Limiting Electrostatic Attraction). KELEA is attracted to separated electrical charges and is seemingly partially released as the charges become more closely linked. As suggested elsewhere, the fluctuating electrical activity in the brain may attract KELEA from the environment and, thereby, contribute to the body’s ACE pathway. Certain illnesses affecting the brain may impede this proposed antenna function of the brain, leading to a systemic insufficiency of cellular energy (ICE). Furthermore, individual neurons may derive some of the energy for their own activities from the repetitive depolarization of the cell. This may explain why hyper-excitability of neurons can occur in response to cell damage. This adaptive mechanism is unlikely to be sustainable, however, especially if there is a continuing need to synthesize neurotransmitters and membrane ion channels. The energy deficient neurons would then become quiescent and, although remaining viable, would not perform their intended specialized functions. Actual cell death would not necessarily occur till much later in the disease process. The distinction between quiescent and degenerated cells is important since the ACE pathway can be enhanced by several means, including the regular consumption of KELEA activated water. This, in turn, may improve the proposed antenna function of individual neurons, leading to a sustained restoration of specialized function via the ACE pathway. This paper
explores this novel concept and provides a rationale for clinical testing of KELEA activated water in patients with neurological and psychiatric illnesses, including Alzheimer’s disease.

Keywords

1. Introduction

The ACE pathway was initially identified as providing a non-immunological defense mechanism against stealth adapted viruses [1]. These are derivative viruses, which have either lost or mutated the relatively few virus components normally targeted by the cellular immune system [2] [3] [4]. A cellular repair process occurs in the culturing of these viruses [1] [5]. It results from the production of chemical compounds, which typically self-assemble into particles and longer threads. These particulate materials are commonly pigmented, fluorescent, electrostatic, occasionally ferromagnetic and have electron donating, lipid synthesizing and water activating properties [1] [5]. The latter can be seen in the formation of vapor bubbles when the particles are placed into water [1] [5]. A striking feature of both *in vivo* and *in vitro* stealth adapted virus infected cells is the marked disruption of the cells’ mitochondria (the main source of energy from the metabolism of food) [5]. Cellular survival in these cells is attributed to the energy transducing particulate materials, which are accordingly termed ACE pigments [1].

Refeeding of repaired stealth adapted virus infected cultures with fresh tissue culture medium leads to the rapid reactivation of the cytopathic effect (CPE). This can be prevented by adding ACE pigment particles to the refeeding medium [1] [5]. Inhibition of reactivation was also achieved using small amounts of a purportedly homeopathic remedy termed HANSI (Homeopathic Activator of the Natural System Immune). The demonstration of activity of HANSI in tissue cultures clearly excluded a direct role involving the immune system. Based on the ACE pathway concept, the United States manufacturer of HANSI renamed the product to Enercel.

The formulation of HANSI and the early productions of Enercel contained detectable levels of Lidocaine, a dipolar compound. Further studies on virus culture-derived ACE pigments and ACE pigments directly obtained from stealth adapted virus infected patients, led to studies showing that many dipolar chemicals can alter the physical and biophysical properties of water and other fluids [6] [7] [8]. The physical changes in water include the reduction in surface tension, increased volatility and more marked internal dynamic (kinetic) activity.
These changes are attributed to a reduction in the hydrogen bonding between water molecules [9]. A more general principle has emerged that KELEA is a fundamental force required to prevent the fusion and possible annihilation of electrostatically attracted opposite electrical charges. It is seemingly attracted to the separated electrical charges on dipolar molecules. Certain dipolar molecules can release KELEA to nearby water, possibly in an oscillatory manner. Various electrical devices with rapid on-off switching or which repetitively propel opposite electrical charges towards one another can similarly lead to the activation of nearby water [10] [11] [12] [13].

2. Separating and Rejoining Electrical Charges as a Source of Cellular Energy

The membrane partitioning of hydrogen ions and its subsequent channeling back through the membrane provides the driving force allowing ATP synthase to add a third phosphate onto adenosine diphosphate (ADP) to form adenosine triphosphate (ATP) in both chlorophyll-mediated photosynthesis [14] and mitochondria-based food metabolism [15]. A reasonable question is where Nature initially derived the energy to form ATP synthase, chlorophyll, and the complex electron transferring molecules required for mitochondrial oxidative phosphorylation.

