Applied Mathematics, 2011, 2, 1359-1363
doi:10.4236/am.2011.211190 Published Online November 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
The Numbers of Thousand Place of Mersenne Primes*
Sibao Zhang1, Lihang Zhou2
1Department of Mat hem at i cs, Kashgar Teachers College, Kashgar, China
2Department of Com p ut er Sci ence, Guangdong Technical College of Water Resources and
Electric Engineering, Guangzhou, China
E-mail: sibao98@sina.com
Received April 23, 2011; revised August 27, 2011; accepted September 4, 20 1 1
Abstract
Mersenne primes are a special kind of primes, which are an important content in number theory. The study
of Mersenne primes becomes one of hot topics of the nowadays science. Searching for Mersenne primes is
very challenging in scientific researches. In this paper, the numbers of thousand place of Mersenne primes
are studied, and the conclusion is presented by using the Chinese remainder theorem.
Keywords: Mersenne Primes, The Chinese Remainder Theorem, The Number of Thousand Place
1. Introduction
In 300 BC, ancient Greek mathematician Euclid proved
that there are infinitude primes by contradiction, and
raised that a small amount of prime numbers could be
expressed in numbers of the form , where is a 2
p1p
prime. Afterward, many famous mathematicians have re-
searched the prime numbers of this special formulation.
In 1644, French mathematician M. Mersenne stated in
the preface to his Cogitata Physica-Math ematica tha t th e
numbers were primes for p = 2, 3, 5, 7, 13, 17,
19, 31, 67, 127 and 257, and were composite for all other
positive integers . Mersenne’s (incorrect) con-
jecture fared only slightly better than Regius’, but still
got his name attached to these numbers. The formulation
of is named as “Mersenne number” and ex-
pressed as
2
p
1
1
257p
2
p
p
M
(so ). If a 21
p

p
M
p
M
is a prime
number, then it is named as “Mersenne prime”.
The Lucas-Lehmer test is a primarily test for Mer-
senne numbers: For an odd prime, the Mersenne
number is prime if and only if divides
p
2
p1 1
1
2
p
S(p – 1), where , and S(1) = 4. The
test was originally developed by E. Lucas in 1856, and
subsequently improved by Lucas in 1878 and D. Lehmer
2
S(1)S( )2pp 
in the 1930s. The sequence S(p) is computed modulo
to save time. The Lucas-Lehmer test is ideal for
binary computers because the division of 2
2
p
1
p
(in
binary) ca n be d o n e by using rot a tion and ad di tion only.
In 1992, Chinese mathematician and linguist Ha-
izhong Zhou [1] presented the well-known Zhou conjec-
ture on the distribution of Mersenne primes in the natural
number system: If (n = 0, 1, 2, 3,),
1
2
22
n
p

1
2
n
1
then there are 2
n
Mersenne primes. At the same
time he gave the deduction: If , then there are
1
2
2n
p
2
2
nn
2
Mersenne primes.
As the increase of exponent , searching for Mer-
senne primes is very challenging. Studying Mersenne
primes, not only the advanced theory an d practiced skills
are needed, but also the arduous calculations are needed
to validate whether a Mersenne number is a prime or not
[2]. The research of Mersenne primes is very abundant in
the contemporary theoretical and practical value. The
research of Mersenne primes greatly promotes the de-
velopment of mathematics, especially number theory. In
addition, many well-known mathematics problems, such
as Goldbach conjecture, twin primes, Riemann conjec-
ture, etc. are inextricably linked to Mersenne primes.
Therefore, the research of Mersenne primes can also
speed up the solution to those problems [3]. And the re-
search of Mersenne primes can promote distributed
computing and programming arts. It not only requires
well-designed distributed architecture, but also improves
the numerical calculation methods and algorithm design
arts. [4] There are only 47 known Mersenne primes [5].
p
In [6,7], the last number and the ten place number
have been studied, and conclusions have been obtained.
In this paper, the numbers of thousand place of Mersenne
primes are studied, and the conclusion is presented by
using the Chinese remainder theorem.
*Project Supported by the Science Foundation of Kashgar Teacher
College (No. 112390). Theorem If the exponent p of
p
M
satisfies
S. B. ZHANG ET AL.
1360
8 11,12,14,18,22,60,
61,63,66,69, 75,103,104(mod12 5);
8 314,27,46,54,61,63,
73,76,80,83,87,115(mod125);
85 3,6,12,41,63,74,
76,84,122,123(mod125);
87 0,10,13,17,20,24,
52,76,89,108,116
pk k
pk k
pk k
pk k
 
