Applied Mathematics, 2011, 2, 1437-1442
doi:10.4236/am.2011.212203 Published Online December 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
On p and q-Horn’s Matrix Function of Two
Complex Variables
Ayman Shehata
Department of Mat hematics, Fac ul t y of Sci ence, Assiut University, Assiut, Egypt
E-mail: drshehata2006@yahoo.com
Received September 24, 2011; revised October 25, 2011; accepted November 3, 2011
Abstract
The main aim of this paper is to define and study of a new Horn’s matrix function, say, the p and q-Horn’s
matrix function of two complex variables. The radius of regularity on this function is given when the positive
integers p and q are greater than one, an integral representation of 2(,,,; ;,)
Hq
p
A
ABBCzw
 is obtained, recur-
rence relations are established. Finally, we obtain a higher order partial differential equation satisfied by the
p and q-Horn’s matrix function.
Keywords: Hypergeometric Matrix functions, p and q-Horn’s Matrix Function, Contiguous Relations,
Matrix Functions, Matrix Differential Equation, Differential Operator
1. Introduction
Many special functions encountered in mathematical
physics, theoretical physics, engineering and probability
theory are special cases of hypergeometric functions [1].
Hypergeometric series in one and more variables occur
naturally in a wide variety of problems in applied mathe-
matics, statistics [2-4], and operations research and so on
[5]. In [6,7], the hypergeometric matrix function has
been introduced as a matrix power series and an integral
representation. Moreover, Jódar and Cortés introduced,
studied the hypergeometric matrix function (,;;)
F
ABCz ,
the hypergeometric matrix differential equation in [8]
and the explicit closed form general solution of it has
been given in [9]. Upadhyaya and Dhami have earlier
studied the generalized Horn’s functions of matrix argu-
ments with real positive definite matrices as arguments
[10] and this function 7
H
also [11], while the author
has earlier studied the Horn’s matrix function H2 of two
complex variables under differential operators [7]. In [12,
13], extension to the matrix function framework of the
classical families of p-Kummer’s matrix functions and p
and q-Appell matrix functions have been proposed.
Our purpose here is to introduce and study an exten-
sion of the matrix functions of two variables. This paper
is organized as follows: Section 2 contains the definition
of the p and q-Horn’s matrix function of two variables,
its radius of regularity and integral relation of the p and
q-Horn’s matrix function is given. Some matrix recu-
rrence relations are established in Section 3. Finally, the
effect of differential operator on this function is investi-
gated and p and q-Horn’s matrix partial differential equ-
ation are obtained in Section 4.
Throughout this paper 0 will denote the complex
plane cut along the negative real axis. The spectrum of a
matrix
D
A
in
N
N
C
, denoted by ()
A
is the set of its
eigenvalues of
A
. If
A
is a matrix in
N
N
C, its two-
norm denoted by 2
is defined by [14]
2
202
sup
x
A
x
A
x
where for a vector in
y
N
C,

1
2
2
T
yyyis the Eu-
clidean norm of y.
If f(z) and g(z) are holomorphic functions of complex
variables z, defined in an open set of the complex
plane, and if
A
and are a matrix in B
N
N
C
with
()A
 and ()B
 also and if
A
BBA
, then
from the properties of the matrix functional calculus [15],
it follows that
()() ()().fAgB gBfA (1.1)
The reciprocal gamma function denoted by
11
() ()
zz

is an entire function of the complex vari-
able . Then for any matrix
z
A
in
N
N
C
1()
, the image of
acting on A denoted by
1
()z
A
is a welldefined
A. SHEHATA
1438
matrix. Furthermore, if
is invertible for every
non negative integer
AnI
n
(1.2)
where
I
is the identity matrix in
N
N
C, then ()
A
is
invertible, its inverse coincides with 1()
A
and one
gets [8]
1
0
()() ((1))
()();1;()
n
.
A
AA IAnI
A
nIA nAI
 
 
(1.3)
Jódar and Cortés have proved in [16], that
1
() lim(1)![()].
A
n
n
A
nAn

  (1.4)
Let P and Q be two positive stable matrices in
N
N
C
.
The gamma matrix function ()P
and the beta matrix
function have been defined in [16], as follows
(, )BPQ
()ln
0
() d;
tPIPIPI t
Pettte
 