An intriguing possibility is that the membrane separation of electrical charges also allows for the attraction of KELEA, which could be partially released as the charges become more closely linked. KELEA could, thereby, provide a primary source of energy from which life has evolved. This process would likely be retained such that depolarization of the membrane potential of cells can act as an antenna to attract KELEA for transfer to both intracellular and extracellular water. This property would, therefore, be a basic energy-generating function of electrically excitable cells including neurons. The spontaneous electrical activity of the brain as reflected in the electroencephalogram (EEG) and in the oscillatory activities of various neurons may reflect the proposed antenna function of the brain in attracting KELEA into the body [16] [17] [18] [19]. The fluctuating electrical activities of muscles, including the heart, may similarly reflect KELEA attracting phenomena.

Support for the possibility that the body has an added energy-generating system is the realization that food metabolism is unlikely to totally provide the daily expenditure of energy by living organisms, including humans. Thus, for a 75 kilogram (Kg) individual to simply maintain body temperature at 20°C above the average environmental temperature requires 1500 Calories (75 × 20). Since the body heat dissipates in less than 24 hours after death, these 1500 Calories are required daily. A typical diet of approximately 2000 Calories per day would leave insufficient Calories to reasonably account for skeletal muscle, cardiovascular, brain, liver and other physiological functions [20].

Additional support for the concept that the brain may have direct water activating capacity has come from observations on water samples placed within a
room of individuals participating in a laughing yoga class. These samples became more volatile, which is a measure of water activation, than did control samples not placed within the room [21]. The author has also encountered individuals with the ability to directly energize nearby water. They do so by adopting mental states, which they have individually found to be effective. This suggests that if indeed the brain is a major antenna for KELEA, then it is a variable property that can potentially be learned [20].

The ACE pathway provides more than just an addition to the energy derived from food metabolism. Specifically, it enhances resistance to infectious illnesses, having several advantages when compared to the immune system [22]. The ACE pathway may be able to bypass the metabolic blockades presumably preventing apoptosis in some tumors [23]. Ongoing clinical studies are highly suggestive of the ACE pathway contributing to functional activities of the brain that are not directly supported by food metabolism.

3. Insufficiency of Cellular Energy (ICE)

Neuronal cells can become deficient in cellular energy if their capacity to generate ATP from food metabolism is limiting. This can occur from reduced blood supply of nutrients and/or oxygen, along with an inability to effectively remove carbon dioxide, urea, and other metabolic waste products. Cellular energy deficiency can also arise from intrinsic defects in various metabolic pathways. These defects can be primarily genetic or secondary to external factors, including toxins and microbes. The normal functioning of neuronal cells is presumably also dependent upon the ACE pathway as it exists throughout the body. Individual neurons may also depend upon locally generated KELEA resulting from their own repetitive depolarization.

Establishing the membrane potential in most cell types, including neurons, requires the active transport of sodium (Na+) ions from within the cell to the extracellular space. The same transporter imports one-third less potassium (K+) ions into the cell [24]. Depolarization with the formation of an action potential occurs by an induced major influx of Na+ ions into the cell. The inflowing Na+ ions must then be secreted from the cell to repolarize the cell membrane. The Na/K transporter utilizes ATP as an energy source. Depolarization/repolarization, therefore, requires ongoing chemical energy [25]. It is proposed that some of this energy usage may be offset by, or at least essentially exchanged for the delivery of KELEA into the cell.

This energy gathering process is likely to be far more efficient for depolarizations occurring in unicellular organisms than for multicellular organisms with a networking nervous system. This is because the synthesis, secretion and reuptake of neurotransmitters at synaptic junctions add to the energy output of neuronal activity. Indeed, synaptic impulse transmissions utilize more ATP than does the generation of action potentials [26] [27] [28] [29] [30]. Actual studies on brain metabolism indicate that neuronal activities impose a significant drain on cellular metabolism. Still, if depolarization of unicellular organisms is an
evolutionarily net source of cellular energy, then more frequent depolarization may have persisted as a cellular adaptation of electrically excitable cells, including neurons, to ICE.

The full opening of the Na⁺ channel is triggered at a threshold level that requires sufficient reduction in the differential electrical charge across the membrane. The electrical charge on the inner side of the resting cell membrane is approximately −70 millivolts (mV) with respect to the outside of the cell membrane. The Na⁺ input channel is triggered at approximately −50 mV. Thus, a lessening of the membrane potential, for example from −70 mV to −60 mV, will lead to depolarization in response to minor stimuli that are unable to trigger cells with a normal membrane potential. Indeed, a lowered differential electrical charge is an early characteristic of neuronal cell damage [31] and by inference neuronal hyperactivity may be expected as an early manifestation of ICE.

