American Journal of Anal yt ical Chemistry, 2011, 2, 539-572
doi:10.4236/ajac.2011.25064 Published Online September 2011 (http://www.SciRP.org/journal/ajac)
Copyright © 2011 SciRes. AJAC
Comparative Analysis of Protein Expression
Concomitant with DNA Methyltransferase
3A Depletion in a Melanoma Cell Line
Shengnan Tang1,#, Xiaoyan Liu1,#, Tonghua Li1*, Haoyue Wang2, Jiangming Sun1,
Qian Qiao1, Jun Yao3, Jian Fei2
1Department of Chemistry, Tongji University, Shanghai, China
2School of Life Science & Technology, Tongji University, Shanghai, China
3School of Medicine, Fudan University, Shanghai, China
E-mail: *lith@tongji.edu.cn
Received March 17, 2011; revised May 3, 2011; accepted June 1, 2011
Abstract
DNA methyltransferase 3A (Dnmt3a), a de novo methyltransferase, has attracted a great deal of attention for
its important role played in tumorigenesis. We have previously demonstrated that melanoma is unable to
grow in-vivo in conditions of Dnmt3a depletion in a mouse model. In this study, we cultured the Dnmt3a
depletion B16 melanoma (Dnmt3a-D) cell line to conduct a comparative analysis of protein expression
con-comitant with Dnmt3a depletion in a melanoma cell line. After two-dimensional separation, by gel elec-
tro-phoresis and liquid chromatography, combined with mass spectrometry analysis (1DE-LC-MS/MS), the
re-sults demonstrated that 467 proteins were up-regulated and 535 proteins were down-regulated in the
Dnmt3a-D cell line compared to the negative control (NC) cell line. The Genome Ontology (GO) and KEGG
pathway were used to further analyze the altered proteins. KEGG pathway analysis indicated that the MAPK
signaling pathway exhibited a greater alteration in proteins, an interesting finding due to the close rela-
tion-ship with tumorigenesis. The results strongly suggested that Dnmt3a potentially controls the process of
tu-morigenesis through the regulation of the proteins (JNK1, p38α, ERK1, ERK2, and BRAF) involved in
tu-mor-related pathways, such as the MAPK signaling pathway and melanoma pathway.
Keywords: Dnmt3a, Melanoma Cell Line, 1DE-LC-MS/MS; MAPK Signaling Pathway, Melanoma Pathway
1. Introduction
Malignant melanoma, one of the most aggressive of all
skin cancers, exhibits a high skin cancer mortality rate
[1]. Upon metastasis, the disease is incurable in most
affected people as melanoma does not respond to most
systemic treatments and chemotherapy drugs [2].
It is well established that malignant melanoma con-
tains at least 50 genes that exhibit differential expression
as abnormal methylation changes emerge in the promoter
region [3-5], and that DNA methylation patterns are es-
tablished and maintained by the coordinated action of
three DNA methyltransferases (Dnmts). It has been de-
monstrated that Dnmt1 [6,7], Dnmt3a, and Dnmt3b [8]
are over-expressed in many malignant tumors [9]. Dnmt-
3a plays an important role in epigenetic modification that
has attracted a great deal of attention in recent years
[10,11]. It has been reported that epigenetic modification
is induced by hepatitis B virus X protein via interaction
with de novo DNA methyltransferase-Dnmt3a [10]. Ad-
ditionally, Dnmt3a has been found to maintain DNA
methylation and regulate synaptic function in adult fore-
brain neurons [12]. Furthermore, it has been demon-
strated that Dnmt3a-dependent non-promoter DNA me-
thylation facilitates the transcription of neurogenic genes
[13]. Recently, studies of Dnmt3a have focused on its
effect on proliferation and apoptosis of hepatocellular
carcinoma, colorectal cancer and malignant melanoma
[14-16] In a previous study we demonstrated that tumor
growth inhibition was mediated by Dnmt3a depletion
[17].
In this study we describe the proteomic experiment
and comparative analysis of protein expression in the
#These authors contributed equally to this work.
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
540
Dnmt3a depletion B16 melanoma (Dnmt3a-D) cell line.
The mouse B16 melanoma cell line used in our study
exhibited a specific down-regulation of Dnmt3a via sta-
ble transfection using a Dnmt3a-RNAi construct. We
obtained the negative control (NC) cell line through use
of an unrelated, non-target, shRNA expression vector.
Proteins of the NC cell line and Dnmt3a-D cell line were
initially separated by one-dimensional gel electrophore-
sis (1DE), and the two gel tracks were subsequently split
into 20 proteome fractions, respectively, and digested by
trypsin. The peptide fractions were analyzed by capillary
liquid chromatography and high accuracy mass spectro-
metric acquisition on a LTQ-Orbitrap (Thermo Scientific
Germany) in the MS/MS mode using various and com-
plementary fragmentation modes. The results of the
comparative proteomics demonstrated that Dnmt3a de-
pletion affects a large number of proteins. The Genome
Ontology and KEGG pathway were used to group these
altered proteins according to respective cellular compo-
nents, molecular functions, and pathway. The suppres-
sors of skin tumour development JNK1 and p38α [18]
were found to be up-regulated in the MAPK signaling
pathway of the Dnmt3a-D cell line. The oncogene BRAF
was down-regulated in the melanoma pathway of the
Dnmt3a-D cell line. These results strongly suggested that
Dnmt3a depletion potentially inhibits melanoma tumori-
genesis by regulating the proteins involved in tumor-
related pathways.
2. Materials and Methods
2.1. Cell Culture
The B16 cells were purchased from the American Type
Culture Collection (Manassas, VA), cultured in DMEM
supplemented with 10% FBS, and maintained in a hu-
midified incubator at 37˚C and 5% CO2. The sequence of
Dnmt3a shRNA was 5 gtgcagaaacatcgaggacTTCAAG-
AGAgtcctcgatgtttctg- cac 3. A non-target shRNA with
the sequence 5gcaagtctaaccaacgcgt TTCAAGAGAacg-
cgttggtt - agacttgc 3 was used as negative control (NC).
The process of small hairpin RNA (shRNA) RNAi was
performed as previously described [17]. At this point in
the procedure we chose the B16 cells with Dnmt3a de-
pletion (Dnmt3a-D) for further experiments.
2.2. Protein Extraction and Measurement
After harvesting the cells, the following experimental pro-
cess was conducted (Figure 1). The cells were washed
2-3 times in ice-cold phosphate-buffered saline (PBS),
lysed in 900 μL RIPA lysis buffer (Bi Yun Tian Bio-
technology Research Institute, China) plus 10 μL 100
mM phenylmethanesulfonyl fluoride (PMSF) for ap-
proximately 10 - 20 min. The samples were incubated for
2 s in an ice bath and exposed to an ultrasonic power of
less than 70 W, and then centrifuged for 45 min at
15,000 rpm at 4˚C. The supernatants were then collected
into eppendorf tubes for the next measurement.
The total protein of the cells was measured using the
BCA Protein Assay (Bi Yun Tian Biotechnology Re-
search Institute, China) with bovine serum albumin as a
standard recommended by the manufacturer. The protein
was stored at –80˚C until performance of isoelectro- fo-
cusing (IEF).
2.3. 1-DE and In-Gel Tryptic Digestion
In order to conduct proteomic analysis on proteins expres-
sed at a low level, shotgun proteomics based on 1-DE
separation of total protein was evaluated in addition to
the analysis of peptide mixtures produced by tryptic di-
gestion of proteins in gel fragments by LC-MS/MS.
Equal amounts of NC cell protein and Dnmt3a-D cell
protein (40 μg) were prepared in an identical manner.
Respective samples were separated using small analyti-
cal immobilized pH gradient (IPG) strips (7 cm, 3 - 10
pH gradient; Bio-Rad). The proteins were electro-fo-
cused by initially using a voltage of 8 V/cm for the
stacking gel, and subsequently increasing the voltage to
15 V/cm for the separating gel.
Figure 1. The experimental process of proteomic methods
used in this study.
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
541
Gel lanes were excised from the SDS-PAGE gels us-
ing a razor blade and were divided into 20 slices accord-
ing to the distribution of protein (Figure 2). The proteins
were separated by 12% resolving gel. Each slice was
then further divided into approximately 1 mm3 pieces
and placed into an eppendorf tube. The proteins were
deoxidized, alkylated, dehydrated and digested. The pep-
tide mixtures were extracted with frequent vortexing at
37˚C for 30 min. Samples were evaporated to dryness
and stored at –20˚C until MS analysis.
2.4. LC-MS/MS Analysis
In recent years, the high performance and sensitivity of
the linear quadrupole ion trap-orbitrap (LTQ-Orbitrap)
mass spectrometer has interested researchers due to the
capacity for top-down analysis of complete protein from
tissue, body fluid, and cells [19,20].
The sample was separated using online reverse-phase
nanoscale capillary liquid chromatography, and then
analyzed by electrospray tandem mass spectrometry. The
peptide mixtures loaded and desalted on a C18 trap col-
umn (0.5 mm diameter, 2 mm, MICHROM,USA) using
a Tempo 1D nanoLC system, then separated on a reverse-
phase MagicTM C18 column (100 µm diameter, 15 cm,
MICHROM,USA), using a 120 min linear gradient of
mobile phase A (0.875% ACN/0.125% FA/99% H2O) at
a flow rate of 500 nL/min. The eluent was analyzed on a
Figure 2. SDS-PAGE patterns of NC cell proteins and
Dnmt3a - D cell proteins.
LTQ-orbitrap mass spectrometer (Thermo Electron, Bre-
men, Germany) equipped with a heated Desolvation Ch-
amber Interface set to 200˚C and operated using XCali-
bur software.
The LTQ-orbitrap operated in positive ion mode to
survey full scan mass spectra (from m/z 385 to 2000).
The most intense ten ions were selected for tandem mass
spectrometry and the lock-mass option was used as de-
scribed in previously published reports [21].
2.5. Identification and Analysis of Proteins
SEQUEST (V.28 (rev.12) 1998-2007) was used to iden-
tify proteins based on MS/MS spectra with Bioworks so-
ftware (Rev.3.3.1 SP1, Thermo Scientific). We searched
both forward and reverse sequences against the Swiss-
port Mouse 090303 database in order to estimate the
number of identifications that were false-positive in the
sample.
The parameters for the SEQUEST search were com-
prised of the following criteria: Enzyme, trypsin; Missed
cleavage sites, 2; fragment tolerance, 1.0 Da; peptide to-
lerance, 50.00 ppm; Numerical results, 250; Ion and Ion
Series Calculated, b ion and y ion; Peptide matches, 10;
Report duplicate peptide matches, 10. Oxidation of me-
thionine, methylation of lysine, as well as phosphoryla-
tion of serine, threonine, and tyrosine were specified as
variable modifications.
We inputted the DAT files from SEQUEST to the
Trans-Proteomic Pipeline (TPP) v4.2 JETSTREAM rev
1 (ISB/SPC Proteomics Tools) and searched by allocat-
ing all DAT files in the biological sample. The parame-
ters for peptide identification probability and protein
identification probability were both set at 0.95.
The results were exported and the proteins found to be
altered in the Dnmt3a-D cell line as compared to the NC
cell line were extracted by a program developed in-house.
GO terms of altered proteins for cellular component and
molecular function were searched and checked by
Swiss-Prot (http://expasy.org/sprot/), NCBI (http://www.
ncbi.nlm.nih.gov) and PIR (http://pir.georgetown.edu/
pirwww/index.shtml). The pathways of altered proteins
were established using the KEGG mapper (http://www.
genome.jp/kegg/.html). Demonstration of the role of al-
tered proteins in metabolic channels and signal transduc-
tion pathways was considered significant.
3. Results and Discussion
3.1. Cell Harvest
Growth conditions of the two cell lines were optimized
in our previously reported experiment [17]. Cultured
cells were harvested at a confluence level of 90% (Fig-
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
542
ure 3(a)).
Western blot analysis was employed to test the effi-
ciency and specificity of the Dnmt3a-RNAi. The results
demonstrated that stably transfected B16 Dnmt3a-D cells
exhibited a remarkably low level of Dnmt3a expression.
No change in Dnmt3a expression was observed in the
control NC shRNA transfected cells. The expression of
Dnmt3b was not affected in the NC or Dnmt3a-D cells,
which is in concordance with our findings in our previ-
ous experiment (see Figure 3 (b) in [17]).
3.2. Difference of Protein Expression between
NC and Dnmt3a-D Cell Lines
The NC and Dnmt3a-D cell line proteins identified were
compared to determine their overlap (Figure 3(b)).
There were 2413 proteins in common between the NC
and Dnmt3a-D cell lines, and 467 were unique to the
Dnmt3a-D cell line and were considered to be up-regu-
lated proteins in the Dnmt3a-D cell line (Supplementary
Materials, Table S1). There were 535 proteins unique to
the NC cell line considered to be down-regulated pro-
teins in the Dnmt3a-D cell line (Supplementary Materials,
Table S2). The evidence suggests that Dnmt3a poten-
tially either directly or indirectly regulates the expression
of altered proteins.
3.3. Genome Ontology of Altered Proteins
In order to evaluate the effect of Dnmt3a depletion on
protein expression and to explore the mechanism of
Dnmt3a in tumorigenesis, the altered proteins were the
principal targets for analysis. The genome ontology cel-
lular localization of altered proteins was as follows: 35%
of up-regulated proteins were localized to the cytoplasm,
24% to the nucleus, and 13% to the mitochondrion. The
remainder of the up-regulated proteins were classified as
golgi, plasma membrane, endoplasmic reticulum, cy-
toskeleton, extracellular, ribosome, others, and unclassi-
fied (28%). The cellular localization of down-regulated
proteins was found to be similar to the cellular localiza-
tion of the up-regulated proteins (Figure 4(a), (b)). This
result demonstrated that the altered proteins are primarily
concentrated in the cytoplasm, nucleus, and mitochon-
dria.
Among 467 up-regulated proteins, 161 exhibited an
activity function (Figure 4(c)). Among the 535 down-
regulated proteins, 178 exhibited an activity function
(Figure 4(d)).
There were a large number of altered proteins that ex-
hibited catalytic activity and transferase activity, and
they played important roles in the methylation, acetyla-
tion, glycosylation, and other epigenetic modifications of
(a)
(b)
Figure 3. Cell Harvest and overlap of proteins between two cell lines. (a)The confluence of NC and Dnmt3a-D cell was more
than 90% after two days under microscope. (b)The proteins of NC and Dnmt3a-D cell line identified, and overlap of proteins
between the two cell lines.
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
543
(a) (b)
(c) (d)
Figure. 4 Genome Ontology of altered Proteins. (A) Genome ontology cellular localization of up-regulated proteins. (B) Ge-
nome ontology cellular localization of down-regulated proteins. (C) Genome ontology molecular function of up-regulated
proteins. (D) Genome ontology molecular function of down-regulated proteins.
the proteins. Another function that attracted our attention
was phosphotransferase activity, which is essential for
protein phosphorylation. It is well understood that pro-
tein phosphorylation is closely related to a variety of
biological processes, such as DNA damage and repair
[22], transcriptional regulation [23], signal transduction,
and the regulation of apoptosis [24,25].
3.4. Pathway of Altered Proteins
The altered proteins were grouped according to their
respective KEGG pathway (Figure 5). The pathways
were arranged according to the number of altered pro-
teins. The pathways that included less than 10 altered
proteins were not shown. The four pathways with the
largest number of altered proteins were metabolic path-
ways (71 proteins), endocytosis (21 proteins), mitogen
activated protein kinase signaling pathway (MAPK sig-
naling pathway, 19 proteins) and pathways in cancer (17
proteins). Among these four pathways, the MAPK sig-
naling pathway, closely related to the cancer and mela-
noma pathway, and which plays a key role in melanoma
tumorigenesis, attracted our attention. The locations of
altered proteins in the two pathway maps were estab-
lished using the KEGG mapper.
3.4.1. MAPK Signaling Pathway
The altered proteins involved in the MAPK signaling
pathway are listed in Table 1. The locations of the al-
tered proteins involved in the MAPK signaling pathway
are marked by pink boxes (up-regulated proteins) and
yellow boxes (down-regulated proteins) as shown in
Figure 6.