 
(1.5)
and
1
0
(, )(1)d.
PI QI
BPQtt t


(1.6)
Let P and Q be commuting matrices in
N
N
C
such
that the matrices and are
invertible for every integer . Then according to [8],
we have
, PnIQnI
0nPQ nI

1
(, )()().BPQPQP Q
 
2. Definition of p and q-Horn’s Matrix
Function
Suppose that p and q are positive integers. The p and q-
Horn’s matrix function2(,, ,; ;, )
H
pq
A
ABBCzw
 of two
complex variables is written in the form
2
1
-
,0
(,, ,; ;, )
()(')()(')[( )]
=()!()!
H
pq
mn
mn mn nm
mn
AA BB Czw
AABBC zw
pm qn

(2.1)
where and
,,
(, )mn
mn mn
UzwVzw
1
,
()( )()( )[()]
()!()!
mnmnnm
mn
AABBC
Vpm qn

.
For simplicity, we can write the 2(,,,; ;,)
Hq
p
A
ABBCzw

,,;;,)
in the form ,
2
H
pq
2(,
H
pq
A
+IAB BCz w
 in the
form 2()
H
pq
A
, ,2(,, ,;;, )
H
pq
A
ABBC+Izw
 in the
form 2()
HC
pq
.
We begin the study of this function by calculating its
radius of regularity R of such function for this purpose
we recall relation (1.3.10) of [17,18] and keeping in
mind that 2
,
12
mn
mn
. We define the radius of re-
gularity of the function2(,, ,; ;, )
H
pq
A
ABBCzw
 as
(1.7)
1
,
,
1
1
,
1lim sup
()()()()[()]
lim sup()!()!
()()()()(')
limsup(1)!()(1)!( 1)!
(1)!(1)!( 1)!
mn
mn
mn mn
mn
mnmnnm
mn mn
AAB
AAB
mnm n
mn
V
R
AABBC
pm qn
mnAmAn BnB
mnmnm mn n
mnm n
















B
11
1
,
11
11 11
,
(1)
(1)!
[() ]1
(1)!
(1)! ()!()!
() () (') () ()(1)!( 1)!(1)!
lim sup()!()!
()
n
Cmn mn
BC
m
mn
mn mn
AACBB
mn mn
n
n
mC
nmm
mpmqn
CAABB mnnn
pm qn
mnm n
 



!






  






where
22
,
,, 0;
1, ,0.
mn
mn
mnmn mn
mn
mn




Using Stirling formula and take mn
is a positive integer, then
Copyright © 2011 SciRes. AM
A. SHEHATA 1439

1
1(1)
(1)
1
1
(1)
1(1) !(1) !(1) !
lim sup[(1)]()()!()!
1
2π(1) 2π
(1)!( 1)!(1)!
lim suplim sup
()!()! 2π
n
AACBB
n
n
nn
n
pn
nn
nnnn
nnn
Rpnqn
nn
nn
nnnn e
pn qnpn
pn e





 


 



 

 


 




1
2( 1)(1)
12
11
11 1
1
(1)
2π
11
lim sup0.
nn
qn
qp qp
n
n
ne
qn
qn e
nn n
nq p



 














 





Summarizing, the following result has been established.
As a conclusion, we get the following result.
Theorem 2.1. Let
A
,
A
, , and be ma-
trices in
BBC
N
N
C such that CmI
are invertible for all
integer . Then, the p and q-Horn’s matrix function
is an entire function in the case that, at least, one of the
integers p and q are greater than one.
0m
If , then the function is convergence in
1pq
zr, ws and in [5,19]. (1)rs1
Integral form of the p and q-Horn Matrix
Function
Suppose that
A
and are matrices in the space C
N
N
C of the square complex matrices, such that
A
CCA
,
A
, and are positive stable ma-
trices.
CCA
By (1.3), (1.4) and (1.7) one gets

 
 
1
11
1--
11 (-1)
0
()()
()( )
()()1 d.
mm
CAI
AmI
AC
AmICACmI
A
CAC ttt

 

 

 
(2.2)
Substituting from (2.1) and (2.2), we see that

2
,0
1
11 (1)
0
11
1-
0
3
0
(,,,;;,)
() ()(')
=()!()!
()()()(1 )d
() ()()
(,,;-;,) d.
1
H
F
pq
mn
mn nn
mn
Am ICAI
pq
CAI
AI
AA BB Czw
ABB
zw
pm qn
A
CAC ttt
ACAC
tABBztw
t