 
 
 
,
,
,
,
,123(mod 125)
Then, the number of the thousand place of Mersenne
primes is 0;
If the exponent of
p
p
M
satisfies
8 12,6,34,58,71,90,98,
105,107,117,120,124(mod125);
8 316,17,19,22,25,31,
59,60,82,93,95,99,103(mod125);
8 58,27,42,44,54,57,
61,64,68,96(mod125);
8 719,30,32,36,40,78,
7 9 ,81,84,87,93
pk k
pk k
pk k
pk k
 
 
 
 
,
,
,
,
,121,122(mod 125)
Then, the number of the thousand place of Mersenne
primes is 1;
If the exponent of
p
p
M
satisfies
8 110,11,13,16,19,25,
53,54,76,87,89,93,97(mod125);
8 31,5,8,12,40,64,77,
96,104,111,113,123(mod125);
8 513,24,26,34,
72,73,78,81,87,116(mod125);
8 71,14,33,41,48,50,
60,63,67,70,74,1
pk k
pk k
pk k
pk k
 
 
 
 
,
,
,
,
02(mod125)
Then, the number of the thousand place of Mersenne
primes is 2;
If the exponent of
p
p
M
satisfies
8 1,8,21,40,48,55,59,
67,70,74,77,81,109(mod125);
8 3,7,18,20,24,28,66,
67,69,72,75,81,109,110(mod125);
85, 4,7,11,14,18,46,
83,102,117,119(mod125);
87, 3,4,6,9,12,18,
46,47,69,80,82,86,9
pkk
pk k
pk k
pk k
 
 
 
 
0(mod125)
Then, the number of the thousand place of Mersenne
primes is 3;
If the exponent of
p
p
M
satisfies
8 ,26,37,39,43,47,
85,86,88,91,94,100(mod125);
8 32,21,29,36,38,48,
51,55,58,62,90,114(mod125);
8 522,23,28,31,37,
66,88,99,101,109(mod125);
8 727,51,64,83,91,98,
100,110,113,117,
pk
pk k
pk k
pk k
 
 
 
,
,
,
120,124(mod125)
1 3,4,k
Then, the number of the thousand place of Mersenne
primes is 4;
If the exponent of
p
p
M
satisfies
8 ,7,20,24,27,31,
59,83,96,115,123(mod125);
83,0,6,34 35,57,68,70,
74,78,116,117,119,122(mod125);
8 5,33,52,67,69,79,
82,86,89,93,121(mod125);
8 7,5,7,11,15,53,54,
56,59,62,68,96,9
pk
pk k
pk k
pk k
 
 
 
7,119(mod125)
1 5,7,1k
Then, the number of the thousand place of Mersenne
primes is 5;
If the exponent of
p
p
M
satisfies
8 ,38,41,44,50,78,
79,101,112,114,118,122(mod125);
8 315,39,52,71,79,86,88,
98,101,105,108,112(mod125);
8 516,38,49,51,59,97,
98,103,106,112(mod125);
8 78,16,23,25,35,38,42,
45,
pk k
pk k
pk k
pk k
 
 
 