The MAPKs belong to a family of highly conserved
kinases that convert extracellular signals to intracellular
responses. MAPKs are unique to eukaryotes and are im-
portant signal transducing enzymes regulated by a phos-
phorylation cascade. Two upstream protein kinases are
activated in the series that leads to the activation of a
MAP kinase; additional kinases may also be required
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
544
upstream of this three-kinase module. After activation,
MAPKs phosphorylate specific serine and threonine
residues of target substrates, including other protein
kinases and many transcription factors. MAPKs are
switched off by both generic phosphatases and dual-
specificity phosphatases and are further regulated by
scaffold proteins, which are usually specific for each of
the three major mammalian MAPK pathways, including
extracellular signal-regulated kinase (ERK), c-Jun N-
terminal kinase (JNK), and p38 MAPK [18,26,27].
Figure 5. The altered proteins were grouped by KEGG pathway.
Table 1. The altered proteins involved in MAPK signaling pathway.
Location in
Pathway
Gen Bank
ID
Gene
name Synonyms Name of Altered Protein;
: Up-regulated protein; : Down-regulated protein
18747 Prkaca Pkaca cAMP-dependent protein kinase catalytic subunit alpha
PKA 18749 Prkacb Pkacb cAMP-dependent protein kinase catalytic subunit beta
26413 Mapk1 Erk2, Mapk, Prkm1Mitogen-activated protein kinase 1/ERK2
ERK 26417 Mapk3 Erk1, Prkm3 Mitogen-activated protein kinase 3/ERK1
Ppp3c 19058 Ppp3r1 Cnb Calcineurin subunit B type 1
CrkII 12929 Crkl Crkol Crk-like protein
HGK 26921 Map4k4 Nik Mitogen-activated protein kinase kinase kinase kinase 4
JNK 26419 Mapk8 Jnk1, Prkm8 Mitogen-activated protein kinase 8/JNK1
Cdc42Rac 12540 Cdc42 / Cell division control protein 42 homolog precursor
MKK3 26397 Map2k3 Mkk3, Prkmk3 Dual specificity mitogen-activated protein kinase kinase 3
P38 26416 Mapk14 Crk1,Csbp1,Csbp2Mitogen-activated protein kinase 14/ p38α
PP2CB 19043 Ppm1b Pp2c2, Pppm1b Protein phosphatase 1B
TAB1 66513 Tab1 Map3k7ip1 TGF-beta-activated kinase 1 and MAP3K7-binding protein 1
Rap1 109905 Rap1a Krev-1 Ras-related protein Rap-1A precursor
RafB 109880 Braf B-raf Serine/threonine-protein kinase B-raf
cPLA2 18783 Pla2g4a Cpla2, Pla2g4 Cytosolic phospholipase A2
CASP 12367 Casp3 Cpp32 Caspase-3 precursor
ECSIT 26940 Ecsit Sitpec mitochondrial precursor
MKK6 26399 Map2k6 Prkmk6, Sapkk3 Dual specificity mitogen-activated protein kinase kinase 6
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
545
Figure 6. The location of altered proteins involved in MAPK signaling pathway from KEGG database.
In recent years, it has been demonstrated that the
MAPK signaling pathway plays a key role in the cell
cycle and gene expression regulation of various cells.
MAP kinases are major components of the pathways that
control embryogenesis, cell differentiation, cell prolif-
eration, and cell death. Current research on the three
pathways is described in detail, and offers insight into
the mechanism of the pathways. Much of the review
highlights research into the JNK and p38 MAPK path-
ways, stress activated protein kinase pathways that are
also often deregulated in cancer. JNKs and p38 MAPKs
are activated by environmental and genotoxic stress and
are associated with tumorigenesis in humans and mice.
The function of JNKs and p38 MAPKs in cancer devel-
opment are complex and correlate with the wide range of
cellular responses that they modulate [28,29].
3.4.2. JNK Pathway
Three genes encode the JNK proteins: MAPK8 encodes
JNK1/ MAPK8, MAPK9 encodes JNK2/ MAPK9, and
MAPK10 encodes JNK3/ MAPK10 [30]. Various JNKs
differ substantially in their ability to interact with JUN, a
well-established regulator of cell cycle progression [31].
A JNK2 deficiency results in elevated c-Jun phosphory-
lation and stability, whereas the absence of JNK1 re-
duces c-Jun phosphorylation and stability. JNK2 prefer-
entially binds to c-Jun in unstimulated cells, thereby con-
tributing to c-Jun degradation. In contrast, JNK1 be-
comes the major c-Jun interacting kinase after cell
stimulation [32]. It has been recently demonstrated that
the JNK pathway is linked to p53-dependent senescence
via a conditional JNK1 allele [33]. The contribution of
JNK1 to tumour development has also been investigated
in mouse skin carcinogenesis. JNK1-knockout mice were
shown to be more susceptible to tumours of the skin [34].
These results indicate that JNK1 may act as a suppressor
of skin tumour development. In this study, JNK1 was
found to be up-regulated in the Dnmt3a-D cell line which
is unable to grow in-v i v o, which potentially illustrates the
fact that Dnmt3a depletion affects melanoma tumori-
genesis by regulation of JNK1 expression.
3.4.3. p38 MAPK Pathway
The p38 MAPKs are activated by the upstream MKK3
and MKK6 kinases as shown in Figure 6. There are four
genes that encode p38 MAPKs: MAPK14 encodes
p38α/MAPK14; MAPK11 encodes p38β/MAPK11; MA-
PK12 encodes p38γ/MAPK12; and MAPK13 encodes
p38δ/MAPK13 [35]. Among these, p38α was found to be
up-regulated in the Dnmt3a-D cell line. Most of the pub-
lished studies that have investigated p38 MAPKs refer to
p38α, as p38α was highly abundant in most cell types
[36]. A stress-activated protein kinase, p38α suppresses
tumor formation by negatively regulating cell cycle pro-
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
546
gression and proliferation, or by inducing apoptosis
[37-40].
There is evidence that indicates that p38α also may be
an important regulator of differentiation programs in
many cell types, including epithelial lung cells and em-
bryonic stem cells [41,42]. Moreover, p38α directly ph-
osphorylates and modulates the activity of several tran-
scription factors involved in tissue-specific differentia-
tion. The differentiation-inducing activity of p38α may
be related to tumour suppression, as p38α activation
triggers a high level of specific differentiation and lowers
transformed phenotypes in renal carcinoma and colon
cancer cell lines compared to cancer cell lines in which
p38α has not been activated [43-45]. The function of
p38α as a tumour suppressor in-vivo has been observed
in a mouse model [18]. These results provide a reason-
able explanation as to why the Dnmt3a-D cell line with
p38α up-regulated is unable to grow in-vivo. Dnmt3a
depletion potentially directly or indirectly regulates the
expression of p38α.
3.4.4. ERK Pathway
ERK1 and ERK2 are ubiquitously expressed, although
their relative abundance in tissues is variable. They are
stimulated to a certain extent by a vast number of ligands
and cellular perturbations, and there is evidence of some
cell type specificity [46]. They are highly expressed in
postmitotic neurons and other highly differentiated cells
[47], and in these cells they are often involved in adap-
tive responses, such as long-term potentiation [48,49].
The receptor tyrosine kinase uses the ERK1 and ERK2
cell membrane signaling pathway [50-52]. Stimulation of
these receptors by the appropriate ligand results is an
increase in the catalytic activity of the receptor and sub-
sequent autophosphorylation on tyrosine residues. Phos-
phorylation of these receptors results in the formation of
multiprotein complexes whose organization dictates fur-
ther downstream signaling events.
The ERK pathway is a major pathway involved in the
control of growth signals, cell survival, and invasion.
ERK acts as a central point where multiple signaling
pathways coalesce to drive transcription, and it plays a
critical role in the pathway downstream of Ras, Raf, and
MEK. Melanomas are known to harbour activation mu-
tations for both Ras and BRAF, suggesting that the
downstream effector ERK may be playing a key role in
the oncogenic behaviour of these tumours. In-vitro stud-
ies have demonstrated that melanoma cell lines and tu-
mour tissues exhibit high constitutive ERK activity. The
high constitutive ERK activity in melanoma is most
likely a consequence of mutations in the upstream com-
ponents of the MAPK pathway [53,54]. In this study, we
found that tumour cells cannot grow normally with
ERK1 and ERK2 up-regulated while upstream compo-
nents B-raf are concurrently down-regulated. Accord-
ingly, we suspected that the activity of ERK1 and ERK2
was limited by the down-regulation of upstream compo-
nents B-raf. This may account for the ability of Dnmt3a
to affect the growth of melanoma by regulating the activ-
ity of ERK.
3.4.5. Melanoma Pathway
The altered proteins involved in the melanoma pathway
are listed in Table 2. The locations of the altered proteins
involved in the melanoma pathway are indicated with
pink boxes (up-regulated proteins) and yellow boxes
(down-regulated proteins) in Figure 7. The figure was
manually edited. BRAF plays an important role in repli-
cative and oncogene-induced senescence, as indicated by
the red oval.
Frequent somatic mutation of BRAF is described in
melanoma cell lines, such as the B16 mouse melanoma
cell line, and other tumors [55,56]. BRAF is a serine/
threonine kinase that is commonly activated by a somatic
point mutation in human cancer, and may provide new
therapeutic opportunities for malignant melanoma [57].
Thus, we focused on BRAF in the melanoma pathway.
It has been reported that PTEN deficiency combined
with BRAF activation induces a melanoma in-situ like
phenotype without dermal invasion [58]. In our study,
Table 2. The altered proteins involved in melanoma pathway.
Location in
Pathway
Gen Bank
ID Gene name Synonyms Name of Altered Protein;
: Up-regulated protein; : Down-regulated protein
26413 Mapk1 Erk2, Mapk, Prkm1 Mitogen-activated protein kinase 1
ERK
26417 Mapk3 Erk1, Prkm3 Mitogen-activated protein kinase 3
BRAF 109880 Braf B-raf Serine/threonine-protein kinase B-raf
Raf 109880 Braf B-raf Serine/threonine-protein kinase B-raf
CDK4/6 12571 Cdk6 Crk2 Cell division protein kinase 6
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
547
Figure 7. The location of altered proteins involved in melanoma pathway from KEGG database.
BRAF was found to be down-regulated in the melanoma
pathway of the Dnmt3a-D cell line (Figure 7). Most
likely, the down-regulated expression of BRAF resulted
in the suppression of tumorigenesis. Dnmt3a depletion
inhibited the growth of melanoma by directly or indi-
rectly regulating the expression of BRAF.
4. Conclusions
This study demonstrates the varied changes in protein
level, and that in the Dnmt3a-D cell line 467 proteins
were up-regulated, while 535 proteins were down-regu-
lated as compared to the NC cell line. GO analysis indi-
cated that the altered proteins were primarily concen-
trated in the cytoplasm, nucleus, and mitochondrion, and
that the altered proteins exhibiting activity function were
primarily classified as exhibiting catalytic activity, tran-
sferase activity, and phosphotransferase activity. KEGG
pathway analysis demonstrated that the MAPK signaling
pathway exhibited a greater level of altered proteins, a
fact that attracted our attention due to the close relation-
ship with tumorigenesis. Taken together, our results
strongly suggested that Dnmt3a depletion has a great
impact on the expression of melanoma cell proteins. Ad-
ditionally, Dnmt3a depletion may affect tumorigenesis
through regulation of the proteins involved in tumor-
related pathways, such as the MAPK signaling pathway
and the melanoma pathway. These results indicated that
the tumor-related pathways may be potentially valuable
for the treatment of malignant melanoma in the future.
5. Acknowledgements
The authors would like to acknowledge the financial
support by the National Natural Science Foundation of
China (20675057, 20705024).
6. References
[1] A. J. Miller and M. C. Jr Mihm, “Melanoma,” The New
England Journal of Medicine, Vol. 355, 2006, pp. 51-65.
[2] A. D. Sasse, E. C. Sasse, L. G. Clark, L. Ulloa and O. A.
Clark, “Chemoimmunotherapy Versus Chemotherapy for
Metastatic Malignant Melanoma,” Cochrane Database
System Reviews, 2007, p. D5413.
[3] M. F. Paz, M. F. Fraga, S. Avila, M. Guo, M. Pollan, J. G.
Herman and M. Esteller, “A Systematic Profile of Dna
Methylation in Human Cancer Cell Lines,” Cancer Re-
search, Vol. 63, 2003, pp. 1114-1121.
[4] W. M. Gallagher, O. E. Bergin, M. Rafferty, Z. D. Kelly,
I. M. Nolan, E. J. Fox, A. C. Culhane, L. McArdle, M. F.
Fraga, L. Hughes, C. A. Currid, F. O’Mahony, A. Byrne,
A. A. Murphy, C. Moss, S. McDonnell, R. L. Stallings, J.
A. Plumb, M. Esteller, R. Brown, P. A. Dervan and D. J.
Easty, “Multiple Markers for Melanoma Progression
Regulated by Dna Methylation: Insights From Transcrip-
tomic Studies,” Carcinogenesis, Vol. 26, No. 11, 2005,
pp. 1856-1867.
[5] P. A. Van der Velden, W. Zuidervaart, M. H. Hurks, S.
Pavey, B. R. Ksander, E. Krijgsman, R. R. Frants, C. P.
Tensen, R. Willemze, M. J. Jager and N. A. Gruis, “Ex-
pression Profiling Reveals that Methylation of Timp3 is
Involved in Uveal Melanoma Development,” Interna-
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
548
tional Journal of Cancer, Vol. 106, No. 4, 2003, pp.
472-479.
[6] E. Li, T. H. Bestor, and R. Jaenisch, “Targeted Mutation
of the Dna Methyltransferase Gene Results in Embryonic
Lethality,” Cell, Vol. 69, No. 6, 1992, pp. 915-926.
[7] H. Lei, S. P. Oh, M. Okano, R. Juttermann, K. A. Goss, R.
Jaenisch and E. Li, “De Novo Dna Cytosine Methyl-
transferase Activities in Mouse Embryonic Stem Cells,”
Development, Vol. 122, 1996, pp. 3195-3205.
[8] M. Okano, D. W. Bell, D. A. Haber and E. Li, “Dna Me-
thyltransferases Dnmt3a and Dnmt3B are Essential for
De Novo Methylation and Mammalian Development,”
Cell, Vol. 99, No, 3, 1999, pp. 247-257.
[9] K. D. Robertson, E. Uzvolgyi, G. Liang, C. Talmadge, J.
Sumegi, F. A. Gonzales and P. A. Jones, “The Human
Dna Methyltransferases (Dnmts) 1, 3a and 3B: Coordi-
nate Mrna Expression in Normal Tissues and Overex-
pression in Tumors,” Nucleic Acids Research, Vol. 27,
No. 11, 1999, pp. 2291-2298.
0doi:org/10.1093/nar/27.11.2291
[10] D. L. Zheng, L. Zhang, N. Cheng, X. Xu, Q. Deng, X. M.
Teng, K. S. Wang, X. Zhang, J. Huang and Z. G. Han,
“Epigenetic Modification Induced by Hepatitis B Virus X
Protein Via Interaction with De Novo Dna Methyltrans-
ferase Dnmt3a,” Journal of Hepatology, Vol. 50, No. 2,
2009, pp. 377-387. 1doi:org/10.1016/j.jhep.2008.10.019
[11] D. V. Maltseva, A. A. Baykov, A. Jeltsch, and E. S. Gro-
mova, “Impact of 7,8-Dihydro-8-Oxoguanine On Methy-
lation of the Cpg Site by Dnmt3a,” Biochemistry, Vol. 48,
No. 6, 2009, pp. 1361-1368.
[12] J. Feng, Y. Zhou, S. L. Campbell, Le T, E. Li, J. D.
Sweatt, A. J. Silva and G. Fan, “Dnmt1 and Dnmt3a
Maintain Dna Methylation and Regulate Synaptic Func-
tion in Adult Forebrain Neurons,” Nature Neuroscience,
Vol. 13, 2010, pp. 423-430.