As suggested above, repeated depolarization of a neuro-networking brain is a drain on the brain’s cellular energy. In addition to the chemical energy demands of synaptic transmission, continuing hyperactivity appears to increase the turnover of ion channels. These channels are heavily glycosylated molecules and, therefore, cannot be readily brought back into the cell for recycling. If activation increases their turnover, then cellular energy will be required to maintain adequate numbers of ion channels within the external cell membrane [32]. The loss of ion channels would reduce ACE pathway input. The energy deficient neuronal cells would then enter a quiescent, survival mode of existence.

The progressive loss of cellular energy will eventually lead to cellular death and true neurodegeneration. This may, however, be a much latter phase of many neurological illnesses than is commonly envisioned. This reasoning applies to Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), Parkinson’s disease and even aging.

4. Alzheimer’s Disease

The underlying cause of Alzheimer’s disease is still unknown. Genetic factors play a major role as does advancing age [33]. Overproduction of phosphorylated tau protein and both the overproduction and aberrant enzymatic cleavage of amyloid precursor protein (APP) occur in Alzheimer’s disease patients [34]. Direct cellular toxicity has been attributed to both tau and amyloid-derived compounds, although efforts to reduce their levels have not shown major clinical benefits [35] [36]. As discussed elsewhere, it is feasible that neuronal cell damage leading to the overproduction of these materials may also occur from underlying stealth adapted virus infections. The notable accumulation of these materials in the brains of Alzheimer’s disease patients, but not in younger stealth adapted virus infected patients, may be related to age-related inefficiency of a basic clearance mechanism [37].

Relevant to this paper are indications of possible hyperactivity within regions of the brain, including the hippocampus and motor cortex, as an early feature in Alzheimer’s disease [38] [39] [40] [41] [42]. Neuronal hyperactivity in cognitive
pathways may contribute to dementia by distracting from the comprehension and interpretation of specific thought processes. Patients with Alzheimer’s disease commonly display positive psychiatric symptoms, such as delusions, hallucinations, and agitation [43] [44]. Although potentially attributed to a loss of inhibitory neurons, these symptoms are consistent with intrinsic neuronal hyperactivity. The occurrence of new-onset epilepsy in conjunction with Alzheimer’s disease [45] [46] [47] is also consistent with an initial hyperactivity phase of the illness.

Alzheimer’s disease patients progress to illnesses in which there is clear hypofunctioning of multiple regions of the brain. The neurological deficits extend beyond impaired cognition in patients with advanced Alzheimer’s disease. Most patients exhibit emotional apathy, social withdrawal, depression, blurred speech, impaired hearing, loss of smell, autonomic dysfunction, delayed reflexes, and poorly coordinated muscle activity [48] [49] [50] [51] [52]. Although the loss of neuronal cells can be demonstrated histologically, the signs and symptoms are not necessarily entirely due to neuronal degeneration. Rather, there may also be a major component of neuronal cells simply failing to engage in their intended specialized functions.

5. Clinical Improvements in Alzheimer’s Disease Patients

Improvements resulting from lifestyle interventions have been observed in several Alzheimer’s disease patients. The interventions primarily involve changes in diet, reduction of stress levels and/or increased aerobic exercise. This is still a controversial topic with some neurologists suggesting that significant reductions in symptoms preclude the earlier clinical diagnosis of Alzheimer’s disease. Nevertheless, clinical improvements are consistent with neuronal cell dysfunction, as opposed to irreversible cellular degeneration. The dietary changes include switching to either a ketogenic [53] or a Mediterranean diet [54] usually in addition to consuming various dietary supplements. The common dietary supplements include medium chain triglycerides; phosphatidylcholine and other membrane lipids; Moringa oleifera; turmeric; cocoa; niacin; and others [55] [56] [57] [58] [59] [60]. A trusted colleague has told me that she has achieved consistent cognitive improvements in well over fifty elderly Alzheimer’s patients during the last several years. Her therapies include the regular consumption of water containing sodium chloride-depleted minerals from the Great Salt Lake, other dietary supplements and having her patients adopt an optimistic, mindfulness, mental attitude. Most alternative medical practitioners are likely to attribute any apparent clinical benefits of dietary supplements either to an assumed anti-oxidant activity or to the correcting of supposed underlying nutrient or mineral deficiencies [62]. KELEA is absorbed by dipolar chemicals and it can be argued, that the reported beneficial dietary compounds act by increasing the supply of KELEA to the body [7]. The term Enerceutical has been suggested for compounds with KELEA attracting and water activating properties [7]. It is further possible that even the willingness to make dietary changes reflects a basic change in brain activity, which may co-
incidentally enhance its KELEA antenna function. Similarly, the decision to min-
nimize stress or to engage in more vigorous exercising may be shown in future
clinical trials to increase the brain’s KELEA absorbing capacity.

