A Study on Nutritional Status and Dental Caries in Permanent Teeth among School Going Girl of Bengalee Population, India

Madhumati Chatterjee, Arup Ratan Bandyopadhyay*
Department of Anthropology, University College of Science, Technology and Agriculture, University of Calcutta, Kolkata, India
Email: *arup_cu@rediffmail.com, *abanthro@caluniv.ac.in

Received June 4th, 2012; revised July 5th, 2012; accepted July 15th, 2012

Variations in tooth eruption patterns are supposed to have multifactorial reasons and etiologic factors to explain variation in caries are unsatisfactory. Prevalence of caries is comparatively higher in the children of developing countries than that of the children of same age in developed countries. Indian studies on the dental caries mostly in children related to prevalence and treatment. However, nutritional effect on dental caries on Indian school going children is yet to be carried out in eastern India. This study investigated the prevalence of dental caries in permanent teeth and nutritional status among the 544 school going children (girls) of 6 - 19 years age group of Bengalee ethnicity of West Bengal, India. Caries was recorded based on DMFT index following basic guidelines for Oral Health Surveys guideline (WHO). Nutritional status was obtained using BMI and classification of nutritional status was achieved using the standards of WHO and CDC growth charts include an age- and sex-specific BMI reference for children aged 2 - 20 years. The overall prevalence of dental caries was 44.5% and mean DMFT was 0.45 ± 1.57. Nutritional status demonstrated, about 30% and 6.69% of schools going girls were underweight and overweight respectively. Occurrence of dental caries was found in all permanent teeth among the girls of underweight and normal according to their BMI-for age status. Furthermore, a significant association (p < 0.05) with occurrence of dental caries among the underweight girls has been found compared to that of the overweight and normal. This study indicates a close relationship between nutritional status and dental caries in this region.

Keywords: Dental Caries; Permanent Teeth; Nutritional Status

Introduction

Variations in tooth eruption patterns are supposed to have Multifactorial reasons (Robinow, 1973; Reid & Dean, 2005) and also generally accepted etiologic factors are unsatisfactory to explain variation in caries in observational studies (Granath et al., 1991). Dental caries is a global disease with few populations exempt from its effects. In developing countries, as development increases so does dental caries and children are at the forefront of the disease disadvantage (Naidoo & Myburgh, 2007). The strongest association, however, emerges to occur between dental eruption and skeletal growth (Garn et al., 1960; Demirjian et al., 1985). Early under nutrition in childhood affects skeletal growth and results in decreased height. Similarly, poor nutrition affects tooth eruption and outcome demonstrated delayed emergence of the deciduous teeth. There appears to be a physiological association between skeletal growth and tooth eruption (Barrett & Brown, 1966; Mukherjee, 1973; Rami-Reddy et al., 1986; Banerjee et al., 1992; Alvarez, 1995; Chiu et al., 2012). A change in the pattern of tooth eruption should result in a concomitant change in the age distribution of dental caries in the primary teeth. Russell et al., (1965) reported that caries was substantially more severe in the deciduous teeth than permanent teeth with substantial ethnic variability (Yassin & Low, 1975) regard to dental caries in both deciduous and permanent teeth have also been observed (Ludwig et al., 1964). Dental diseases impact considerably on self-esteem and quality of life and are expensive to treat. Study regarding caries prevalence among three distinct ethnic groups of five-year-old children demonstrated that mean caries prevalence values were higher among the Asian children (Prendergast et al., 1989). In children from less-developed countries, the prevalence of caries in deciduous teeth was found to be traditionally high in comparison to that of the children of same ages in developed countries and it is either similar or frequently higher (Russel, 1966; Mascarenhas, 1999; Cleaton-Jones et al., 2006). Indian studies on dental caries mostly carried out in adult and elderly population (Shah, 2003; Shah & Sundaram, 2004) in relation to socio-demography, hygiene, and diet and in children (Mandal et al., 2001; Mahejabeen et al., 2006) related to prevalence and treatment as well. However, effect of nutrition in dental caries on Indian school children is yet to be carried out.

The present study is an attempt to investigate the effect of nutrition on caries development in permanent dentition among the school going girls of Howrah district, West Bengal, India. To best of the knowledge no studies has been reported on nutritional status and dental caries in permanent dentition among Eastern Indian population so far.