 

 
t
Therefore, the following result has been established.
Theorem 2.2. Let
A
,
A
, , and be ma-
trices in
BBC
N
N
C. Then the p and q-Horn’s matrix function
of two complex variables satisfies the following integral
form

2
11
1-
0
3
0
(,, ,; ;,)
=(')( ')()
(,,;-;, )d
1
H
F
pq
pq
CAI
AI
AA BB Czw
ACAC
tABB
t




ztwt
(2.3)
where
30
,0
()()()
(,,;-;,) =()
()!()!
F
pq mn
mn nn
mn
ABB
A
BBztwztw
pm qn
.
3. Matrix Recurrence Relations
Some recurrence relation are carried out on the p and
q-Horn’s matrix function. In this connection the following
contiguous functions relations follow, directly by increas-
ing or decreasing one in original relation
2
1
,0
1
,0
1
1
,
,0
(A+)
()( ')()( ')[()]
()!()!
(( ))
()()()()[()]
()!()!
(()) (,)
H
pq
mn
mn mn nm
mn
mn
mn mn nm
mn
mn
AIAB BCzw
pm qn
AAmnI
AIAB BC
pm qn
AAmnIUzw



(3.1)
and
1
2
,0
1
,
,0
() ()()()[()]
(A )()!()!
()[((1))]( ,).
H
pqmn
mn mn nm
mn
mn
mn
AIAB BCzw
pm qn
AI A mnIUzw



(3.2)
Similarly
Copyright © 2011 SciRes. AM
A. SHEHATA
1440
,

 


 


1
,
2
,0
1
,
2
,0
1
,
2
,0
1
,
2
,0
1
,
2
,0
2
(+) (,),
()1 (,)
(+)(, ),
()1 (,),
(+) (,),
()
H
H
H
H
H
H
pq mn
mn
pq mn
mn
pqmn
mn
pq mn
mn
pqmn
mn
pq
AAAmIUzw
A
AI A mIUzw
BBBnIUzw
BBIBnIUzw
BBBnIUzw
B













 


 

1
,
,0
1
,
2
,0
1
,
2
,0
1(
(C+)( ,),
(C)1( ,).
H
H
mn
mn
pqmn
mn
pq mn
mn
BI BnIUzw
CCmIU zw
CIC mIUzw






 

,),
(3.3)
4. The p and q-Horn’s Matrix F u nction
under the Differential Operator
Consider the differential operator D on the p and q-Horn’s
matrix function of two complex variables, defined in [7,
17] as
12
,, 1
1, otherwise
ddmn
D
where 1
dz
z
and 2
dw
w
. This operator has the
property .
()
mn mn
Dz wmnz w
p q
For the and -Horn’s matrix function the fol-
lowing relations hold


2
,0
1
2
22
()
()( )()()[()]
()!()!
()2
H
HH
pq
mn
mn
mn mn n m
qq
p
p
DI A
AmnI
AABBC zw
pm qn
Ad
A



(4.1)
and


12
1
-
,0
2
()()()( )[()]
()!()!
().
H
H
pq
mn
mnmnnm
mn
q
p
dI A
AABBC
A
mIz w
pm qn
A
A



(4.2)
By the same way, we have



222
222
122
(),
(),
()
()
HH
HH
HH
pqq
p
pqq
p
pqq
p
B
dI BB
BdI BB
CdI C ICI

 
 .
(4.3)
From (4.1), (4.2) and (4.3), we get


2
22 2
22
2
22 2
22
()2
(')(),
()2
(')().
HH H
HH
HH H
HH
pqq q
p
p
qq
pp
pqq q
p
p
qq
pp
A
AA Bd
A
AB
AB
A
AA Bd
A
AB
AB


 


 

(4.4)
From (4.1), (4.3) and (4.4), we have



2
22 2
222
2
22 2
222
()2
()(),
()
()2
()( )
HH H
HHH
HH H
HHH
pqq q
p
p
qqq
ppp
pqq q
p
p
pqqq
pp
AABC d
A
CB
CI B
AAB Cd
A
CBCI B

.
 