2doi:org/10.1038/nn.2514
[13] H. Wu, V. Coskun, J. Tao, W. Xie, W. Ge, K. Yoshikawa,
E. Li, Y. Zhang and Y. E. Sun, “Dnmt3a-Dependent
Nonpromoter Dna Methylation Facilitates Transcription
of Neurogenic Genes,” Science, Vol. 329, No. 5990, 2010,
pp. 444- 448.
[14] J. Nawarak, R. Huang-Liu, S. H. Kao, H. H. Liao, S.
Sinchaikul, S. T. Chen and S. L. Cheng, “Proteomics
Analysis of a375 Human Malignant Melanoma Cells in
Response to Arbutin Treatment,” Biochim Biophys Acta,
Vol. 1794, No. 2, 2009, pp. 159-167.
[15] Y. Zhang, Y. Gao, G. Zhang, S. Huang, Z. Dong, C.
Kong, D. Su, Du J, S. Zhu, Q. Liang, J. Zhang, J. Lu, and
B. Huang, “Dnmt3a Plays a Role in Switches Between
Doxorubicin-Induced Senescence and Apoptosis of Co-
lorectal Cancer Cells,” International Journal of Cancer,
Vol. 128, No. 3, 2010, pp. 551-561.
[16] Z. Zhao, Q. Wu, J. Cheng, X. Qiu, J. Zhang and H. Fan,
“Depletion of Dnmt3a Suppressed Cell Proliferation and
Restored Pten in Hepatocellular Carcinoma Cell,” Jour-
nal of Biomedicine and Biotechnology, Vol. 2010, Vol.
2010, pp. 737535-737545.
3doi:org/10.1155/2010/737535
[17] T. Deng, Y. Kuang, L. Wang, J. Li, Z. Wang, and J. Fei,
“An Essential Role for Dna Methyltransferase 3a in
Melanoma Tumorigenesis,” Biochemical and Biophysical
Reseasch Communications, Vol. 387, No. 3, 2009, pp.
611-616. 4doi:org/10.1016/j.bbrc.2009.07.093
[18] E. F. Wagner and A. R. Nebreda, “Signal Integration by
Jnk and P38 Mapk Pathways in Cancer Development,”
Nature Reviews Cancer, Vol. 9, 2009, pp. 537-549.
5doi:org/10.1038/nrc2694
[19] A. Zougman, B. Pilch, A. Podtelejnikov, M. Kiehntopf, C.
Schnabel, C. Kumar and M. Mann, “Integrated Analysis
of the Cerebrospinal Fluid Peptidome and Proteome,”
Journal of Proteome Research, Vol. 7, 2008, pp. 386-399.
6doi:org/10.1021/pr070501k
[20] B. Macek, L. F. Waanders, J. V. Olsen and M. Mann,
“Top-Down Protein Sequencing and Ms3 On a Hybrid
Linear Quadrupole Ion Trap-Orbitrap Mass Spectrome-
ter,” Mol Cell Proteomics, Vol. 5, 2006, pp. 949-958.
[21] J. V. Olsen, L. M. de Godoy, G. Li, B. Macek, P.
Mortensen, R. Pesch, A. Makarov, O. Lange, S. Horning
and M. Mann, “Parts Per Million Mass Accuracy On an
Orbitrap Mass Spectrometer Via Lock Mass Injection
Into a C-Trap,” Mol Cell Proteomics, Vol. 4, 2005, pp.
2010-2021. 7doi:org/10.1074/mcp.T500030-MCP200
[22] S. K. Binz, A. M. Sheehan and M. S. Wold, “Replication
Protein a Phosphorylation and the Cellular Response to
Dna Damage,” DNA Repair (Amst), Vol. 3, No. 8-9, 2004,
pp. 1015-1024. 8doi:org/10.1016/j.dnarep.2004.03.028
[23] M. S. Kobor and J. Greenblatt, “Regulation of Transcrip-
tion Elongation by Phosphorylation,” Biochim Biophys
Acta, Vol. 1577, No. 2, 2002, pp. 261-275.
[24] H. Ohkura, “Phosphorylation: Polo Kinase Joins an Elite
Club,” Current Biology, Vol. 13, 2003, pp. R912-R914.
9doi:org/10.1016/j.cub.2003.11.012
[25] P. P. Ruvolo, X. Deng and W. S. May, “Phosphorylation
of Bcl2 and Regulation of Apoptosis,” Leukemia, Vol. 15,
No. 4, 2001, pp. 515-522.
[26] L. Chang and M. Karin, “Mammalian Map Kinase Sig-
nalling Cascades,” Nature, Vol. 410, No. 6824, 2001, pp.
37-40.
[27] J. M. Kyriakis and J. Avruch, “Mammalian Mitogen-
Activated Protein Kinase Signal Transduction Pathways
Activated by Stress and Inflammation,” Physiological
Reviews, Vol. 81, No. 2, 2001, pp. 807-869.
[28] A. R. Nebreda and A. Porras, “P38 Map Kinases: Beyond
the Stress Response,” Trends in Biochemical Sciences,
Vol. 25, No. 6, 2000, pp. 257-260.
1doi:org/10.1016/S0968-0004(00)01595-4
[29] M. Karin and E. Gallagher, “From Jnk to Pay Dirt: Jun
Kinases, their Biochemistry, Physiology and Clinical
Importance,” Iubmb Life, Vol. 57, No. 4-5, 2005, pp.
283-295.1doi:org/10.1080/15216540500097111
[30] S. Gupta, T. Barrett, A. J. Whitmarsh, J. Cavanagh, H. K.
Sluss, B. Derijard and R. J. Davis, “Selective Interaction
of Jnk Protein Kinase Isoforms with Transcription Fac-
tors,” EMBO Journal, Vol. 15, 1996, pp. 2760-2770.
[31] R. Eferl and E. F. Wagner, “Ap-1: A Double-Edged
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
549
Sword in Tumorigenesis,” Nature Reviews Cancer, Vol.
3, 2003, pp. 859-868. 1doi:org/10.1038/nrc1209
[32] K. Sabapathy, K. Hochedlinger, S. Y. Nam, A. Bauer, M.
Karin and E. F. Wagner, “Distinct Roles for Jnk1 and
Jnk2 in Regulating Jnk Activity and C-Jun-Dependent
Cell Proliferation,” Molecular Cell, Vol. 15, No. 5, 2004,
pp. 713-725. 1doi:org/10.1016/j.molcel.2004.08.028
[33] M. Das, F. Jiang, H. K. Sluss, C. Zhang, K. M. Shokat, R.
A. Flavell and R. J. Davis, “Suppression of P53-De-
pendent Senescence by the Jnk Signal Transduction
Pathway,” Proceedingof the Natlonal Academy Sciences
of the U S A, Vol. 104, 2007, pp. 15759-15764.
1doi:org/10.1073/pnas.0707782104
[34] D. Morse, L. E. Otterbein, S. Watkins, S. Alber, Z. Zhou,
R. A. Flavell, R. J. Davis and A. M. Choi, “Deficiency in
the C-Jun Nh2-Terminal Kinase Signaling Pathway Con-
fers Susceptibility to Hyperoxic Lung Injury in Mice,”
American Journal of Physiology-Lung Cellular Molecu-
lar Physiology, Vol. 285, No. 1, 2003, pp. L250-L257.
[35] J. C. Lee, J. T. Laydon, P. C. McDonnell, T. F. Gallagher,
S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R.
Heys, S. W. Landvatter and Al. Et, “A Protein Kinase
Involved in the Regulation of Inflammatory Cytokine
Biosynthesis,” Nature, Vol. 372, 1994, pp. 739-746.
[36] K. Ono and J. Han, “The P38 Signal Transduction Path-
way: Activation and Function,” Cellular Signalling, Vol.
12, No. 1, 2000, pp. 1-13.
1doi:org/10.1016/S0898-6568(99)00071-6
[37] D. V. Bulavin and AJ Jr Fornace, “P38 Map Kinase’s
Emerging Role as a Tumor Suppressor,” Advances In
Cancer Research, Vol. 92, 2004, pp. 95-118.
1doi:org/10.1016/S0065-230X(04)92005-2
[38] I. Dolado, A. Swat, N. Ajenjo, G. De Vita, A. Cuadrado
and A. R. Nebreda, “P38Alpha Map Kinase as a Sensor
of Reactive Oxygen Species in Tumorigenesis,” Cancer
Cell, Vol. 11, No. 2, 2007, pp. 191-205.
[39] F. B. Engel, M. Schebesta, M. T. Duong, G. Lu, S. Ren, J.
B. Madwed, H. Jiang, Y. Wang and M. T. Keating, “P38
Map Kinase Inhibition Enables Proliferation of Adult
Mammalian Cardiomyocytes,” Genes Development, Vol.
19, 2005, pp. 1175-1187. 1doi:org/10.1101/gad.1306705
[40] L. J. Hui, L. Bakiri, A. Mairhorfer, N. Schweifer, C.
Haslinger, L. Kenner, V. Komnenovic, H. Scheuch, H.
Beug and E. F. Wagner, “P38X3B1; Suppresses Normal
and Cancer Cell Proliferation by Antagonizing the
JnkX2013;C-Jun Pathway,” Nature Genetics, Vol. 39,
2007.
[41] A. Jones and A. Charlton, “Determination of Metalde-
hyde in Suspected Cases of Animal Poisoning Using Gas
Chromatography-Ion Trap Mass Spectrometry,” Journal
Agric Food Chemistry, Vol. 47, No. 11, 1999, pp.
4675-4677. 1doi:org/10.1021/jf990026d
[42] X. Wang, C. H. Goh and B. Li, “P38 Mitogen-Activated
Protein Kinase Regulates Osteoblast Differentiation
through Osterix,” Endocrinology, Vol. 148, 2007, pp.
1629-1637.
[43] C. Hikita, S. Vijayakumar, J. Takito, H. Erdjument-
Bromage, P. Tempst and Q. Al-Awqati, “Induction of
Terminal Differentiation in Epithelial Cells Requires Po-
lymerization of Hensin by Galectin 3,” Journal of Cell
Biology, Vol. 151, No. 6, 2000, pp. 1235-1246.
1doi:org/10.1083/jcb.151.6.1235
[44] P. Ordonez-Moran, M. J. Larriba, H. G. Palmer, R. A.
Valero, A. Barbachano, M. Dunach, A. G. de Herreros, C.
Villalobos, M. T. Berciano, M. Lafarga and A. Munoz,
“Rhoa-Rock and P38Mapk-Msk1 Mediate Vitamin D
Effects On Gene Expression, Phenotype and Wnt Path-
way in Colon Cancer Cells,” Journal of Cell Biology, Vol.
183, No. 4, 2008, pp. 697-710.
2doi:org/10.1083/jcb.200803020
[45] G. J. Finn, B. S. Creaven and D. A. Egan, “Daphnetin
Induced Differentiation of Human Renal Carcinoma Cells
and its Mediation by P38 Mitogen-Activated Protein
Kinase,” Biochemical Pharmacology, Vol. 67, 2004, pp.
1779-1788. 2doi:org/10.1016/j.bcp.2004.01.014
[46] T. S. Lewis, P. S. Shapiro and N. G. Ahn, “Signal Trans-
duction through Map Kinase Cascades,” Advances In
Cancer Research, Vol. 74, 1998, pp. 49-139.
2doi:org/10.1016/S0065-230X(08)60765-4
[47] T. G. Boulton, S. H. Nye, D. J. Robbins, N. Y. Ip, E.
Radziejewska, S. D. Morgenbesser, R. A. DePinho, N.
Panayotatos, M. H. Cobb and G. D. Yancopoulos, “Erks:
A Family of Protein-Serine/Threonine Kinases that are
Activated and Tyrosine Phosphorylated in Response to
Insulin and Ngf,” Cell, Vol. 65, 1991, pp. 663-675.
[48] C. M. Atkins, J. C. Selcher, J. J. Petraitis, J. M. Trzas-
kosand J. D. Sweatt, “The Mapk Cascade is Required for
Mammalian Associative Learning,” Nature Neuroscience,
Vol. 1, 1998, pp. 602-609. 2doi:org/10.1038/2836
[49] R. Brambilla, N. Gnesutta, L. Minichiello, G. White, A. J.
Roylance, C. E. Herron, M. Ramsey, D. P. Wolfer, V.
Cestari, C. Rossi-Arnaud, S. G. Grant, P. F. Chapman, H.
P. Lipp, E. Sturani and R. Klein, “A Role for the Ras
Signalling Pathway in Synaptic Transmission and Long-
Term Memory,” Nature, Vol. 390, 1997, PP. 281-286.
[50] G. Pearson, F. Robinson, Gibson T. Beers, B. E. Xu, M.
Karandikar, K. Berman and M. H. Cobb, “Mitogen-Ac-
tivated Protein (Map) Kinase Pathways: Regulation and
Physiological Functions,” Endocrine Reviews, Vol. 22,
No. 2, 2001, pp. 153-183. 2doi:org/10.1210/er.22.2.153
[51] T. Pawson and J. D. Scott, “Signaling through Scaffold,
Anchoring, and Adaptor Proteins,” Science, Vol. 278, No.
5346, 1997, pp. 2075-2080.
[52] T. Hunter, “Protein Kinases and Phosphatases: The Yin
and Yang of Protein Phosphorylation and Signaling,”
Cell, Vol. 80, No. 2, 1995, pp. 225-236.
[53] A. M. Aronov, C. Baker, G. W. Bemis, J. Cao, G. Chen,
P. J. Ford, U. A. Germann, J. Green, M. R. Hale, M. Ja-
cobs, J. W. Janetka, F. Maltais, G. Martinez-Botella, M.
N. Namchuk, J. Straub, Q. Tang and X. Xie, “Flipped Out:
Structure-Guided Design of Selective Pyrazolylpyrrole
Erk Inhibitors,” Journal of Medicinal Chemistry, Vol. 50,
No. 5, 2007, pp. 1280-1287.
2doi:org/10.1021/jm061381f
[54] K. S. Smalley, “A Pivotal Role for Erk in the Oncogenic
Behaviour of Malignant Melanoma?” International
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
550
Journal of Cancer, Vol. 104, No. 5, 2003, pp. 527-532.
2doi:org/10.1002/ijc.10978
[55] H. Gear, H. Williams, E. G. Kemp and F. Roberts, “Braf
Mutations in Conjunctival Melanoma,” Invest Ophthal-
mology Visual Science, Vol. 45, No. 8, 2004, pp. 2484-
2488. 2doi:org/10.1167/iovs.04-0093
[56] V. K. Goel, A. J. Lazar, C. L. Warneke, M. S. Redston
and F. G. Haluska, “Examination of Mutations in Braf,
Nras, and Pten in Primary Cutaneous Melanoma,” Jour-
nal of Investigative Dermatology, Vol. 126, 2006, pp.
154-160.
[57] H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins,
S. Clegg, J. Teague, H. Woffendin, M. J. Garnett, W.
Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K.
Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A.
Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S.
Hooper, R. Wilson, H. Jayatilake, B. A. Gusterson, C.
Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N.
Maitland, G. Chenevix-Trench, G. J. Riggins, D. D.
Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson,
J. W. Ho, S. Y. Leung, S. T. Yuen, B. L. Weber, H. F.
Seigler, T. L. Darrow, H. Paterson, R. Marais, C. J. Mar-
shall, R. Wooster, M. R. Stratton and P. A. Futreal, “Mu-
tations of the Braf Gene in Human Cancer,” Nature, Vol.
417, No. 6892, 2002, pp. 949-954.
[58] R. S. Lo and O. N. Witte, “Transforming Growth Fac-
tor-Beta Activation Promotes Genetic Context-Dependent
Invasion of Immortalized Melanocytes,” Cancer Re-
search, Vol. 68, No. 4248, 2008, pp. 4248-4257.
2doi:org/10.1158/0008-5472.CAN-07-5671
Supporting Information Available
There are 467 proteins were up-regulated (Supplementary Materials, Table S1) and 535 proteins were down-regulated
(Supplementary Materials, Table S2) in the Dnmt3a-D cell line as compared with the NC cell line. Supplementary ma-
terials Table S3 including the abbreviated words and their full name.