,
,
,
49,77,101,114(mod125)
1,35,36
Then, the number of the thousand place of Mersenne
primes is 6;
If the exponent of
p
p
M
satisfies
81, 9,33,46,65,73,80,
82,92,95,99,102,106(mod125);
8 3,3,41,42,44,47,50,
56,84,85,107,118,120,124(mod125);
8 5,2,17,19,29,32,36,
39,43,71,108(mod125);
8 7,21,22,44,55,57,61,
65,103,104,10
pkk
pk k
pk k
pk k
 
 
 
 
6,109,112,118(mod125)
Then, the number of the thousand place of Mersenne
primes is 7;
If the exponent of
p
p
M
satisfies
Copyright © 2011 SciRes. AM
S. B. ZHANG ET AL.1361
8 1,0,28,29,51,62,64,68,
72,110,111,113,119(mod125);
8 3,4,11,13,23,26,30,33,
37,65,89,102,121(mod125);
8 5,1,9,47,48,53,56,
62,91,113,124(mod125);
8 7,2,26,39,58,66,
73,75,85,88,92 ,95, 99
pkk
pk k
pk k
pk k
 
 
 
 
(mod125)
Then, the number of the thousand place of Mersenne
primes is 8;
If the exponent of
p
p
M
satisfies
8 1,15,23,30,32,42,45,
49,52,56,84,108,121(mod125);
8 3,9,10,32,43,45,49,
53,91,92,94,97,100,106(mod125);
8 5,21,58,77,92,94,104,
107,111,114,118(mod125);
8 7,28,29,31,34,37,43,
71,72,94,
pkk
pk k
pk k
pk k
 
 
 
 
105,107,11 1,115(mod125)
Then, the number of the thousand place of Mersenne
primes is 9.
2. Preliminaries
In order to prove the theorem, we need the following
lemma.
Lemma (The Chinese Remainder Theorem)
Let 12 be pair-wise relatively prime posi-
tive integers. Then the system of congruencies
,,,
r
mm m
11
22
(mod )
(mod )
(mod )
rr
x
am
am
am
has a unique solution modulo [6].
12
,,r
mmm m
3. Proof of the Theorem
Since the exponent p of Mp is a prime, then p = 4k + 1 or
p = 4k + 3. When p = 2, 3, 5, . So, p = 8k +
1 or or or .
21100
p
8+pk8+3pk8+5pk7
We have five congruence equations as following,
when Mp modulo 16,625 separately.
81
83 3
85 5
877
212562 11(mod16)
21 256211(mod16)
21 256211(mod16)
21 256211(mod16)
kk
pkk
pkk
pkk
p
M
M
M
M




(1)
81
212562 1(mod625)
kk
p
M
 (2)
833
21 25621(mod625)
kk
p
M
 (3)
85 5
21 25621(mod625)
kk
p
M
 (4)
877
21 25621(mod625)
kk
p
M