2
,
H
q
(4.5)
Also from (4.2), (4.3) and (4.4), we see that





2
22
22 2
2
22
22 2
()() ,
()( )
() ()
()(').
H
HH
HH H
H
HH
HH H
pq
p
qq
pp
pqq q
pp
pq
p
qq
p
qq q
pp
p
AC
ACCI
A
BBBB BB
ACBB
AC
CI
A
BB
BB
 

 


 
 
(4.6)
Now, we append this section by introducing the dif-
ferential operator 1
dz
z
and 2
dw
w
to the en-
tire functions in successive manner as follows;
Copyright © 2011 SciRes. AM
A. SHEHATA
Copyright © 2011 SciRes. AM
1441
pq
11112 2222
1
1, 0
0, 1
121 121
... ...
()( )()( )[()]
12 1
... ()!()!
1
H
mn
mn mn nm
mn
mn
pq
dd dddd dd
pp pqq q
AABBC
p
mm mmzw
pp ppmqn
nn q



  

  

  
  


 

 
 




1
1
1, 0
0, 1
()( )()( )[()]
21
... ()!()!
() ()()()[()]
1121
... ()!()!
112
.
mn
mnmnnm
mn
mn mn nm
pmn
qmn
AABBC
q
nn zw
qq pmqn
AABBC
pmpmpm p
mpz w
pp ppmqn
p
qn qn
nq qq
q








 
 
 
 
 

 
 
1
11
1,00, 1
11
,0
()( )()( )[()]
1
.. ()!()!
()( )()( )[()]()( )()( )[()]
11
()!()! ()!()!
()( )()
1
mn
mnmnnm
mn mn
mn mn nmmn mn nm
pq
mnm n
mn m
pmn
AABBC
qn qzw
qpmqn
AABBC AABBC
zw zw
pmpqnpmqn q
pq
AAB
p




 





 






1 1
1 1
1111
,0
1
111 1
,0
,0
()[()]()()()()[()]
1
()!()! ()!()!
()( )()( )[()]
(( 1))()()!()!
1
mn mn
nnmmn mn nm
qmn
mn
mnmn nm
pmn
qmn
BCAAB BC
zw zw
pm qnpm qn
q
AABBC
zAmn IAmICmIzw
pm qn
p
wAmn I
q
 

 






1()( )BnIB nI






1
111
1
1
2 2
()( )()( )()
()!()!
(, ,,;;,)(,,, ;;,
() HH
mnm nnmmn
pq q
p
pq
AABBC
zw
pm qn
zw)
A
AAABBCzwAI AABBC
CBB
pq


 

 zw
i.e.,


11112 2222
1
1
2 2
121121
... ...
(, ,,;;,)(,,, ;;,
()
H
HH
pq
pq q
p
pq
pq
dd dddddd
pp pqq q
zw)
A
AAABBCzwAI AABBC
CBB
pq

  

  

  
  

 

 zw
We can written the2(, ,,;;,)
H
pq
A
ABBCzw
 , then
 


pq
11111222222
1
1, 00, 1
12112 1
... ...
1()()()(')[( )](1)()(')()(
11
()!()!
H
mnm nnmmnmnm n
p q
mn mn
pq
dddddICI dddddII
pp pqq q
CmIAA BBCnAAB
zw
pm p qn
pq
 
 
 
  

  
 
  
  
 



  
1
pq
121212
2
') [()]
()!( )!
2.
H
mn
nm
ppqq
BC zw
pmqn q
zzww
DIAdIAddIADIAdI dIAdI
ppqq

 
 


Therefore, the following result has been established.
Theorem 4.1. Let
A
,
A
, , and C be matrices
in
B B
N
N
C
. Then the2(,, ,; ;, )
H
pq
A
ABBCzw
 is a solu-
tion for the following differential equation
A. SHEHATA
Copyright © 2011 SciRes. AM
1442
 
111112 2222
121212
2
12112 1
... ...
2
()()( ')()()
0.
H
pq
ppqq
pq
dddddICI dddddII
pp pqqq
zzww
DIAdIAddIADIAdI dIAdI
ppqq
  

  
  
  
 