Table S1
protein Protein
probability
num unique
peps
precursor ion
charge peptide sequence
sp|Q8CGP0|H2B3B_MOUSE 0.9997 2 2 AMGIMNSFVNDIFER
sp|Q8QZT1|THIL_MOUSE 1 18 2 ASKPTLNEVVIVSAIR
sp|Q9QZQ8|H2AY_MOUSE 1 9 2 AASADSTTEGTPTDGFTVLSTK
sp|O88544|CSN4_MOUSE 1 11 2 AIQLSGTEQLEALK
sp|Q9CR16|PPID_MOUSE 1 15 2 DGSGDSHPDFPEDADIDLK
sp|Q9WVJ2|PSD13_MOUSE 1 10 2 LYENFISEFEHR
sp|P40336|VP26A_MOUSE 1 11 2 ELALPGELTQSR
sp|Q921H8|THIKA_MOUSE 1 12 2 AEELGLPILGVLR
sp|P63085|MK01_MOUSE 1 12 2 FDM[147]ELDDLPK
sp|Q9QWL7|K1C17_MOUSE 1 5 2 LLEGEDAHLTQYK
sp|Q99J62|RFC4_MOUSE 1 10 2 AITFLQSATR
sp|Q60737|CSK21_MOUSE 1 11 2 GGPNIITLADIVK
sp|Q91WK2|EIF3H_MOUSE 1 11 2 LFM[147]AQALQEYNN
sp|O54984|ARSA1_MOUSE 1 8 2 GM[147]NFSVVVFDTAPTGH
sp|Q07417|ACADS_MOUSE 1 10 2 GISAFLVPM[147]PTPGLTLGK
sp|Q99KV1|DJB11_MOUSE 1 7 2 FQDLGAAYEVLSDSEK
sp|Q9DAR7|DCPS_MOUSE 1 9 2 IVFENPDPSDGFVLIPDLK
sp|Q9R1T2|SAE1_MOUSE 1 9 2 AQNLNPM[147]VDVK
sp|Q9D0M1|KPRA_MOUSE 1 10 2 GQDIFIIQTIPR
sp|Q9JHJ0|TMOD3_MOUSE 1 7 2 DLGDYKDLDEDELLGK
sp|Q9Z2K1|K1C16_MOUSE 1 4 2 TRLEQEIATYR
sp|Q9Z1G3|VATC1_MOUSE 1 11 2 VAQYM[147]ADVLEDSKDK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
551
sp|P70362|UFD1_MOUSE 1 7 2 FQPQSPDFLDITNPK
sp|P47811|MK14_MOUSE 1 9 2 HENVIGLLDVFTPAR
sp|Q9R0U0|FUSIP_MOUSE 1 6 2 GFAYVQFEDVR
sp|P63276|RS17_MOUSE 1 3 2 IAGYVTHLM[147]K
sp|Q9CXW2|RT22_MOUSE 1 8 2 LM[147]TQAQLEEATR
sp|Q6Y7W8|PERQ2_MOUSE 1 9 2 EVESPYEVHDYTR
sp|Q9CPX6|ATG3_MOUSE 1 5 2 LWLFGYDEQR
sp|P70318|TIAR_MOUSE 1 4 2 FEDVVNQSSPK
sp|P05132|KAPCA_MOUSE 1 9 2 ILQAVNFPFLVK
sp|Q9DBS1|TMM43_MOUSE 1 9 2 LLSDPNYGVHLPAVK
sp|P54923|ADPRH_MOUSE 1 7 3 DGETIHQQLAQM[147]GDLEAIDVAR
sp|Q9D7G0|PRPS1_MOUSE 1 6 2 IFSGSSHQDLSQK
sp|Q9ER00|STX12_MOUSE 1 4 2 ELGSLPLPLSASEQR
sp|Q9ER88|RT29_MOUSE 1 6 2 FDQPLEASTWLK
sp|Q9Z0G0|GIPC1_MOUSE 1 6 2 APPLVENEEAEPSR
sp|Q99LG2|TNPO2_MOUSE 1 4 2 ALVM[147]LLEVR
sp|Q9CQT1|EI2BL_MOUSE 1 6 2 AGAGGPGLAALVAFVR
sp|Q9WUL7|ARL3_MOUSE 1 6 2 LNVWDIGGQR
sp|P47964|RL36_MOUSE 0.9975 2 2 YPM[147]AVGLNK
sp|P26516|PSD7_MOUSE 1 5 2 TNDQM[147]VVVYLASLIR
sp|Q8K157|GALM_MOUSE 1 4 2 VSPDGEEGYPGELK
sp|P58774|TPM2_MOUSE 0.9994 1 2 ATDAEADVASLNR
sp|P61963|WDR68_MOUSE 1 3 2 DM[147]FASVGADGSVR
sp|Q64442|DHSO_MOUSE 1 4 2 AM[147]GAAQVVVTDLSASR
sp|Q99J09|MEP50_MOUSE 1 4 2 IWDLAQQVSLNSYR
sp|Q9CX34|SUGT1_MOUSE 1 6 2 DYASALETFAEGQK
sp|Q9QYA2|TOM40_MOUSE 1 6 2 FVNWQVDGEYR
sp|Q9QYJ3|DNJB1_MOUSE 1 6 2 DGSDVIYPAR
sp|P68181|KAPCB_MOUSE 0.9987 1 2 ILQAVEFPFLVR
sp|Q60766|IRGM_MOUSE 1 5 2 DLSTSVLSEVR
sp|Q64213|SF01_MOUSE 1 4 3 ILRPWQSSETR
sp|Q8R323|RFC3_MOUSE 1 7 2 AIYHLEAFVAK
sp|Q8R574|KPRB_MOUSE 1 5 2 IFVM[147]ATHGLLSSDAPR
sp|Q99JB2|STML2_MOUSE 1 4 2 AEQINQAAGEASAVLAK
sp|Q9EQ80|NIF3L_MOUSE 1 5 2 TLM[147]QVLAFLSQDR
sp|Q9JLC8|SACS_MOUSE 1 9 2 LLLVLNK
sp|O09174|AMACR_MOUSE 1 5 2 GQNILDGGAPFYTTYK
sp|O35435|PYRD_MOUSE 1 7 2 QTQLTTDGLPLGINLGK
sp|P24288|BCAT1_MOUSE 1 5 2 HLTM[147]DDLATALEGNR
sp|P70697|DCUP_MOUSE 1 5 2 LVQQM[147]LDDFGPQR
sp|Q61187|TS101_MOUSE 1 5 2 ELVNLTGTIPVR
sp|Q6PD19|CJ076_MOUSE 1 6 2 LQDGLDQYER
sp|Q91WM2|CECR5_MOUSE 1 5 2 QM[147]LVSGQGPLVENAR
sp|P18872|GNAO_MOUSE 0.9998 2 2 TTGIVETHFTFK
sp|P47941|CRKL_MOUSE 1 4 2 IHYLDTTTLIEPAPR
sp|Q8VDT9|RM50_MOUSE 1 5 2 DVLDFYNVPVQDK
sp|Q99M71|EPDR1_MOUSE 1 3 2 ALVSYDGLNQR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
552
sp|Q9WTQ8|TIM23_MOUSE 1 3 2 NVQILNM[147]VTR
sp|Q80WQ2|VAC14_MOUSE 1 4 2 DFVAQNNTM[147]QIK
sp|Q9CQ92|FIS1_MOUSE 1 2 2 GLLQTEPQNNQAK
sp|Q9CXE7|TMED5_MOUSE 1 4 2 LEDILESINSIK
sp|Q9DC50|OCTC_MOUSE 1 5 2 AASDLQIAASTFTSFGK
sp|Q9JK48|SHLB1_MOUSE 1 4 2 LAADAGTFLSR
sp|Q8K0D0|PCTK2_MOUSE 1 4 2 LDSEGIELITK
sp|Q99J95|CDK9_MOUSE 0.9997 3 2 LADFGLAR
sp|P21278|GNA11_MOUSE 1 6 2 IATVGYLPTQQDVLR
sp|Q8BMS9|RASF2_MOUSE 1 5 2 TSVFTPAYGSVTNVR
sp|Q99JT2|MST4_MOUSE 1 3 2 LADFGVAGQLTDTQIK
sp|O70493|SNX12_MOUSE 0.9966 2 2 TNLPIFK
sp|O08915|AIP_MOUSE 1 3 2 VLELDPALAPVVSR
sp|P59708|PM14_MOUSE 1 3 2 GTAYVVYEDIFDAK
sp|P70404|IDH3G_MOUSE 1 6 2 ENTEGEYSSLEHESVAGVVESLK
sp|Q80V26|IMPA3_MOUSE 1 3 2 EM[147]LAVAVLAAER
sp|Q8BGR9|UBCP1_MOUSE 1 4 2 LDDFLELNHK
sp|Q8BTZ7|GMPPB_MOUSE 1 5 2 ALILVGGYGTR
sp|Q8N9S3|AHSA2_MOUSE 1 4 2 LQASPVALGVR
sp|Q91YM2|GRLF1_MOUSE 1 6 2 EQLTEGEEIAQEIDGR
sp|Q99JF8|PSIP1_MOUSE 1 4 2 QVDTEEAGM[147]VTAATASNVK
sp|Q9CQR4|THEM2_MOUSE 1 2 2 TLAFASVDLTNK
sp|Q9CXY9|GPI8_MOUSE 1 3 2 NVLITDFFGSVR
sp|Q9JHI5|IVD_MOUSE 1 4 2 IGQFQLM[147]QGK
sp|Q9WVL0|MAAI_MOUSE 1 2 2 VITSGFNALEK
sp|O08583|THOC4_MOUSE 1 3 2 QQLSAEELDAQLDAYNAR
sp|Q63844|MK03_MOUSE 1 3 2 FDM[147]ELDDLPK
sp|Q00899|TYY1_MOUSE 1 3 2 TLEGEFSVTM[147]WSSDEKK
sp|Q3URS9|CCD51_MOUSE 1 4 2 EDNQYLELATLEHR
sp|Q8R2U6|NUDT4_MOUSE 1 2 2 LLGIFENQDR
sp|P13011|ACOD2_MOUSE 0.9913 1 2 DDLYDPTYQDDEGPPPK
sp|O70439|STX7_MOUSE 1 2 2 TLNQLGTPQDSPELR
sp|O88543|CSN3_MOUSE 1 2 2 AM[147]DQEITVNPQFVQK
sp|P47199|QOR_MOUSE 1 3 2 VFEFGGPEVLK
sp|Q8BG94|COMD7_MOUSE 1 3 2 FGVTSGSSELEK
sp|Q8BH69|SPS1_MOUSE 1 4 2 IIEVAPQVATQNVNPTPGATS
sp|Q8CAY6|THIC_MOUSE 1 5 2 ILVTLLHTLER
sp|Q8K2Z2|PRP39_MOUSE 1 4 2 DLLTGEQFIQLR
sp|Q8R349|CDC16_MOUSE 1 4 2 YAEALDYHR
sp|Q8VCG3|WDR74_MOUSE 1 3 2 VWDLQGSEEPVFR
sp|Q921X9|PDIA5_MOUSE 1 4 2 FHISAFPTLK
sp|Q99K23|UFSP2_MOUSE 1 4 2 INAYHFPDELYK
sp|Q99LD9|EI2BB_MOUSE 1 4 2 FVAPEEVLPFTEGDILEK
sp|Q9D2R6|CCD56_MOUSE 1 3 2 FLDELEDEAK
sp|Q9D8X5|CNOT8_MOUSE 1 3 2 GGLQEVADQLDLQR
sp|Q9DCA5|BXDC2_MOUSE 1 4 2 EFLIQIFSTPR
sp|P21279|GNAQ_MOUSE 1 2 2 M[147]FVDLNPDSDK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
553
sp|Q8VE80|THOC3_MOUSE 0.9992 2 2 YVLGM[147]QELFR
sp|Q62422|OSTF1_MOUSE 0.9989 2 2 ALYTFEPR
sp|P61294|RAB6B_MOUSE 0.9979 1 2 GSDVIIMLVGNK
sp|Q8R2E9|ERO1B_MOUSE 0.9969 1 2 TLLLSIFQDTK
sp|O09110|MP2K3_MOUSE 1 2 2 FPYESWGTPFQQLK
sp|O35658|C1QBP_MOUSE 1 2 2 AFVEFLTDEIKEEK
sp|P62488|RPB7_MOUSE 1 3 2 GEVVDAVVTQVNK
sp|Q59J78|MIMIT_MOUSE 1 3 2 ETSEELLPSPTATQVK
sp|Q60866|PTER_MOUSE 1 3 2 GGGALVENTTTGLSR
sp|Q61249|IGBP1_MOUSE 1 3 2 AAGM[147]LSQLDLFSR
sp|Q62203|SF3A2_MOUSE 1 4 2 M[147]EKPPAPPSLPAGPPGVK
sp|Q78HU3|F125A_MOUSE 1 2 2 GPLPSGFSAVNDPQDIK
sp|Q78JW9|UBFD1_MOUSE 1 4 2 IM[147]VVGSTINDVLAVNTPK
sp|Q8BFQ8|PDDC1_MOUSE 1 2 2 AIDFVDVTESNAR
sp|Q8CFE2|CD027_MOUSE 1 5 2 DSPDELPVYVGTNEAK
sp|Q8R1J3|ZCHC9_MOUSE 1 2 2 GM[147]SADYEDVLDVPK
sp|Q8VDG7|PAFA2_MOUSE 1 4 2 TVVNVFPGGLDLM[147]TLK
sp|Q8VDQ1|PTGR2_MOUSE 1 4 2
GLENM[147]GVAFQSM[147]M[147]TGG
NVGK
sp|Q91VE6|MK67I_MOUSE 1 3 2 GIDYSFPSLVLPK
sp|Q91WE2|NIP30_MOUSE 1 3 2 GLDEDETNFLDEVSR
sp|Q99LC2|CSTF1_MOUSE 1 3 2 LGM[147]ENDDTAVQYAIGR
sp|Q9CQI9|MED30_MOUSE 1 2 2 IGQETVQDIVYR
sp|Q9D753|EXOS8_MOUSE 1 3 2 ATTVNIGSISTADGSALVK
sp|Q9D832|DNJB4_MOUSE 1 5 2 VIGYGLPFPK
sp|Q9DBL1|ACDSB_MOUSE 1 5 2 SGNYYVLNGSK
sp|Q9EPJ9|ARFG1_MOUSE 1 3 2 IFDDVSSGVSQLASK
sp|Q9JK38|GNA1_MOUSE 1 2 2 VLGQLTETGVVSPEQFM[147]K
sp|Q9WUN2|TBK1_MOUSE 1 5 2 LSSSQGTIESSLQDISSR
sp|Q9Z2D8|MBD3_MOUSE 1 2 2 AFM[147]VTDDDIR
sp|P18653|KS6A1_MOUSE 0.9993 1 3 DLKPENILLDEEGHIK
sp|P97820|M4K4_MOUSE 1 4 2 GQNVLLTENAEVK
sp|Q91YS8|KCC1A_MOUSE 0.9999 2 2 LIFQVLDAVK
sp|Q921E2|RAB31_MOUSE 0.9999 2 2 GSAAAVIVYDITK
sp|P0C7N9|PSMG4_MOUSE 0.9998 2 2 AAADADVSLHNFSAR
sp|P59438|HPS5_MOUSE 0.9998 4 2 LLDPLVLFEPK
sp|Q8C5Q4|GRSF1_MOUSE 0.9998 2 2 LGDEVDDVYLIR
sp|Q9Z1B5|MD2L1_MOUSE 0.9998 2 2 YGLTLLTTTDPELIK
sp|P47226|TES_MOUSE 0.9997 2 2 NVM[147]ILTNPVAAK
sp|O09117|SYPL1_MOUSE 0.9992 2 2 SAFQINLNPLK
sp|Q9D7H3|RTC1_MOUSE 0.999 3 2 AFVAGVLPLK
sp|Q91X78|ERLN1_MOUSE 0.9969 1 2 ISEIEDAAFLAR
sp|A6PWY4|WDR76_MOUSE 1 3 2 VFDSSSISSQLPLLSTIR