1
125 k
k
(5)
Note that when
256 2561(mod625)
25)0(mod1k
, where is a nonnegative integer.
Therefore, we have congruence equations as following,
when modulo 625 separately, where
k
256k
i
kk
(mod125) and 0,1,2, ,124
i
k
.
256 1
k
,256, 536, 341, 421, 276, 31, 436, 366, 571,
551, 431, 336, 391, 96, 201, 206, 236, 416, 246, 476, 606,
136, 441, 396, 126, 381, 36, 466, 546, 401, 156, 561, 491,
71, 51, 556, 461 , 516, 221, 326, 331, 361, 541, 371, 60 1,
106, 261, 566 , 521, 25 1, 506, 161 , 591, 46 , 526, 281, 6 1,
616, 196, 176, 56, 586, 16, 346, 451, 456, 486, 41, 496,
101, 231, 386, 66, 21, 3 76, 6, 286, 91, 171, 26, 406, 1 86,
116, 321, 301, 181, 86, 141, 471, 576, 581, 611, 166, 621,
226, 356, 511, 191, 146, 501, 131, 411, 216, 296, 151,
531, 311, 241, 4 46, 426, 306 , 211, 266, 596, 76, 81, 11 1,
291, 121, 351, 481, 11, 316, 271(. mod625)
(6)
Combined congruence Equations (6) and (2), (3), (4),
(5) separately , we h ave
81
21
k
p
M1
, 511, 446, 56, 216, 551, 61, 246,
106, 516, 476, 236, 46, 156, 191, 401, 411, 471, 206, 491,
326, 586, 271, 256 , 166, 251, 136, 71, 306, 466, 176, 311,
496, 356, 141, 101, 486, 296, 406, 441, 26, 36, 96, 456,
116, 576, 211, 521, 506, 416, 501 , 3 86 , 32 1, 556, 91, 426,
561, 121, 606, 3 91, 351, 111 , 546, 31, 66, 276, 286, 34 6,
81, 366, 201, 461, 146, 131, 41, 126, 11, 571, 181, 341,
51, 186, 371, 23 1, 16, 601, 361, 171, 281, 316, 526, 53 6,
596, 331, 616, 451, 86, 396, 381, 291, 376, 261, 196, 431,
591, 301, 436, 621, 481, 266, 226, 611, 421, 531, 566,
151, 161, 221, 581, 241, 76, 336, 21, 6, 541(. mod625)
(7)
83
21
k
p
M7
 , 172, 537, 227, 242, 332, 247, 362,
427, 192, 32, 322, 187, 2, 142, 357, 39 7, 12, 202, 92 , 57,
472, 462, 402, 4 2, 382, 547, 28 7, 602, 617 , 82, 622, 11 2,
177, 567, 407, 72, 562, 377, 517, 107, 147, 387, 577, 467,
432, 222, 212, 152 , 417, 132, 297, 37, 352, 367, 457, 372,
487, 552, 317, 157, 447, 312, 127, 267, 482, 522, 137,
327, 217, 182, 597, 587, 527, 167 , 5 07 , 47 , 412, 102, 117,
207, 122, 237, 302, 67, 532, 197, 62, 502, 17, 232, 272,
512, 77, 592, 557, 347, 337 , 27 7, 542, 257 , 422, 162, 477,
492, 582, 497, 612, 52, 442, 282, 572, 437, 252, 392, 607,
22, 262, 452, 342, 307, 97, 87, 27, 292(. mod625)
(8)
85
213
k
p
M1
 , 66, 276, 286, 346, 81, 366, 201,
461, 146, 131, 41, 126, 11, 571, 181, 341, 51,186, 371,
Copyright © 2011 SciRes. AM
S. B. ZHANG ET AL.
1362
231, 16, 601, 361, 171, 281, 31 6, 526, 536 , 596, 331, 616,
451, 86, 396, 381, 291, 376 , 26 1, 196, 431 , 591, 301, 436,
621, 481, 266, 226, 611, 421, 531, 566, 151, 161, 221,
581, 241, 76, 336, 21, 6, 541, 1,511, 446, 56, 216, 551,
61, 246, 106, 51 6, 476, 236, 46 , 156, 191, 401, 411, 47 1,
206, 491, 326, 586, 271, 256, 166 , 2 51 , 13 6, 71, 306, 466,
176, 311, 496 , 356, 14 1, 101, 486 , 296, 406 , 441, 26, 3 6,
96, 456, 116, 576, 211, 521, 50 6, 416, 501 , 38 6, 321, 556,
91, 426, 561, 121, 606, 391, 351, 111, 546.
(mod625)
(9)
87
21 127
k
p
M