6. Controlled Studies on Enhancing the ACE Pathway

There are multiple ways to activate the ACE pathway and some are particularly
well suited to double-blinded clinical trials. Among the more informative trials
are the direct comparisons between matched groups of patients consuming ei-
ther KELEA activated or regular water. Sufficient water activation for initial
clinical studies can be provided by simply placing water into KELEA concen-
trating energy fields, as can be achieved by opposing fluctuating lights [12] and
by other methods. Another approach is to use dipolar herbal components with
subsequent, repeated dilutions to essentially reduce the residual concentrations
to below detectable levels [63]. One study showed remarkable benefits of inject-
ing and inhaling Enercel in tuberculosis-infected AIDS patients [64]. A striking
feature of the study was the improved mood and cognition that occurred in ad-
dition to the clearance of the mycobacteria and the reduction in HIV levels.
Current test protocols in this and other medical conditions now involve the
drinking of approximately 500 ml per day of KELEA activated versus control
water. Employing yet another protocol to enhance the ACE pathway, the healing
of herpes virus infections has been expedited [65]. ACE pathway activation has
clinically helped children with autism, including leading to the permanent sup-
pression of epilepsy in a child [66].

7. Conclusion

This paper provides the rationale for clinical studies on the possible therapeutic
value of activated water in patients with Alzheimer’s disease. A major premise of
the paper is that cells can acquire cellular energy via the alternative cellular
energy (ACE) pathway. It is expressed as an added kinetic (dynamic) activity
of the intracellular and extracellular fluids within the body. The energy for the
ACE pathway comes from the absorption of a natural environmental force
termed KELEA (Kinetic Energy Limiting Electrostatic Attraction). It is pro-
posed that unlike most other cell types, neuronal cells may be able to directly
attract KELEA from the external environment during their electrical depolar-
ization. Indeed, repetitive depolarization may be an initial adaptive response of
neuronal cells to an insufficiency of cellular energy (ICE). The damaged neu-
ronal cells may progress to become hypo-responsive, quiescent cells [67]. As
such, although still viable, the neurons would be unable to perform their in-
tended more specialized functions. KELEA can be transferred into water for
drinking and consuming KELEA activated water can be compared with con-
suming regular water for possible therapeutic benefits in patients with various
neurological illnesses, including Alzheimer’s disease. Clinical efficacy in such
studies will naturally lead to major efforts at disease prevention through the
support of the ACE pathway.
Acknowledgements

The Institute of Progressive Medicine is a component of MI Hope Inc., a non-profit public charity. Valuable clinical input and insights have been received from various Complementary and Alternative Medicine practitioners.

References

dulators of Calcium Influx Regulate Membrane Excitability in Rat Dorsal Root Ganglion Neurons. *Anesthesia Analgesia*, 107, 673-683.
https://doi.org/10.1213/ane.0b013e31817b7a73

https://doi.org/10.1002/cphy.c110044

https://doi.org/10.1002/gps.2628

https://doi.org/10.3389/978-2-88945-041-1

https://doi.org/10.1016/j.jalz.2013.11.003

https://doi.org/10.1038/nn.4017

https://doi.org/10.15406/jnsk.2015.02.00057

https://doi.org/10.1002/bies.201500004

https://doi.org/10.1016/j.neurobiolaging.2014.08.014

https://doi.org/10.1212/01.wnl.0000171450.97464.49

https://doi.org/10.1016/j.neuron.2012.03.023

https://doi.org/10.1016/j.jalz.2014.04.514

https://doi.org/10.1016/j.jalz.2011.05.2410

https://doi.org/10.1016/j.jad.2015.09.069

https://doi.org/10.1001/archneur.2011.830

Scientific Research Publishing

11

Abbreviations

ACE alternative cellular energy
ICE insufficiency of cellular energy
KELEA kinetic energy limiting electrostatic attraction
ATP adenosine triphosphate
ADP adenosine diphosphate
Na⁺ sodium ion
K⁺ potassium ion
mV millivolt
Kg kilogram
Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact aad@scirp.org