sp|O08579|EMD_MOUSE 1 3 2 DYNDDYYEESYLTTK
sp|O54784|DAPK3_MOUSE 1 3 2 ESLTEDEATQFLK
sp|P33611|DPOA2_MOUSE 1 3 2 QLLSPSSFSPSATPSQK
sp|P97789|XRN1_MOUSE 1 4 2 APELFSYIAK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
554
sp|Q3U1V6|UEVLD_MOUSE 1 5 2 DGVLSPSSQAQLSSR
sp|Q64669|NQO1_MOUSE 1 3 2 ALIVLAHSEK
sp|Q78JE5|FBX22_MOUSE 1 2 2 STYVLSNLAEVVER
sp|Q810A3|TTC9C_MOUSE 1 3 2 AGVAFFHLQDYDR
sp|Q8BKX1|BAIP2_MOUSE 1 2 2 EGDLITLLVPEAR
sp|Q8BWR2|CA128_MOUSE 1 2 2 GLAYGLYLR
sp|Q8C407|YIPF4_MOUSE 1 3 2 SAASLLVGEEFK
sp|Q8CEC0|NUP88_MOUSE 1 2 2 GPSGGGVEPPLSQYQR
sp|Q8CF89|TAB1_MOUSE 1 3 2 VLLQAFDVVER
sp|Q8K194|SNR27_MOUSE 1 3 2 VDGSVNAYAINVSQK
sp|Q8K409|DPOLB_MOUSE 1 3 2 EEM[147]LQM[147]QDIVLNEIK
sp|Q8VDS4|RPR1A_MOUSE 1 2 2 SVYENDVLEQLK
sp|Q8VDS8|STX18_MOUSE 1 3 2 TAVLDFVDDYLK
sp|Q91WK1|SPRY4_MOUSE 1 3 2 VGLLLDYEAK
sp|Q91XI1|DUS3L_MOUSE 1 4 2 ISEM[147]LLGPVPPGFVFLPK
sp|Q9CR95|NECP1_MOUSE 1 3 2 ASGTGGLSLLPPPPGGK
sp|Q9CY28|GTPB8_MOUSE 1 3 2 LFDPSLEDIGR
sp|Q9CZX9|TMM85_MOUSE 1 2 2 GSGQGDSLYPVGYLDK
sp|Q9D8M4|RL7L_MOUSE 1 4 2 TVPLTDNTVIEEHLGR
sp|Q9DBX2|PHLP_MOUSE 1 3 2 EVLVLTSVR
sp|Q9ER73|ELP4_MOUSE 1 4 2 NLSDTVVGLESFIGSER
sp|Q9JLB2|MPP5_MOUSE 1 4 2 EGDEDNQPLAGLVPGK
sp|Q9R099|TBL2_MOUSE 1 3 2 APIINIGIADTGK
sp|Q9WVB0|RBPMS_MOUSE 1 3 2 ENTPSEANLQEEEVR
sp|Q6ZPF4|FMNL3_MOUSE 0.9983 1 2 AAAVSLENVLLDVK
sp|Q921Y2|IMP3_MOUSE 0.9999 2 2 VGPDVVTDPAFLVTR
sp|Q3V009|TMED1_MOUSE 0.9998 2 2 SIQM[147]LTLLR
sp|Q9CQ71|RFA3_MOUSE 0.9991 2 2 M[147]FILSDGEGK
sp|Q9CQG2|MET10_MOUSE 0.9983 2 2 APEDVILALEER
sp|O55125|NIPS1_MOUSE 0.9904 1 2 AGPNIYELR
sp|O09114|PTGDS_MOUSE 1 3 2 AQGLTEEDIVFLPQPDK
sp|P27601|GNA13_MOUSE 1 4 2 ALWEDSGIQNAYDR
sp|P42669|PURA_MOUSE 1 2 2 GPGLGSTQGQTIALPAQGLIEFR
sp|P62748|HPCL1_MOUSE 1 3 2 IYANFFPYGDASK
sp|P97493|THIOM_MOUSE 1 2 2 TTFNVQDGPDFQDR
sp|Q3U0V2|TRADD_MOUSE 1 3 2 DPALDSLAYEYER
sp|Q3UE37|UBE2Z_MOUSE 1 3 2 GHFDYQSLLM[147]R
sp|Q5SSK3|CQ042_MOUSE 1 2 2 LENLIDVPLIQYK
sp|Q62086|PON2_MOUSE 1 4 2 FQEEENSLLHLK
sp|Q8BJZ4|RT35_MOUSE 1 3 2 IPNFLHLTPVAIK
sp|Q8BKF1|RPOM_MOUSE 1 4 2 QLAELLVQAVQM[147]PR
sp|Q8BMZ5|SEN34_MOUSE 1 3 2 FGGDFLVYPGDPLR
sp|Q8BNV1|TRM2A_MOUSE 1 4 2 DDLFTSEIFK
sp|Q8BP40|PPA6_MOUSE 1 4 2 AAISQPGISEDLEK
sp|Q8BVI5|STX16_MOUSE 1 2 2 QIVQSISDLNEIFR
sp|Q8K2M0|RM38_MOUSE 1 4 2 TPPLGPM[147]PNEDIDVSNLER
sp|Q8R322|GLE1_MOUSE 1 4 2 IEAITSSGQM[147]GSFIR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
555
sp|Q8R4Y8|RTTN_MOUSE 1 5 2 AILLYLLQGR
sp|Q8VD00|TMM97_MOUSE 1 3 2 DPLM[147]QEPPVWFK
sp|Q91VJ5|PQBP1_MOUSE 1 3 2 KDEELDPM[147]DPSSYSDAPR
sp|Q920R0|ALS2_MOUSE 1 5 2 GTSDFPLYGGGSSVQR
sp|Q921T2|TOIP1_MOUSE 1 3 2 FESLPAGSTLIFYK
sp|Q9CXR1|DHRS7_MOUSE 1 3 2 LM[147]LISM[147]ANDLK
sp|Q9CYY7|SLMO2_MOUSE 1 2 2 LNAEIEELAASAR
sp|Q9CZU4|ERAL_MOUSE 1 3 2 ETQVILLDTPGIISPVK
sp|Q9D2R8|RT33_MOUSE 1 2 2 VVSLFSEQPLAK
sp|Q9EP72|CO024_MOUSE 1 3 2 SEVPGAAAEGPGGSGVGLGDR
sp|Q9WV03|FA50A_MOUSE 1 3 2 SGPLFNFDVHDDVR
sp|Q925E7|2ABD_MOUSE 0.9951 1 2 INLWHLEITDR
sp|Q9JI46|NUDT3_MOUSE 1 2 2 LVGIFENQER
sp|Q3UA16|SPC25_MOUSE 0.9999 3 2 LQFIFTSIDPK
sp|Q6PAQ4|REXO4_MOUSE 0.9999 3 2 VSIVNQYGK
sp|Q810J8|ZFYV1_MOUSE 0.9999 3 2 FLGDASEAYLK
sp|Q8BH66|ATLA1_MOUSE 0.9999 4 2 SFLM[147]DFM[147]LR
sp|Q8JZV7|NAGA_MOUSE 0.9999 3 2 ATEDVGSGVALVAR
sp|Q9D7X8|GGCT_MOUSE 0.9999 2 2 SYLM[147]TNYESAPPSPQYK
sp|O88952|LIN7C_MOUSE 0.9999 2 2 TEEGLGFNIM[147]GGK
sp|Q9EQS3|MYCBP_MOUSE 0.9998 2 2 LVQYEPPQEEK
sp|Q9WV84|NDKM_MOUSE 0.9996 2 2 M[147]LQAPESILAEHYR
sp|Q9CQX4|PAF_MOUSE 0.9995 2 2 VLGSSTFVTNSSSSSR
sp|Q9D4J1|EFHD1_MOUSE 0.9987 1 2 VFNPYTEFPEFSR
sp|Q8R035|ICT1_MOUSE 0.9975 2 2 AGELVLTSESSR
sp|Q5BL07|PEX1_MOUSE 0.9963 1 2 YPELFANLPIR
sp|O35448|PPT2_MOUSE 0.9929 2 2 ESLRPLWEQVQGFR
sp|Q99JF5|ERG19_MOUSE 0.9913 1 2 GLQVAPVLLSDELK
sp|Q9CXA2|PRCM_MOUSE 0.9913 1 2 DLVDAASALTGAVK
sp|A2ADY9|DDI2_MOUSE 1 2 2 NPPLAEALLSGDLEK
sp|A2RSX7|CB060_MOUSE 1 2 2 DAQYLYLSGSK
sp|A3KMP2|TTC38_MOUSE 1 2 2 VLELLLPIR
sp|O35295|PURB_MOUSE 1 2 2 GGGGGGGGGPGGFQPAPR
sp|O35623|BET1_MOUSE 1 2 2 LLAEM[147]DSQFDSTTGFLGK
sp|Q03958|PFD6_MOUSE 1 2 2 ETLAQLQQEFQR
sp|Q3UGP9|LRC58_MOUSE 1 2 2 DLTYDPPTLLELAAR
sp|Q4FK66|PR38A_MOUSE 1 2 2 YVLEEAEQLEPR
sp|Q4FZF3|DDX49_MOUSE 1 2 2 ELAYQIAEQFR
sp|Q56A08|GPKOW_MOUSE 1 3 2 AVVVLSGPYR
sp|Q61823|PDCD4_MOUSE 1 3 2 DLPELALDTPR
sp|Q6P3D0|NUD16_MOUSE 1 2 2 EQLLEALQDLK
sp|Q6PCP5|MFF_MOUSE 1 3 2 IQYEM[147]EYTEGISQR
sp|Q80TH2|LAP2_MOUSE 1 4 2 IYDILGDDGPQPPSAAVK
sp|Q80UW2|FBX2_MOUSE 1 2 2 TDAGSLYELTVR
sp|Q8BGU5|CCNY_MOUSE 1 2 2 IVLGAILLASK
sp|Q8BHL8|PSMF1_MOUSE 1 2 2 VLIDPSSGLPNR
sp|Q8C163|EXOG_MOUSE 1 2 2 SPESTEPLALGAFVVPNK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
556
sp|Q8JZM0|TFB1M_MOUSE 1 2 2 FIPGLQM[147]LSDAAPGK
sp|Q8K3J1|NDUS8_MOUSE 1 2 2 GLGM[147]TLSYLFR
sp|Q8R3Y8|I2BP1_MOUSE 1 2 2 LALPSPALEYTLGSR
sp|Q8VC70|RBMS2_MOUSE 1 3 2 GYGFVDFDSPSSAQK
sp|Q8VCN9|TBCC_MOUSE 1 2 2 QGQAALAQLQAVLTER
sp|Q8VHR5|P66B_MOUSE 1 3 2 LQQQAALSPTTAPAVSSVSK
sp|Q8WTY4|CPIN1_MOUSE 1 2 2 KPNFEVGSSSQLK
sp|Q91YY4|ATPF2_MOUSE 1 2 2 LTVEQAVLLSR
sp|Q920Q8|NS1BP_MOUSE 1 3 2 LYIVGGSDPYGQK
sp|Q922Q9|CHID1_MOUSE 1 3 2 FTQISPVWLQLK
sp|Q99K43|PRC1_MOUSE 1 2 2 EIWELIGIPEEQR
sp|Q99N94|RM09_MOUSE 1 2 2 LLSQGLAVYASPENR
sp|Q9D1C1|UBE2C_MOUSE 1 2 2 LQQELM[147]ILM[147]TSGDK
sp|Q9D920|L12R1_MOUSE 1 2 2 GLLSGQTSPTNAK
sp|Q9DCT8|CRIP2_MOUSE 1 2 2 GVNTGAVGSYIYDKD
sp|Q9JHE7|TSSC4_MOUSE 1 2 2 DAALAFLSSR
sp|Q9JJZ4|UB2J1_MOUSE 1 2 2 TALLAIIGFM[147]PTK
sp|Q9JKJ9|CP39A_MOUSE 1 4 2 TVLESISSVFGTAGK
sp|Q9JLJ0|LITAF_MOUSE 1 2 2 GM[147]NPPSYYTQPVPVPNAN
sp|Q9JMG1|EDF1_MOUSE 1 2 2 INEKPQVIADYESGR
sp|P34056|AP2A_MOUSE 1 3 2 AVAEFLNR
sp|P36993|PPM1B_MOUSE 1 3 2 GPTEQLVSPEPEVYEIVR
sp|Q9JHD1|PCAF_MOUSE 1 3 2 LFMADLQR
sp|P42230|STA5A_MOUSE 0.9999 2 2 IQAQFAQLGQLNPQER
sp|Q3UX61|ARD1B_MOUSE 0.9999 2 2 YVSLHVR
sp|Q80WC1|K2030_MOUSE 0.9999 3 2 VVPTLPEGLPVLLEK
sp|Q91YD9|WASL_MOUSE 0.9999 2 2 FYGSQVNNISHTK
sp|Q9DCS3|MECR_MOUSE 0.9999 3 2 DLGADYVLTEEELR
sp|Q02614|S30BP_MOUSE 0.9998 2 2 DPQELVASFSER
sp|Q8BSQ9|PB1_MOUSE 0.9998 3 2 VVDDEIYYFR
sp|Q9DAU1|CNPY3_MOUSE 0.9998 2 2 ELGGLGEDANAEEEEGVQK
sp|Q7TQK4|EXOS3_MOUSE 0.9996 2 2 LYPLEIVFGM[147]NGR
sp|Q8K4F5|ABHDB_MOUSE 0.9996 2 2 LNLDTLAQHLDK
sp|Q9D6Y7|MSRA_MOUSE 0.9996 3 2 VISAEEALPGR
sp|A2APY7|CT007_MOUSE 0.9994 2 2 IFQTDIAEHALK
sp|O70126|AURKB_MOUSE 0.9994 3 2 FGNVYLAR
sp|Q60759|GCDH_MOUSE 0.9994 2 2 AITGIQAFTVGK
sp|P49586|PCY1A_MOUSE 0.9992 2 2 TEGISTSDIITR
sp|Q9Z0M5|LICH_MOUSE 0.9992 2 2 LYDEIISLM[147]K
sp|Q9QYL7|ABT1_MOUSE 0.9991 2 2 NLLSAYGEVGR
sp|O88520|SHOC2_MOUSE 0.999 2 2 LVLTNNQLSTLPR
sp|Q9CR09|UFC1_MOUSE 0.999 3 3 LKEEYQSLIR
sp|Q9DCF9|SSRG_MOUSE 0.9983 2 2 QQSEEDLLLQDFSR
sp|Q8BGX2|CS052_MOUSE 0.9982 2 2 ILDVGFVGR
sp|Q9Z1R4|CF047_MOUSE 0.9978 2 2 AILDALGLR
sp|Q9DBY1|SYVN1_MOUSE 0.9977 3 2 VHTFPLFAIR
sp|Q9Z2G0|FEM1B_MOUSE 0.9977 2 2 VLTLAALLLNR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
557
sp|P62484|ABI2_MOUSE 0.996 1 2 ALFDSYTNLER
sp|A2A4P0|DHX8_MOUSE 0.9957 1 2 FSQYFYEAPIFTIPGR
sp|Q9D735|CS043_MOUSE 0.9913 1 2 GGPGPTLSFVGK
sp|Q3UBX0|TM109_MOUSE 0.9904 1 2 ETSADILTQIGR
sp|O35972|RM23_MOUSE 1 2 2 NYLEQIYNVPVAAVR
sp|Q2TPA8|HSDL2_MOUSE 1 2 2 ADVVM[147]SM[147]ATDDFVK
sp|Q80VL1|TDRKH_MOUSE 1 2 2 DM[147]ATETDDSLASILTETK
sp|Q8C156|CND2_MOUSE 1 2 2 TIEQNLSNINVSEADGK
sp|Q8CHT0|AL4A1_MOUSE 1 3 2 TVIQAEIDAAAELIDFFR
sp|Q8K2L8|TTC15_MOUSE 1 2 2 QVLNASSVEQSFVGLK
sp|Q8R2N2|CIR1A_MOUSE 1 2 2 TDGTVEIYNLSANYFQEK
sp|Q8VE18|CQ071_MOUSE 1 2 2 AANYDFYQLLEEK
sp|Q91ZR2|SNX18_MOUSE 1 2 2 APEPGPPADGGPGAPAR