(mod625)
,267, 482, 522, 137, 327, 217,
182, 597, 587, 527 , 167, 507, 47, 412, 102, 117, 207, 122,
237, 302, 67, 532, 197, 62, 502, 17, 232, 272, 512, 77,
592, 557, 347, 337, 277, 542, 257, 422, 162, 477, 492,
582, 497, 612, 5 2, 442, 282, 57 2, 437, 252 , 392, 607, 2 2,
262, 452, 342, 307, 97, 87, 27, 292, 7, 172, 537, 227, 242,
332, 247, 362, 427, 192, 32, 322, 187, 2, 142, 357, 397,
12, 202, 92, 57, 472, 462, 402, 42, 382, 547, 287, 602,
617, 82, 622 , 112, 177 , 567, 407, 72, 562, 377, 517, 10 7,
147, 387, 577, 467, 432, 222, 212, 152, 417, 132, 297, 37,
352, 367, 457, 372, 487, 552, 317, 157, 447,
312 .
(10)
Combined congruence Equations (1) and (7), (8), (9),
(10) separately, by using the Chinese Remainder Theo-
rem, we have conclusions as following.
81
21
k
p
M

od10000
8751, 511, 1071, 4431, 4591, 5551,
1311, 5871, 3231, 7391, 2351, 2111, 671, 2031, 191,
9151, 2911, 5471, 831, 2991, 5951, 3711, 271, 9631,
5791, 2751, 4511, 5071, 8431, 8591, 9551, 5311, 9871,
7231, 1391, 6351, 6111, 4671, 6031, 4191, 3151, 6911,
9471, 4831, 6991, 9951, 7711, 4271, 3631, 9791, 6751,
8511, 9071, 2431, 2591, 3551, 9311, 3871, 1231, 5391,
351, 111, 8671, 31, 8191, 7151, 911, 3471, 8831, 991,
3951, 1711, 8271, 7631, 3791, 751, 2511, 3071, 6431,
6591, 7551, 3311, 7871, 5231, 9391, 4351, 4111, 2671,
4031, 2191, 1151, 4911, 7471, 2831, 4991, 7951, 5711,
2271, 1631, 7791, 4751, 6511, 7071, 431, 591, 1551,
7311, 1871, 9231, 3391, 8351, 8111, 6671, 8031, 6191,
5151, 8911, 1471, 6831, 8991, 1951, 9711, 6271, 5631,
1791( m). (11)
83
21
k
p
M
5007, 2047, 4287, 7727, 8367, 2207,
5247, 3487, 2927, 9567, 9407, 8447, 2687, 8127, 767,
6607, 1647, 1887, 3327, 1967, 3807, 4847, 1087, 8527,
3167, 1007, 8047, 287, 3727, 4367, 8207, 1247, 9487,
8927, 5567, 5407, 4447, 8687, 4127, 6767, 2607, 7647,
7887, 9327, 7967, 9807, 847, 7087, 4527, 9167, 7007,
4047, 6287, 9727, 367, 4207, 7247, 5487, 4927, 1567,
1407, 447, 4687, 127, 2767, 8607, 3647, 3887, 5327,
3967, 5807, 684 7, 3087, 527, 5727, 3007, 47, 2287, 5727,
6367, 207, 3247, 148 7, 927, 7567 , 7407 , 6447 , 687, 612 7,
8767, 4607, 9647, 9887, 1327, 9967, 1807, 2847, 9087,
6527, 1167, 9007, 6047, 8287, 1727, 2367, 6207, 9247,
7487, 6927, 3567, 3407, 2447, 6687, 2127, 4767, 607,
5647, 5887, 7327, 5967, 7807, 8847, 5087, 2527,
7167( ).
mod10000
85
2
k
p
(12)
1M
mod10000
87
2
k
p
31, 8191, 7151, 911, 3471 , 8831, 991,
3951, 1711, 8271, 7631, 3791, 751, 2511, 3071, 6431,
6591, 7551, 3311, 7871, 5231, 9391, 4351, 4111, 2671,
4031, 2191, 1151, 4911, 7471, 2831, 4991, 7951, 5711,
2271, 1631, 7791, 4751, 6511, 7071, 431, 591, 1551,
7311, 1871, 9231, 3391, 8351, 8111, 6671, 8031, 6191,
5151, 8911, 1471, 6831, 8991, 1951, 9711, 6271, 5631,
1791, 8751, 511, 1071, 4431, 4591, 5551, 1311, 5871,