(4.7)
5. Acknowledgements
The Author expresses his sincere appreciation to Dr. M.
S. Metwally, (Department of Mathematics, Faculty of
Science (Suez), Suez Canal University, Egypt) for his
kind interest, encouragements, help, suggestions, com-
ments and the investigations for this series of papers.
6. References
[1] H. M. Srivastava and P. W. Karlsson, “Multiple Gaussian
Hypergeometric Series,” Ellis-Horwood, Chichester, 1985.
[2] A. G. Constantine and R. J. Mairhead, “Partial Differen-
tial Equations for Hypergeometric Functions of Two Ar-
gument Matrices,” Journal of Multivariate Analysis, Vol.
2, No. 3, 1972, pp. 332-338.
doi:10.1016/0047-259X(72)90020-6
[3] A. M. Mathai, “A Handbook of Generalized Spcial Func-
tions for Statistical and Physical Sciences,” Oxford Uni-
versity Press, Oxford, 1993.
[4] A. M. Mathai, “Jacobians of Matrix Transformations and
Functions of Matrix Argument,” World Scientific Pub-
lishing, New York, 1997.
[5] H. M. Srivastava and H. L. Manocha, “A Treatise on Ge-
nerating Functions,” Ellis Horwood, New York, 1984.
[6] M. T. Mohamed and A. Shehata, “A Study of Appell’s
Matrix Functions of Two Complex Variables and Some
Properties,” Journal Advances and Applications in Mathe-
matical Sciences, Vol. 9, No. 1, 2011, pp. 23-33.
[7] A. Shehata, “A Study of Some Special Functions and
Polynomials of Complex Variables,” Ph.D. Thesis, Assiut
University, Assiut, 2009.
[8] L. Jódar and J. C. Cortés, “On the Hypergeometric Matrix
Function,” Journal of Computational and Applied Mathe-
matics, Vol. 99, No. 1-2, 1998, pp. 205-217.
doi:10.1016/S0377-0427(98)00158-7
[9] L. Jódar and J. C. Cortés, “Closed form General Solution
of the Hypergeometric Matrix Differential Equation,”
Mathematical and Computer Modelling, Vol. 32, No. 9,
2000, pp. 1017-1028.
doi:10.1016/S0895-7177(00)00187-4
[10] L. M. Upadhyaya and H. S. Dhami, “Generalized Horn’s
Functions of Matrix Arguments,” Bulletin Pure and App-
lied Sciences: Section E. Mathematics and Statistics, Vol.
29E, No. 2, 2010, pp. 353-364.
[11] L. M. Upadhyaya, “A Summation Formula for a Horn’s
Double Hypergeometric Function-II,” Bulletin Pure and
Applied Sciences: Section E. Mathematics and Statistics,
Vol. 2E, No. 2, 2010, pp. 279-286.
[12] Z. M. G. Kishka, M. A. Saleem, S. Z. Radi and M. Abul-
Dahab, “On the p and q-Appell Matrix Function,” South-
east Asian Bulletin of Mathematics, Vol. 35, 2011, pp.
807-818.
[13] M. S. Metwally, “On p-Kummers Matrix Function of
Complex Variable under Differential Operators and Their
Properties,” Southeast Asian Bulletin of Mathematics,
Vol. 35, 2011, pp. 1-16.
[14] G. Golub and C. F. Van Loan, “Matrix Computations,”
The Johns Hopkins University Press, Baltimore, 1989.
[15] N. Dunford and J. Schwartz, “Linear Operators, Part I,”
Interscience, New York, 1955.
[16] L. Jódar and J. C. Cortés, “Some Properties of Gamma
and Beta Matrix Functions,” Applied Mathematics Letters,
Vol. 11, No. 1, 1998, pp. 89-93.
doi:10.1016/S0893-9659(97)00139-0
[17] K. A. M. Sayyed, “Basic Sets of Polynomials of Two
Complex Variables and Convergence Properties,” Ph.D.
Thesis, Assiut University, Assiut, 1975.
[18] K. A. M. Sayyed, M. S. Metwally and M. T. Mohamed,
“Certain Hypergeometric Matrix Function,” Scientiae
Mathematicae Japonicae, Vol. 69, No. 3, 2009, pp. 315-
321.
http://www.jams.or.jp/notice/scmjol/2009.html#2009-21
[19] A. Erdélyi, W. Magnus, F. Oberhettinger and G. Tricomi,
“Higher Tanscendental Functions,” McGraw-Hill Book
Co., New York, Vol. 1, 1953.