sp|Q921W4|QORL1_MOUSE 1 2 3 LSAGVFRPLLDEPIPLYEAK
sp|Q99MZ7|PECR_MOUSE 1 2 2 NQVAVVTGGGTGIGK
sp|Q9D7A8|ARMC1_MOUSE 1 2 2 AEALASAIASTK
sp|Q9DC71|RT15_MOUSE 1 3 2 TLEAQIIALTVR
sp|Q9ESP1|SDF2L_MOUSE 1 2 2 AM[147]EGIFIKPGADLSTGHDEL
sp|Q9WV85|NDK3_MOUSE 1 2 2 ALIGATDPGDAM[147]PGTIR
sp|Q3V300|KIF22_MOUSE 0.9999 3 2 ALM[147]DLLQLAR
sp|Q8BHE8|CB047_MOUSE 0.9999 2 2 QLLSASYEFQR
sp|Q8BVU5|NUDT9_MOUSE 0.9999 3 2 EFGEEALNSLQK
sp|Q8R107|PRLD1_MOUSE 0.9999 2 2 AVQEFGLAR
sp|Q9CRA5|GOLP3_MOUSE 0.9999 2 2 SDAPTGDVLLDEALK
sp|Q9D125|RT25_MOUSE 0.9999 2 2 IM[147]TVNYNTYGELGEGAR
sp|Q9D2E2|TOE1_MOUSE 0.9999 3 2 VPVVDVQSDNFK
sp|Q9DB90|CS061_MOUSE 0.9999 2 2 GGNQTSGIDFFITQER
sp|Q9WVM3|APC7_MOUSE 0.9999 2 2 AIQLNSNSVQALLLK
sp|Q9Z2E1|MBD2_MOUSE 0.9999 2 2 LQGLSASDVTEQIIK
sp|Q8K0C9|GMDS_MOUSE 0.9998 2 2 FYQASTSELYGK
sp|Q9ESW8|PGPI_MOUSE 0.9998 2 2 SAFVHVPPLGK
sp|Q62036|AZI1_MOUSE 0.9997 2 2 PAEPTDFLM[147]LFEGSTSGR
sp|Q99N87|RT05_MOUSE 0.9997 3 2 EPEPEPEVPDTK
sp|Q9CYI4|LUC7L_MOUSE 0.9997 2 2 ALLDQLM[147]GTAR
sp|Q9R1Z7|PTPS_MOUSE 0.9997 2 3 LHSPSLSDEENLR
sp|Q64437|ADH7_MOUSE 0.9997 3 2 M[147]LTYDPM[147]LLFTGR
sp|Q924W5|SMC6_MOUSE 0.9996 2 2 SAVLTALIVGLGGK
sp|Q9R0X0|MED20_MOUSE 0.9996 2 2 SLQQTVELLTK
sp|Q9D8V7|SC11C_MOUSE 0.9993 2 2 GDLLFLTNFR
sp|Q9DB40|MED27_MOUSE 0.9993 2 2 TPLYSQLLQAYK
sp|Q80W93|HYDIN_MOUSE 0.9992 3 3 QKLT[181]LLAQGQGLEPR
sp|Q91Y86|MK08_MOUSE 0.9988 3 2 NIIGLLNVFTPQK
sp|Q63810|CANB1_MOUSE 0.9977 2 3 M[147]M[147]VGNNLKDTQLQQIVDK
sp|Q91ZF0|DJC24_MOUSE 0.9973 2 2 LILLYHPDK
sp|Q8VC65|NRM_MOUSE 0.996 2 2 YFGVLQR
sp|Q99KK9|SYHM_MOUSE 0.9945 1 2 DQGGELLSLR
sp|Q9D6M3|GHC1_MOUSE 0.9933 2 2 SEGYFGM[147]YR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
558
sp|Q8BIJ7|RUFY1_MOUSE 0.9902 2 2 GSALQLQLSQLR
sp|O89050|MKLN1_MOUSE 1 3 2 VFGGM[147]NEENM[147]TELLSSGLK
sp|P04184|KITH_MOUSE 1 2 2 KLFASQQVLQYNSAN
sp|P63271|SPT41_MOUSE 1 2 3 VSNFKPGVYAVSVTGR
sp|Q8R088|GLP3L_MOUSE 1 3 2 DLVELDPEVEGTK
sp|Q9D8T7|SLIRP_MOUSE 1 3 2 IPWTAAASELR
sp|O70325|GPX41_MOUSE 1 3 2 TDVNYTQLVDLHAR
sp|Q5SYD0|MYO1D_MOUSE 0.9963 1 2 LMYNSSNPVLK
sp|P40338|VHL_MOUSE 0.9999 3 2 SLYEDLEDYPSVR
sp|Q921G6|LRCH4_MOUSE 0.9999 2 2 SYDLSDITQADLSR
sp|Q99JN2|KLH22_MOUSE 0.9999 3 2 LFVIGGSNNDAGYR
sp|Q9D4J7|PHF6_MOUSE 0.9999 3 2 VAIDQQLTQQQLNGN
sp|P15327|PMGE_MOUSE 0.9998 3 2 HYGALIGLNR
sp|Q8K273|MMGT1_MOUSE 0.9998 3 3 NHPSFYVFNHR
sp|Q8K3C3|LZIC_MOUSE 0.9998 2 2 KVEILTALR
sp|A3KGB4|TBC8B_MOUSE 0.9998 3 2 DSLALWTFR
sp|Q60967|PAPS1_MOUSE 0.9996 2 2 M[147]VAGANFYIVGR
sp|Q8BZH4|POGZ_MOUSE 0.9996 2 2 SFLVASVLPGPDGNVNSPTR
sp|Q9CYX7|RRP15_MOUSE 0.9995 2 2 GVVQLFNAVQK
sp|P11930|NUD19_MOUSE 0.9994 2 2 LENFASLSALYR
sp|Q6P6J9|TXD15_MOUSE 0.9994 2 2 GDPM[147]VVLSVVPGAAEDQR
sp|Q9D1R1|T126B_MOUSE 0.9994 2 2 LFVTDALQSGDISK
sp|Q80TF4|KLH13_MOUSE 0.9993 3 2 NFAALLSTGEFLK
sp|Q8BJS4|UN84B_MOUSE 0.9993 2 2 ADVESQFPDWIR
sp|Q3TMH2|SCRN3_MOUSE 0.9991 2 2 SPTFEPERPVAK
sp|Q99KL7|RAB28_MOUSE 0.9991 2 2 ADIVNYNQEPLSR
sp|Q8BP48|AMPM1_MOUSE 0.9989 2 2 EVLDIAAGM[147]IK
sp|Q99M04|LIAS_MOUSE 0.9985 3 2 VGNELGFLYTASGPLVR
sp|Q9CQT5|POMP_MOUSE 0.9985 2 2 NIQGLFAPLK
sp|Q9CXZ1|NDUS4_MOUSE 0.9984 2 2 LDITTLTGVPEEHIK
sp|O08738|CASP6_MOUSE 0.9983 2 2 IEIQTLTGLFK
sp|P30280|CCND2_MOUSE 0.9983 2 2 SVEDPDQATTPTDVRDVDL
sp|Q9Z0V7|TI17B_MOUSE 0.9982 2 2 EGSPAPGYPNYQQYH
sp|Q8CFH6|SN1L2_MOUSE 0.998 2 2 IADFGFGNFFK
sp|O08914|FAAH1_MOUSE 0.9979 2 2 LQSGELSPEAVLFTYLGK
sp|P60766|CDC42_MOUSE 0.9979 2 2 TLGLFDTAGQEDYDR
sp|Q9D6H2|HSB11_MOUSE 0.9979 2 2 DGYATFLR
sp|Q9DD18|DTD1_MOUSE 0.9979 2 2 ASVTVGGEQISAIGR
sp|Q3TKY6|SDC10_MOUSE 0.9978 2 2 EDQTLALLSQFK
sp|Q9ERA0|TFCP2_MOUSE 0.9978 2 2 LFTNFSGADLLK
sp|Q3TQB2|FXRD1_MOUSE 0.9976 2 2 TIDM[147]SPFLFTR
sp|Q9D1H6|HRP20_MOUSE 0.9976 2 2 IAQEYYLELK
sp|Q9D2X5|K0892_MOUSE 0.9976 2 2 GLFSFFQGR
sp|Q9CQ02|COMD4_MOUSE 0.9971 2 2 ELLGQGIDYEK
sp|Q80UU2|RPP38_MOUSE 0.9969 1 2 VPSLNVPWLPDR
sp|Q9DBS5|KLC4_MOUSE 0.9969 1 2 DHPAVAATLNNLAVLYGK
sp|P02468|LAMC1_MOUSE 0.9966 1 2 LSAEDLVLEGAGLR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
559
sp|Q64152|BTF3_MOUSE 0.9963 2 2 TATADDKKLQFSLK
sp|Q8BRN9|C2D1B_MOUSE 0.9963 1 2 GM[147]NLPAPPGVTPDDLDAFVR
sp|P19182|IFRD1_MOUSE 0.9961 2 2 VLYEFVLER
sp|Q91Z38|TTC1_MOUSE 0.9958 2 2 AIQLNPTYIR
sp|Q9D8T0|FAM3A_MOUSE 0.9958 2 2 IVSGAANVIGPK
sp|O09111|NDUBB_MOUSE 0.9954 2 2 EVNGLPIM[147]ESNYFDPSK
sp|Q9CYA0|CREL2_MOUSE 0.9949 2 2 YEFSEIR
sp|Q6ZQF0|TOPB1_MOUSE 0.9942 2 2 NLTVALANSSR
sp|Q8CI70|LRC20_MOUSE 0.9933 2 2 FM[147]TTFNQLR
sp|Q7TSG2|CTDP1_MOUSE 0.9931 2 2 VLTQLVLSPDAPDR
sp|Q8BRK8|AAPK2_MOUSE 0.9923 1 2 IADFGLSNM[147]M[147]SDGEFLR
sp|O35459|ECH1_MOUSE 0.9913 1 2 EVDM[147]GLAADVGTLQR
sp|P17095|HMGA1_MOUSE 0.9913 1 2 KQPPVSPGTALVGSQK
sp|Q9CQ26|STABP_MOUSE 0.9913 1 2 NEFTITHVLIPR
sp|Q9CRB2|NHP2_MOUSE 0.9913 1 2 ELLVNLNPIAQPLASR
sp|Q9D0I4|STX17_MOUSE 0.9913 1 2 VAGIAAALGGGVLGFTGGK
sp|Q8BW94|DYH3_MOUSE 0.9908 2 2 VFLEALNNNIR
sp|P70353|NFYC_MOUSE 0.9904 1 2 M[147]ISAEAPVLFAK
sp|P60762|MO4L1_MOUSE 1 2 2 VDPTVENEETFM[147]NR
sp|Q8BLY7|HPS6_MOUSE 1 2 2 LLSDLSNFTGAAR
sp|Q9DBZ1|IKIP_MOUSE 1 2 2 LLQTESSEFQGLQSK
sp|Q8C863|ITCH_MOUSE 0.9904 1 2 FIDTGFSLPFYK
sp|Q91W34|CP058_MOUSE 0.9999 2 2 ALVLETLNESR
sp|Q4VAA7|SNX33_MOUSE 0.9998 2 2 IAETYSIEM[147]GPR
sp|Q9DCT5|SDF2_MOUSE 0.9997 2 2 AM[147]EGIFM[147]KPSELLR
sp|Q9D287|SPF27_MOUSE 0.9996 2 2 EAAAALVEEETR
sp|Q9JKK1|STX6_MOUSE 0.9995 2 2 DQM[147]SASSVQALAER
sp|P97434|MPRIP_MOUSE 0.9993 2 2 LLAEETAATISAIEAMK
sp|Q3TRM4|PLPL6_MOUSE 0.9993 3 2 GDLIGVVEALTR
sp|Q9D1I5|MCEE_MOUSE 0.9988 2 3 M[147]ELLHPLGSDSPITGFLQK
sp|O55060|TPMT_MOUSE 0.9983 2 2 GALVAINPGDHDR
sp|Q64362|AKTIP_MOUSE 0.9983 2 2 IDTTSPLNPEAAVLYEK
sp|Q9Z2Q5|RM40_MOUSE 0.9983 2 2 VYTQVEFKR
sp|Q3UH68|LIMC1_MOUSE 0.9978 2 2 TSVPESIASAGTGSPSK
sp|Q8CE50|SNX30_MOUSE 0.9976 2 2 VEFDLPEYSVR
sp|Q8BQZ4|K1219_MOUSE 0.9973 2 2 EVPVIFIHPLNTGLFR
sp|Q99JY4|TRABD_MOUSE 0.9971 2 2 TVTQLVAEDGSR
sp|Q8VCR3|CF035_MOUSE 0.9966 1 2 GTM[147]ATAALPESGSSLALR
sp|Q9D892|ITPA_MOUSE 0.9931 3 2 IDLPEYQGEPDEISIQK
sp|A2RTL5|RSRC2_MOUSE 0.9913 1 2 NTAM[147]DAQEALAR
sp|O54916|REPS1_MOUSE 0.9913 1 2 LVAVAQSGFPLR
sp|Q8BKW4|ZCHC4_MOUSE 0.9913 1 2 YLSFIQLPLAQR
sp|Q8BU04|UBR7_MOUSE 0.9913 1 2 EDIQQFFEEFQSK
sp|Q9CXK8|NIP7_MOUSE 0.9913 1 2 LHVTALDYLAPYAK
sp|Q9D8Z1|ASCC1_MOUSE 0.9913 1 2 TFENFYFGSLR
sp|Q9ET47|ESPN_MOUSE 0.9913 1 2 SFNM[147]M[147]SPTGDNSELLAEIK
sp|Q9JI44|DMAP1_MOUSE 0.9913 1 2 TPEQVAEEEYLLQELR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
560
sp|Q9WU81|SPX2_MOUSE 0.9913 1 2 EQGPEPEAISFLGALR
sp|P55302|AMRP_MOUSE 0.9913 1 2 IQEYNVLLDTLSR
sp|Q5SS80|DHR13_MOUSE 0.991 3 2 LLT[181]HLLLPR
sp|Q8BGI5|PEX26_MOUSE 0.9904 1 2 LSEAEELAVR
sp|O35144|TERF2_MOUSE 0.9977 2 2 ALSTAQDSEAAFAK
sp|Q80X71|T106B_MOUSE 0.997 2 2 GQENQLVALIPYSDQR
sp|Q8C0M9|ASGL1_MOUSE 0.9967 2 2 GLGGLILVNK
sp|Q69ZW3|EHBP1_MOUSE 0.9954 2 3 PK[142]PTSPNNLVNTVQEGETER
sp|P70428|EXT2_MOUSE 0.9914 1 2 YVDDAGVPVSSAISR
sp|P70445|4EBP2_MOUSE 0.9913 1 2 HAVGDEAQFEM[147]DI
sp|Q61827|MAFK_MOUSE 0.9913 1 2 EAGENAPVLSDDELVSM[147]SVR
sp|Q9WTK2|CDYL_MOUSE 0.9913 1 2 EVQSALSTAAADDSK
sp|P55937|GOGA3_MOUSE 0.9913 1 2 VADAAASLEQQLEQVK
sp|O35516|NOTC2_MOUSE 0.9904 1 2 EPLPPIVTFQLIPK
sp|P61205|ARF3_MOUSE 1 2 2 DAVLLVFANK
sp|Q61781|K1C14_MOUSE 1 2 2 VLDELTLAR
sp|Q9Z1K7|APC2_MOUSE 0.9993 2 2 LPVS[167]IPAPQR
sp|P09041|PGK2_MOUSE 0.9961 1 3 VSHVSTGGGASLELLEGK
sp|P62309|RUXG_MOUSE 0.9961 1 2 GNSIIMLEALER
sp|Q66JX5|FR1OP_MOUSE 0.9961 1 2 DLLVQTLENSGVLNR
sp|P62746|RHOB_MOUSE 0.9942 1 2 QVELALWDTAGQEDYDR