3231, 7391, 2911, 2111, 671, 2031, 191, 9151, 2911,
5471, 831, 2991, 5951, 3711, 271, 9631, 5791, 2751,
4511, 5071, 8431, 8591, 9551, 5311, 9871, 7231, 1391,
6351, 6111, 4671, 6031, 4191, 3151, 6911, 9471, 4831,
6991, 9951, 7711, 4271, 3631, 9791, 6751, 8511, 9071,
2431, 2591, 3551, 9311, 3871, 1231, 5391, 351, 111,
8671( ). (13)
1M
mod10000
127, 2767, 8607, 3647, 3887, 5327,
3967, 5807, 684 7, 3087, 527, 5167, 3007, 47, 2287, 5727,
6367, 207, 3247, 148 7, 927, 7567 , 7407 , 6447 , 687, 612 7,
8767, 4607, 9647, 9887, 1327, 9967, 1807, 2847, 9087,
6527, 1167, 9007, 6047, 8287, 1727, 2367, 6207, 9247,
7487, 6927, 3567, 3407, 2447, 6687, 2127, 4767, 607,
5647, 5887, 7327, 5967, 7807, 8847, 5087, 2527, 7167,
5007, 2047, 4287, 7727, 8367, 2207, 5247, 3487, 2927,
9567, 9407, 8447, 2687, 8127, 767, 6607, 1647, 1887,
3327, 1967, 3807, 4847, 1087, 8527, 3167, 1007, 8047,
287, 3727, 4367, 8207, 1247, 9487, 8927, 5567, 5407,
4447, 8687, 4127, 6767, 2607, 7647, 7887, 9327, 7967,
9807, 847, 7087, 4527, 9167, 7007, 4047, 6287, 9727,
367, 4207, 7247, 5487, 4927, 1567, 1407, 447,
4687( ). (14)
From the congruence Equation s (11)-(14), if 0k
, 5,
10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100, 105, 110, 115, 120(), then mod12 5
85pk
are composites, and then these numbers are
not considered. So we can draw the conclusion. That
completes the proof.
4. Acknowledgements
The authors wish to thank Dr. Alden More for many help-
ful discussions and com ments on the m a nuscript .
5. References
[1] H. Z. Zhou, “The Distribution of Mersenne Primes,” in
Chinese, Acta Scientiarum Naturalium Universitatis Sun-
yatseni, Vol. 31, No. 4, 1992, pp. 121-122.
Copyright © 2011 SciRes. AM
S. B. ZHANG ET AL.
Copyright © 2011 SciRes. AM
1363
[2] S. B. Zhang, X. C. Ma and L. H. Zhou, “Some Notes on
the Distribution of Mersenne Primes,” Applied Mathe-
matics, Vol. 1, No. 4, 2010, pp. 312-315.
doi:10.4236/am.2010.14041
[3] Q. Cheng and L. Feng, “The Research of Mersenne
Primes Based on Distributed Computing,” Frontier Sci-
ence, Vol. 4, No. 14, 2010, pp. 59-67.
[4] S. B. Zhang, “Review of Research on Mersenne Primes,”
Science
Technology Review, Vol. 26, No. 18, 2008,
pp. 88-92.
[5] Q. Chen and P. Zhang, “A Math Treasure: Mersenne
Primes,” in Chinese, Encyclopedic Knowledge, Vol. 32,
No. 5, 2009, p. 22.
[6] S. B. Zhang and A. Yunus, “A Note on Mersenne Num-
bers,” in Chinese, Journal of Hebei North University, Vol.
26, No. 2, 2010, pp. 11-12.
[7] S. B. Zhang, “The Mantissa of Mersenne Primes,” in
Chinese, Journal of Jilin Normal University, Vol. 31, No.
2, 2010, pp. 92-94.
[8] K. H. Rosen, “Elementary Number Theory and It’s Ap-
plications,” Pearson Education, Inc., Upper Saddle River,
2005.