Materials and Methods

The cross-sectional study has been conducted on randomly selected 544 socio-economically middle class schoolgirls determined on the basis of their parents’ income of Bengalee origin from Howrah district of West Bengal, India with the age range of 6 to 19 years and the mean age being 12.05 ± 3.23 SD
years. Age of the girls has been obtained by confirming the date of birth from the school register. Dental eruption has been studied on the basis of the presence of crown in the gum and as well as by the shape, size, colour and sharpness for the permanent dentition. After taking consent from the individuals, apart from data regarding dental eruption and observation of caries, other biosocial information regarding monthly household income, number of family members, parity, birth order, hygiene practices etc. was taken by a specially prepared pre-tested schedule.

The study participants were examined for oral evaluations on an upright chair in adequate natural light using dental mouth mirror and explorer, following the World Health Organization’s Basic Guidelines for Oral Health Surveys (WHO, 1997). Caries was recorded based on DMFT (Decayed, Missing and Filled Teeth) index. Nutritional status was evaluated by anthropometry taken from each girl following standard techniques (Lohman et al., 1988; Malina & Bouchard, 2004). Stature were measured to the nearest 0.1 cm while, while weight was measured to the nearest 0.1 kg with least clothing by the female investigator. BMI was calculated as weight (kg)/Stature 2 (m) and classification of nutritional status was achieved using the standard of WHO (1995) and also new growth charts from the Centers for Disease Control and Prevention (CDC) include an age- and sex-specific BMI reference for children aged 2 - 20 year (Kuczmarski et al., 2000, 2002) has been followed. All continuous variables were checked for normality and were found to be not negatively skewed. All data were double checked for any possible typological error. Technical error of measurement (TEM) (Ulijaszek & Lourie, 1994) values was found to be between 0.000 and 0.351 considering the anthropometric variables. All statistical analyses have been done with the help of SPSS 9.0 statistical software.

Results and Discussion

The characteristics of the studied population (Table 1) demonstrated a steady increase of stature and weight from 6 - 10 years of age group to 15 - 19 years of age group. So far the nutritional status concern all the age groups revealed almost similar frequency of underweight (BMI < 5th percentile), while the 11 - 14 years of age group demonstrated slightly higher overweight (BMI > 85th percentile) in comparison to 6 - 14 and 15 - 19 years of age group. It would be apparent from Table 1 that, the prevalence of dental caries was found to be highest in 11 - 14 years of age group (20.07%) compared to those of 6 - 14 years and 15 - 19 years of age group. The median ages of the eruption of the permanent teeth in the present Bengalee School going girls demonstrated (Table 2) earlier eruption of mandibular and maxillary central Incisor. Late eruption was noticed in maxillary second Molar teeth, while permanent canine teeth demonstrated late eruption in both the maxilla and mandible. Examination on dental eruption revealed total absence of third molar in the present sample. The median age of eruption of permanent dentition, however, in corroborate within the range of Indian samples (Kaul et al., 1975; Bhasin et al., 1977; Kaul &
Pathak, 1983)) but a secular trend of early eruption of all permanent teeth has been noticed in comparison to prior study conducted on Bengalee School going girls (Banerjee et al., 1985).

In the present sample (544) about 30% of school going girls were underweight, while normal and overweight were 63.08% and 6.92% respectively, on the basis of BMI-for-age. Examination on BMI—for age among the girls with dental caries revealed about 41.83% of the girls was underweight (Table 3) and 41.18% of the girls were normal. On the other hand about 17% of the girls with dental caries were overweight.

The overall prevalence of dental caries was 44.5% and the mean DMFT was found to be 0.45 ± 1.57. A trend of age effect on DMFT has been found in terms of higher occurrence of dental caries in higher ages. Occurrence of dental caries was found in all kinds of permanent dentition among the girls of underweight and normal according to their BMI—for age status. Contrary to that overweight girls demonstrated teeth wise variation in occurrence of dental caries and complete absence in Premolars. A significant association with occurrence of dental caries ($p < 0.05$) among the underweight girls has been found compared to that of the overweight and normal ($p < 0.05$). Teeth wise comparison, however, revealed almost similar incidences of dental caries among the underweight and normal girls with slightly higher incidences of caries in Molar teeth among the normal girls. Dental caries in Canine were found to be significantly ($p < 0.05$) higher among the overweight girls in comparison to their normal and underweight counterparts. In general the occurrence of dental caries has been noticed mostly (33.99%) in Molars, followed by Incisors (32.02%) and Premolars (14.38%).