sp|Q9D1M7|FKB11_MOUSE 0.9942 1 2 DPLVIELGQK
sp|Q61474|MSI1H_MOUSE 0.9914 1 2 GFGFVTFMDQAGVDK
Table S2
protein protein
probability
Num
unique peps
precursor ion
charge peptide sequence
sp|P68033|ACTC_MOUSE 1 9 2 AGFAGDDAPR
sp|Q64524|H2B2E_MOUSE 1 10 2 AMGIMNSFVNDIFER
sp|Q7TPR4|ACTN1_MOUSE 1 35 2 AGTQIENIEEDFR
sp|Q9WU78|PDC6I_MOUSE 1 33 2 ATLVKPTPVNVPVSQK
sp|Q62448|IF4G2_MOUSE 1 23 2 EWLTELFQQSK
sp|Q6PIC6|AT1A3_MOUSE 0.9951 4 2 GVGIISEGNETVEDIAAR
sp|P16110|LEG3_MOUSE 1 13 2 IQVLVEADHFK
sp|Q61206|PA1B2_MOUSE 1 2 2 IIVLGLLPR
sp|Q61941|NNTM_MOUSE 1 11 2 AVVLAANHFGR
sp|Q8BH74|NU107_MOUSE 1 13 2 AIYAALSGNLK
sp|Q9Z2I0|LETM1_MOUSE 1 9 2 ADDKLISEEGVDSLTVK
sp|Q921N6|DDX27_MOUSE 1 13 2 ALQEFDLALR
sp|Q6PAR5|GAPD1_MOUSE 1 12 2 AVETPPM[147]SSVNLLEGLSR
sp|Q9DBY8|NVL_MOUSE 1 13 2 AVANESGLNFISVK
sp|Q9WVL3|S12A7_MOUSE 1 13 2 DLQMFLYHLR
sp|P28271|ACOC_MOUSE 1 10 2 TSLSPGSGVVTYYLR
sp|Q9QZQ1|AFAD_MOUSE 1 12 2 LAAGDQLLSVDGR
sp|Q80TP3|UBR5_MOUSE 1 12 2 LLTATNLVTLPNSR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
561
sp|Q8VED5|K2C79_MOUSE 0.9908 1 3 NKYEDEINKR
sp|P42859|HD_MOUSE 1 14 2 TLFGTNLASQFDGLSSNPSK
sp|P43247|MSH2_MOUSE 1 11 2 DSLIIIDELGR
sp|Q6P5H2|NEST_MOUSE 1 12 2 AGLELEQEVVGLEDPR
sp|Q64310|SURF4_MOUSE 1 9 2 GQNDLM[147]GTAEDFADQFLR
sp|Q60790|RASA3_MOUSE 1 11 2 FGDEFLGELR
sp|Q69ZN7|MYOF_MOUSE 1 9 2 ANVTVLDTQIR
sp|Q8BTI8|SRRM2_MOUSE 1 11 2 IPAASAAAM[147]NLASAR
sp|Q921G8|GCP2_MOUSE 1 11 2 ILPVAASYSTVTR
sp|Q6P2K6|P4R3A_MOUSE 1 9 2 AESDGSLLLESK
sp|Q91ZU6|BPA1_MOUSE 1 15 2 AGNDLIESSEGEEASNLQYK
sp|Q3TLH4|BA2D1_MOUSE 1 9 2 ESVTDYTTPSSSLPNTVATNNAK
sp|Q99K01|PDXD1_MOUSE 1 11 2 AVPVSNIAPAAVGR
sp|P48722|HS74L_MOUSE 1 11 2 EDINSIEIVGGATR
sp|Q07113|MPRI_MOUSE 1 8 2 LASM[147]QLDYR
sp|Q62383|SPT6H_MOUSE 1 9 2 IDTASLGDSTDSYIEVLDGSR
sp|Q6P549|SHIP2_MOUSE 1 10 2 ALQDM[147]SSTAPPAPLQPSIR
sp|Q8R0Y6|FTHFD_MOUSE 1 7 2 ANATEFGLASGVFTR
sp|Q8VHE0|SEC63_MOUSE 1 10 2 LIM[147]VLAGASEFDPQYNK
sp|Q3TZZ7|ESYT2_MOUSE 1 7 2 ALALLEDEEQAVR
sp|Q9CY27|GPSN2_MOUSE 1 8 2 LPVGTTATLYFR
sp|P53986|MOT1_MOUSE 1 4 2 AAQSPQQHSSGDPTEEESPV
sp|Q6Q899|DDX58_MOUSE 1 9 2 DNVAELEQVVYKPQK
sp|Q9DBT5|AMPD2_MOUSE 1 10 2 SAPYEFPEESPIEQLEER
sp|P46425|GSTP2_MOUSE 0.9995 1 2 AFLSSPEHVNRPINGNGK
sp|Q9EPK7|XPO7_MOUSE 1 9 2 AALSGSYVNFGVFR
sp|Q9ERA6|TFP11_MOUSE 1 7 2 AVSSNVGAYM[147]QPGAR
sp|P97386|DNLI3_MOUSE 1 7 2 HVLDALDPNAYEAFK
sp|Q8BI84|MIA3_MOUSE 1 6 2 ELEGLLEDMSIR
sp|Q9D2M8|UB2V2_MOUSE 0.9998 6 2 WTGM[147]IIGPPR
sp|Q61703|ITIH2_MOUSE 1 3 2 IQPSGGTNINEALLR
sp|Q8BH24|TM9S4_MOUSE 1 6 2 ITEEYYVHLIADNLPVATR
sp|Q91YR7|PRP6_MOUSE 1 6 2 LSQVSDSVSGQTVVDPK
sp|Q9ERG2|STRN3_MOUSE 1 6 2 AYIASAGADALAK
sp|Q9CR68|UCRI_MOUSE 0.9999 2 2 LQVTNVLSQPLTQATVK
sp|P08775|RPB1_MOUSE 1 5 2 INISQVIAVVGQQNVEGK
sp|Q61263|SOAT1_MOUSE 1 6 2 LLAAEAEELKPLFM[147]K
sp|Q8BPM2|M4K5_MOUSE 1 7 2 LISENTEGSAQAPQLPR
sp|Q99KD5|UN45A_MOUSE 1 3 2 ASFITANGVSLLK
sp|Q9D0A3|CO038_MOUSE 1 6 2 VNTGFLM[147]SSYK
sp|Q9DBC3|FTSJ2_MOUSE 1 8 2 IHAFVQDTTLSEPR
sp|O35678|MGLL_MOUSE 1 3 2 GAYLLM[147]ESSR
sp|Q8BX70|VP13C_MOUSE 1 7 2 SLDVFNIILVR
sp|Q8BYW9|AER61_MOUSE 1 5 2 AFTDYDVIHLK
sp|Q924Z4|LASS2_MOUSE 1 5 2 AGTLIM[147]ALHDASDYLLESAK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
562
sp|Q9Z160|COG1_MOUSE 1 8 2 ALQLLYDLR
sp|O08759|UBE3A_MOUSE 1 6 2 M[147]M[147]ETFQQLITYK
sp|P22892|AP1G1_MOUSE 1 6 2 AM[147]ELSFALVNGNNIR
sp|Q52KI8|SRRM1_MOUSE 1 6 2 DSSVQEATSTSDILK
sp|Q6PGH2|HN1L_MOUSE 1 4 2 GSGIFDESTPVQTR
sp|Q80U72|LAP4_MOUSE 1 7 2 SLEELLLDANQLR
sp|Q8BVG4|DPP9_MOUSE 1 4 2 ELVQPFSSLFPK
sp|Q8R3S6|EXOC1_MOUSE 1 6 2 ALQEGDLVSSR
sp|Q9D4H1|EXOC2_MOUSE 1 6 2 ASNTADTLFQEVLGR
sp|O54988|SLK_MOUSE 1 6 2 AGNILFTLDGDIK
sp|P16056|MET_MOUSE 1 5 2 GDLTIANLGTSEGR
sp|O35382|EXOC4_MOUSE 1 5 2 FIQEIEHALGLGPAK
sp|P39053|DYN1_MOUSE 1 4 2 SSVLENFVGR
sp|P39447|ZO1_MOUSE 1 5 2 LAGGNDVGIFVAGVLEDSPAAK
sp|Q7TSC1|BAT2_MOUSE 1 5 2 AVGTPGANAGGAGPGISAM[147]SR
sp|Q8BU03|PWP2_MOUSE 1 3 2 AGQLLPVVQFLQK
sp|Q8BYH7|TBC17_MOUSE 1 5 2 IFSGGLSPGLR
sp|Q8CCB4|VPS53_MOUSE 1 6 2 M[147]VLLDLPSIGSQVVR
sp|Q8K368|FANCI_MOUSE 1 6 2 FVSDLLTALFR
sp|Q8R5L3|VPS39_MOUSE 1 8 2 AINLLPANTQINDIR
sp|Q99NH0|ANR17_MOUSE 1 6 2 NVSDYTPLSLAASGGYVNIIK
sp|Q9DC40|TELO2_MOUSE 1 6 2 LLGDLPDELLEAR
sp|Q9QX47|SON_MOUSE 1 5 2 AGIEGPLLASEVER
sp|Q9R0L6|PCM1_MOUSE 1 7 2 ALYALQDIVSR
sp|P83741|WNK1_MOUSE 1 5 2 IGDLGLATLK
sp|Q8CJG0|I2C2_MOUSE 1 5 2 YAQGADSVEPM[147]FR
sp|P17897|LYZ1_MOUSE 0.9976 2 2 STDYGIFQINSR
sp|P03911|NU4M_MOUSE 1 5 2 IILPSLM[147]LLPLTWLSSPK
sp|P45377|ALD2_MOUSE 1 4 3 AVQREDLFIVSK
sp|P97452|BOP1_MOUSE 1 4 2 VNVDPEDLIPK
sp|Q3U487|HECD3_MOUSE 1 4 2 AGLPLPAALAFVPR
sp|Q6PF93|PK3C3_MOUSE 1 5 2 DGDESSPILTSFELVK
sp|Q6PR54|RIF1_MOUSE 1 7 2 TIGDLSTLTASEIK
sp|Q8BIG7|CMTD1_MOUSE 1 2 2 PGGVLAVLR
sp|Q8BUV3|GEPH_MOUSE 1 5 2 DLVQDPSLLGGTISAYK
sp|Q8VBZ3|CLPT1_MOUSE 1 4 2 NLLTGETEADPEM[147]IK
sp|Q9D8V0|HM13_MOUSE 1 3 2 QYQLLFTQGSGENK
sp|Q9WV70|NOC2L_MOUSE 1 3 2 SIAFPELVLPTVLQLK
sp|Q99KH8|STK24_MOUSE 1 7 2 KTSYLTELIDR
sp|P01027|CO3_MOUSE 0.9999 3 2 SSVAVPYVIVPLK
sp|Q8BIV3|RNBP6_MOUSE 0.9985 2 2 EGFVEYTEQVVK
sp|O54827|AT10A_MOUSE 0.9919 2 2 ASPSPSLVIDGR
sp|O35604|NPC1_MOUSE 1 5 2 LQEETLDQQLGR
sp|O70579|PM34_MOUSE 1 4 2 LSSLDVFIIGAIAK
sp|P58021|TM9S2_MOUSE 1 5 2 RPSENLGQVLFGER
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
563
sp|Q3UDW8|HGNAT_MOUSE 1 2 2 ADPLSADYQPETR
sp|Q61464|ZN638_MOUSE 1 6 2 DVTVLSM[147]AEEQDLQQER
sp|Q6PIP5|NUDC1_MOUSE 1 6 2 LPTDVTAYDNR
sp|Q8VDF2|UHRF1_MOUSE 1 6 2 YDDYPEHGVDIVK
sp|Q91V04|TRAM1_MOUSE 1 3 2 LDFSTGNFNVLAVR
sp|Q9DBF1|AL7A1_MOUSE 1 5 2 GAPTTSLVSVAVTK
sp|Q9QY36|ARD1A_MOUSE 1 4 2 YYADGEDAYAM[147]K
sp|Q91W97|HKDC1_MOUSE 0.9956 2 2 M[147]ISGLYM[147]GELVR
sp|P31786|ACBP_MOUSE 1 5 2 TYVEKVDELKK
sp|P41216|ACSL1_MOUSE 1 2 2 LM[147]ITGAAPVSATVLTFLR
sp|P58404|STRN4_MOUSE 1 5 2 ALIASAGADALAK
sp|Q0VGY8|TANC1_MOUSE 1 7 2 ANFQEIISALPFVK
sp|Q3TCJ1|F175B_MOUSE 1 3 2 AIYQVYNALQEK
sp|Q3UVK0|ERMP1_MOUSE 1 5 2 AFINLEAAGVGGK
sp|Q5H8C4|VP13A_MOUSE 1 4 2 ALVGGAVGGLAGAASK
sp|Q60953|PML_MOUSE 1 4 2 DNSVSSFLDSTR
sp|Q6P9Q6|FKB15_MOUSE 1 5 2 EVATDGLLQGNSR
sp|Q80Y81|RNZ2_MOUSE 1 4 2 LDNIFLTR
sp|Q8C8R3|ANK2_MOUSE 1 3 2 VVTEEVTTTTTTITEK
sp|Q8K1X1|BRWD2_MOUSE 1 3 2 LLLDPDFSLLQR
sp|Q8R4G6|MGT5A_MOUSE 1 4 2 TLAVLLDNILQR
sp|Q8VDC0|SYLM_MOUSE 1 4 2 AM[147]QDALADLPEWYGIK
sp|Q91W86|VPS11_MOUSE 1 3 2 GNYPVTGLAFR
sp|Q99PG2|OGFR_MOUSE 1 3 2 QSALDYFLFAVR
sp|Q9EPU4|CPSF1_MOUSE 1 4 2 VLVDSSFGQPTTQGEVR
sp|Q9ERG0|LIMA1_MOUSE 1 5 2 SQDVGFWEGEVVR
sp|Q9ET30|TM9S3_MOUSE 1 4 2 DAFVYAIK
sp|Q9JIX8|ACINU_MOUSE 1 4 2 KVTLGDTLTR
sp|P46467|VPS4B_MOUSE 1 4 2 GILLFGPPGTGK
sp|Q922W5|P5CR1_MOUSE 0.9999 2 2 LGAQALLGAAK
sp|O35609|SCAM3_MOUSE 1 3 2 AQQEFAAGVFSNPAVR
sp|P11688|ITA5_MOUSE 1 3 2 VTAPLEAEYSGLVR
sp|P81117|NUCB2_MOUSE 1 3 2 AATADLEQYDR
sp|Q0KL02|TRIO_MOUSE 1 5 2 DNFDAFYSEVAELGR
sp|Q3TMX7|QSOX2_MOUSE 1 5 2 EGSDAVWLLDSGSVR
sp|Q3U186|SYRM_MOUSE 1 2 2 GGVTFLEDVLNEVQSR
sp|Q3UMF0|COBL1_MOUSE 1 3 2 DYQAQEPLDLTK
sp|Q6ZQ93|UBP34_MOUSE 1 10 2 SFLLLAASTLLK
sp|Q8BTY8|SCFD2_MOUSE 1 3 2 SQIAVNDVFM[147]ALR
sp|Q8BXN9|TM87A_MOUSE 1 3 2 ADEIESYLENLK
sp|Q8C0L8|COG5_MOUSE 1 3 2 GALEAYVQSVR
sp|Q8C754|VPS52_MOUSE 1 3 2 FLEQLQELDAK
sp|Q8CBQ5|P4K2B_MOUSE 1 3 2 IAAIDNGLAFPFK
sp|Q8K2C9|PTAD1_MOUSE 1 3 3 VELSDVQNPAISITDNVLHFK
sp|Q8R0A0|T2FB_MOUSE 1 4 3 VVTTNYKPVANHQYNIEYER
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
564
sp|Q8R5J9|PRAF3_MOUSE 1 2 2 TPM[147]GIILDALEQQEDNINK
sp|Q8VEL2|MTMRE_MOUSE 1 2 2 AATPSPSGAIGGLLEQFAR