Although dental caries has been declining globally in general population, more so among adults, but the caries prevalence in younger age has not shown a significant decline. Majority of the studies were on school going children because of their accessibility (Holm, 1990) which is not so in preschool children. In the present study prevalence of dental caries in permanent dentition demonstrate lower incidences (44.1%) than the finding of Mahejabeen et al., (2006) from southern part of India in preschool children and in corroborator with the study from Eastern India (Mondal et al., 2001) and as well as mean DMFT among the school children of Kerala, India (David et al., 2005). The overall nutritional status in terms of BMI—for age in the present study among the Bengalee School going girls, however, corroborate with earlier studies (Ghosh & Bandyopadhyay, 2006; Ghosh & Bandyopadhyay, 2009) on Bengalee school-girls and adults. Examination on prevalence of dental caries in the present study revealed that the underweight group was significantly higher ($p < 0.05$) than normal and overweight categories. However, cross sectional study from South East Asia (Narksawat et al., 2009) also revealed normal and thin school children had a higher risk for dental caries than overweight and obese children aged 12 - 14 years. Longitudinal study (Delgado-Angulo et al., 2012) demonstrated stunting being one of the risk factors of dental caries in permanent dentition as well. Oral health and nutrition have a synergistic bidirectional relationship and nutrition and diet may affect the development and integrity of the oral cavity towards the progression of oral diseases (Touger-Decker & Mobley, 2007). Under nutrition in children not only delay the teeth development and affect the age distribution of dental caries, but also resulted in a higher number of carious primary teeth (Alvarez et al., 1990). The low socioeconomic class having the highest caries experience (Rahmatulla, 1993). Contrary to that, the tribal children exhibited a low prevalence of dental caries, both in primary and permanent dentitions, compared to rural and urban Indian children of the same age (Jalili, 1993; Rao & Bharanbhe, 1993; Homme, 2011).

Studies envisaged dental caries in deciduous dentition is a risk indicator for dental caries in permanent dentition (Delgado-Angulo, 2006) and caries status in the primary teeth can be used as a risk indicator for predicting caries in the permanent dentition (Li & Wang, 2002). The multiple survival analysis confirmed that there has been major impact of the caries status of the deciduous dentition on the incidence of cavities in permanent molars (Leroy et al., 2005).

The use of peak caries activity has allowed the observation of a strong association between malnutrition and increased dental caries (Alvarez, 1995). It was found that chronic malnutrition vis a vis under nutrition reduced the secretion rate of stimulated saliva, but not that of unstimulated saliva. The salivary buffer capacity was continuously decreased as the secretion rate decreased with the level of malnutrition and under nutrition in the Indian children. The malnourished children developed increased caries and chronic malnutrition in growing children enhances the cariogenic potential stemming from fermentable carbohydrates (Johansson et al., 1992). Studies also demonstrated that the absence (Lenander-Lumikari & Loimaranta, 2000; Uehara et al., 2003; Bergandi et al., 2007) due to deletion of locus (Klingberg, 2007) related to saliva soluble CD14 could represent a useful index of caries activity. Enamel hypoplasia, salivary glandular hypofunction and saliva compositional changes might be mechanisms through which malnutrition is associated with caries (Psoiter et al., 2005). The pattern of dental

Table 3.
Incidences of dental caries in permanent teeth according to nutritional status represented by BMI in Bengalee School girls.

<table>
<thead>
<tr>
<th>Nutritional Status on the Basis of BMI</th>
<th>I1</th>
<th>I2</th>
<th>C</th>
<th>P1</th>
<th>P2</th>
<th>M1</th>
<th>M2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight (BMI < 5th Percentile)</td>
<td>15</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(23.43)</td>
<td>(12.50)</td>
<td>(15.63)</td>
<td>(12.50)</td>
<td>(4.69)</td>
<td>(18.75)</td>
<td>(12.50)</td>
<td></td>
</tr>
<tr>
<td>Normal (BMI)</td>
<td>20</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>12</td>
<td>15</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>(31.75)</td>
<td>(4.76)</td>
<td>(3.17)</td>
<td>(11.4)</td>
<td>(6.35)</td>
<td>(19.05)</td>
<td>(23.81)</td>
<td></td>
</tr>
<tr>
<td>Overweight (BMI > 85th Percentile)</td>
<td>3</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(11.54)</td>
<td>(69.23)</td>
<td></td>
<td></td>
<td></td>
<td>(11.54)</td>
<td>(7.69)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Figures in the (parenthesis) denotes percentage.
REFERENCES

and physical activity (2nd ed.). Chicago: Human Kinetic Books.