sp|Q922U1|PRPF3_MOUSE 1 5 2 LFEAVEEGR
sp|Q99LB7|SARDH_MOUSE 1 3 2 DPSGGPVSLDFVK
sp|Q9CQJ6|DENR_MOUSE 1 3 2 QETGITEGQGPVGEEEEK
sp|Q9D853|METLA_MOUSE 1 3 2 SGNTVAALVFQK
sp|Q9WV68|DECR2_MOUSE 1 5 2 VAFITGGGSGIGFR
sp|Q61411|RASH_MOUSE 1 3 2 LVVVGAGGVGK
sp|Q3UV17|K22O_MOUSE 0.99 1 2 AQYEDIAQK
sp|Q8K0V4|CNOT3_MOUSE 1 3 2 M[147]LDNDSILVDAIR
sp|Q921C5|BICD2_MOUSE 1 4 2 VGLLATLQDTQK
sp|Q811J3|IREB2_MOUSE 0.9999 3 2 EGIPLIILAGK
sp|P00397|COX1_MOUSE 0.9983 2 2 M[147]IGAPDM[147]AFPR
sp|Q8BZ98|DYN3_MOUSE 0.9964 2 2 SSVLENFVGR
sp|Q9ERY9|ERG28_MOUSE 0.9955 2 2 YLEAEPVSR
sp|O08784|TCOF_MOUSE 1 3 2 AGAVTSSASLSSPALAK
sp|O35657|NEUR1_MOUSE 1 3 2 GTLLAFAEAR
sp|P03888|NU1M_MOUSE 1 3 2 GPNIVGPYGILQPFADAM[147]K
sp|P70206|PLXA1_MOUSE 1 4 2 FVDDLFETIFSTAHR
sp|Q3UMC0|SPAT5_MOUSE 1 6 2 ALANESGLNFLAIK
sp|Q5DTT3|CJ018_MOUSE 1 4 2 VIPILPALSYALLEAK
sp|Q5RJG1|NOL10_MOUSE 1 3 2 DLENLGLTHLIGSPFLR
sp|Q68FF6|GIT1_MOUSE 1 3 2 SLSSPTDNLELSAR
sp|Q80YV3|TRRAP_MOUSE 1 5 2 NFIQTILTSLIEK
sp|Q8BM72|HSP13_MOUSE 1 4 2 IFTPEELEAEVGR
sp|Q8R151|ZNFX1_MOUSE 1 5 2 INVFDFGQWPSK
sp|Q8VCR7|ABHEB_MOUSE 1 3 2 FSVLLLHGIR
sp|Q91X52|DCXR_MOUSE 1 4 2 GVPGAIVNVSSQASQR
sp|Q9D8N2|FAM45_MOUSE 1 3 2 M[147]M[147]ESYIAVLTK
sp|Q9QWT9|KIFC1_MOUSE 1 4 2 LTYLLQNSLGGSAK
sp|Q9Z2G6|SE1L1_MOUSE 1 3 2 AADM[147]GNPVGQSGLGM[147]AYLYGR
sp|P10648|GSTA2_MOUSE 1 3 2 SHGQDYLVGNR
sp|Q3B7Z2|OSBP1_MOUSE 1 4 2 IPM[147]PVNFNEPLSM[147]LQR
sp|Q8BLR2|CPNE4_MOUSE 0.9999 2 2 DIVQFVPFR
sp|P28028|BRAF1_MOUSE 0.9999 3 2 M[147]LNVTAPTPQQLQAFK
sp|Q8K4L0|DDX54_MOUSE 0.9997 3 2 AGLTEPVLIR
sp|Q6GQT1|A2MP_MOUSE 0.9992 3 2 M[147]VSGFIPLKPTVK
sp|Q8BFR1|ZCCHL_MOUSE 0.9989 2 2 FLLQEVELR
sp|O35621|PMM1_MOUSE 0.994 1 2 NGM[147]LNVSPIGR
sp|Q9CZX7|TM55A_MOUSE 0.9917 2 2 ISSVGSALPR
sp|O88487|DC1I2_MOUSE 1 3 2 EAAVSVQEESDLEK
sp|P52875|TM165_MOUSE 1 3 2 M[147]SPDEGQEELEEVQAELK
sp|P97478|COQ7_MOUSE 1 2 2 IYAGQM[147]AVLGR
sp|Q2HXL6|EDEM3_MOUSE 1 3 2 FTGATIFEEYAR
sp|Q3THK3|T2FA_MOUSE 1 3 2 IYQEEEM[147]PESGAGSEFNR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
565
sp|Q3UHJ0|AAK1_MOUSE 1 4 2 AGQTQPNPGILPIQPALTPR
sp|Q60596|XRCC1_MOUSE 1 3 2 HFFLYGEFPGDER
sp|Q60855|RIPK1_MOUSE 1 3 2 AEYNEVLLEEGK
sp|Q80TE0|RPAP1_MOUSE 1 4 2 VSSLLLPVPK
sp|Q80U70|SUZ12_MOUSE 1 5 2 ETLTTELQTR
sp|Q811D0|DLG1_MOUSE 1 3 2 QVTPDGESDEVGVIPSK
sp|Q8BI72|CARF_MOUSE 1 4 2 GSASFVSSLLK
sp|Q8BM55|TM214_MOUSE 1 4 2 SQSVFTGNPSVWLK
sp|Q8BT07|CEP55_MOUSE 1 5 2 YSSSSLFEQLEEK
sp|Q8BZ20|PAR12_MOUSE 1 4 2 LGLSSDLVSR
sp|Q8CGU1|CACO1_MOUSE 1 3 2 AALLGEELASAAGAR
sp|Q8K0Q5|RHG18_MOUSE 1 4 2 IEEGSLETEGLLR
sp|Q8R2M2|TDIF2_MOUSE 1 3 2 LTSSSIDPGLNIK
sp|Q8VIM9|IRGQ_MOUSE 1 3 2 PLPQGDVTALFLGPPGSGK
sp|Q91VW5|GOGA4_MOUSE 1 3 2 SLLEELASQLDSR
sp|Q91WR3|ASCC2_MOUSE 1 3 2 HNIFQNDEFDVFSR
sp|Q91YK2|RRP1B_MOUSE 1 3 2 LGALPDSSSDLPVQK
sp|Q99J27|ACATN_MOUSE 1 4 2 YTAGPQPLNIFYK
sp|Q99KB8|GLO2_MOUSE 1 3 2 HVEPGNAAIQEK
sp|Q99LB2|DHRS4_MOUSE 1 4 2 LAEDGAHVVVSSR
sp|Q99M28|RNPS1_MOUSE 1 3 2 DHIMEIFSTYGK
sp|Q9D2N9|VP33A_MOUSE 1 4 2 IISAAFEER
sp|Q9DBR0|AKAP8_MOUSE 1 3 2 TVEFLQEYIINR
sp|Q9JJA2|COG8_MOUSE 1 3 2 ISQFLQVLETDLYR
sp|Q9WTR1|TRPV2_MOUSE 1 3 2 GVPEELTGLLEYLR
sp|Q9Z2V5|HDAC6_MOUSE 1 3 2 LVDALM[147]GAEIR
sp|Q64261|CDK6_MOUSE 0.9917 1 2 VQTSEEGM[147]PLSTIR
sp|P63011|RAB3A_MOUSE 1 2 2 M[147]SESLDTADPAVTGAK
sp|Q04692|SMRCD_MOUSE 0.9999 2 2 QEQLYSGLFNR
sp|Q3U308|CP084_MOUSE 0.9999 3 2 DLPSLDPLPPYVLAEAQLR
sp|Q8VHE6|DYH5_MOUSE 0.9999 7 2 RTDLNYIAAVDLK
sp|P24638|PPAL_MOUSE 0.9998 2 2 LQGGVLLAQILK
sp|Q8BZQ7|ANC2_MOUSE 0.9998 2 2 IEELFSIIR
sp|Q99KR7|PPIF_MOUSE 0.9998 3 2 HVGPGVLSM[147]AN
sp|P83510|TNIK_MOUSE 0.9993 2 2 NIATYYGAFIK
sp|P62858|RS28_MOUSE 0.9984 2 2 EGDVLTLLESER
sp|Q8R2U4|ME11A_MOUSE 0.9978 2 2 TAGLSLLAEER
sp|P45878|FKBP2_MOUSE 0.9968 2 2 LVIPSELGYGER
sp|P08032|SPTA1_MOUSE 0.9967 3 2 FLTLLAK
sp|Q8C7B8|ZSWM4_MOUSE 0.9943 2 2 LQPALTSR
sp|O35682|MYADM_MOUSE 1 2 2 TTITTTTSSSTTVGSAR
sp|O70481|UBR1_MOUSE 1 2 2 INSENAEALAQLLTLAR
sp|O88746|TOM1_MOUSE 1 4 2 SSPDLTGVVAVYEDLR
sp|P48771|CX7A2_MOUSE 1 2 2 LFQEDNGM[147]PVHLK
sp|P62313|LSM6_MOUSE 1 2 2 GNNVLYISTQK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
566
sp|P97314|CSRP2_MOUSE 1 2 2 GFGYGQGAGALVHAQ
sp|Q00547|HMMR_MOUSE 1 3 2 DVTAQLESVQEK
sp|Q3TVI8|PBIP1_MOUSE 1 2 2 QEGLALFGVELAPVR
sp|Q3UVG3|F91A1_MOUSE 1 3 2 VQGDYFETLLYK
sp|Q60772|CDN2C_MOUSE 1 3 2 DGTGFAVIHDAAR
sp|Q64FW2|RETST_MOUSE 1 3 2 ATVQSVLLDSAGR
sp|Q6DVA0|LEMD2_MOUSE 1 3 2 ELQALGFQPGPITDTTR
sp|Q6NVE8|WDR44_MOUSE 1 2 2 LLASAGQDNIVR
sp|Q6NZN0|RBM26_MOUSE 1 3 2 VIQPLVQQPILPVVK
sp|Q80XU3|NUCKS_MOUSE 1 2 3 TPSPKEEDEEAESPPEKK
sp|Q8BFW7|LPP_MOUSE 1 3 2 M[147]LYDM[147]ENPPADDYFGR
sp|Q8BTZ5|ANR46_MOUSE 1 2 2 LLESLEEQEVK
sp|Q8BUY5|CC001_MOUSE 1 2 2 AGAVAADSPGFVEDR
sp|Q8C3I8|BRP16_MOUSE 1 3 2 DQGAYLILR
sp|Q8C9B9|DIDO1_MOUSE 1 3 2 TASPLEHILQTLFGK
sp|Q8K3X4|EAP1_MOUSE 1 2 2 YGLSAAAAAAAAAAAVEQR
sp|Q8R307|VPS18_MOUSE 1 3 2 LGALQGDPDALTLYR
sp|Q8R3P6|CO044_MOUSE 1 3 2 AALAFGFLDLLK
sp|Q8R3V5|SHLB2_MOUSE 1 2 2 LASDAGIFFTR
sp|Q8R5H6|WASF1_MOUSE 1 3 2 IENDVATILSR
sp|Q8VD04|GRAP1_MOUSE 1 4 2 TQTGDSSSVSSFSYR
sp|Q91VS7|MGST1_MOUSE 1 2 2 IYHTIAYLTPLPQPNR
sp|Q91VX9|TM168_MOUSE 1 2 2 TVDIEEADPPQLGDFTR
sp|Q91VY9|ZN622_MOUSE 1 3 3 VHSFFIPDIEYLSDLK
sp|Q922S8|KIF2C_MOUSE 1 4 2 FSLVDLAGNER
sp|Q922Y1|UBXN1_MOUSE 1 2 2 GEEPGQDQDPVQLLSGFPR
sp|Q923D5|WBP11_MOUSE 1 2 2 AVSILPLLGHGVPR
sp|Q9CQU3|RER1_MOUSE 1 2 2 LGQIYQSWLDK
sp|Q9CYK1|SYWM_MOUSE 1 3 2 YGEFFPLPK
sp|Q9D0M0|EXOS7_MOUSE 1 3 3 VYIVHGVQEDLR
sp|Q9D1C8|VPS28_MOUSE 1 2 2 AM[147]DEIQPDLR
sp|Q9DB96|NGDN_MOUSE 1 2 2 ASGASLQGHPAVLR
sp|Q9DC29|ABCB6_MOUSE 1 2 2 APDIILLDEATSALDTSNER
sp|Q9DCD2|SYF1_MOUSE 1 2 2 FYEDNGQLDDAR
sp|Q9QUJ7|ACSL4_MOUSE 1 4 2 SDQSYVISFVVPNQK
sp|Q9QWF0|CAF1A_MOUSE 1 2 2 LVGGQGPIDSFLR
sp|Q9QY06|MYO9B_MOUSE 1 3 2 TPIESLFIEATER
sp|Q9Z1T6|FYV1_MOUSE 1 3 2 DYFPEQIYWSPLLNK
sp|Q9Z2A5|ATE1_MOUSE 1 3 2 SLEDLIFQSLPENASHK
sp|Q9Z2L7|CRLF3_MOUSE 1 2 2 LIEHGVNTADDLVR
sp|O35638|STAG2_MOUSE 0.9999 2 2 M[147]YSDAFLNDSYLK
sp|P25425|PO2F1_MOUSE 1 3 2 LYGNDFSQTTISR
sp|P42232|STA5B_MOUSE 1 4 2 IQAQFAQLGQLNPQER
sp|P61620|S61A1_MOUSE 1 5 3 GM[147]EFEGAIIALFHLLATR
sp|P84075|HPCA_MOUSE 0.997 1 2 IYANFFPYGDASK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
567
sp|P15116|CADH2_MOUSE 0.9999 3 2 LNGDFAQLNLK
sp|P70700|RPA2_MOUSE 0.9999 3 2 ISLTIVDAVISPPSVPK
sp|Q60928|GGT1_MOUSE 0.9999 2 2 FVDVSQVIR
sp|Q8CI95|OSB11_MOUSE 0.9999 3 2 SVILHLLSQLK
sp|Q91V01|PCAT3_MOUSE 0.9999 2 2 LATSLGASEQALR
sp|Q9D0P8|RAYL_MOUSE 0.9999 2 2 SQTSGISLPGVLVGTK
sp|Q9JJL8|SYSM_MOUSE 0.9999 2 2 VLIALLESNQQK
sp|Q9QZ08|NAGK_MOUSE 0.9999 2 2 LGILTHLYR
sp|Q02780|NFIA_MOUSE 0.9999 2 2 LDLVM[147]VILFK
sp|Q91W69|EPN3_MOUSE 0.9999 2 2 NIVHNYSEAEIK
sp|Q9CTG6|AT132_MOUSE 0.9996 3 2 ELSLLGLLVM[147]R
sp|Q9R0Q9|MPU1_MOUSE 0.9996 2 2 GLGLGIVAGSLLVK
sp|Q60848|HELLS_MOUSE 0.9995 2 2 LISQIQPEVNR
sp|Q91ZN5|S35B2_MOUSE 0.9994 2 2 APDEVLLAPR
sp|Q9WUU9|MCM3A_MOUSE 0.9994 3 2 LPLYLPQTLVSFPDSIK
sp|P00848|ATP6_MOUSE 0.9993 2 2 LSM[147]AIPLWAGAVITGFR
sp|Q8BTI7|ANR52_MOUSE 0.9993 2 2 DAVSPFSFSLLK
sp|Q9JHS3|MAPIP_MOUSE 0.9993 2 2 NGNQAFNEDSLK
sp|Q3TYS2|CQ062_MOUSE 0.9991 2 2 DIQDVNVEEEK
sp|O88848|ARL6_MOUSE 0.999 3 2 IPILFFANK
sp|Q80TZ9|RERE_MOUSE 0.999 2 2 VDSFFYILGYNPETR
sp|P97412|LYST_MOUSE 0.9988 5 2 DLSGLLVSAFK
sp|Q9CPP0|NPM3_MOUSE 0.9988 2 2 DHDNQEIAVPVANLR
sp|Q8BFS6|CSTP1_MOUSE 0.9986 2 2 LTEQAVEAINK
sp|Q8R1S0|COQ6_MOUSE 0.9981 2 2 ILLLEAGPK
sp|Q8VHN7|GPR98_MOUSE 0.998 4 2 FAEPCVLR
sp|Q9R0M6|RAB9A_MOUSE 0.9976 2 2 EPESFPFVILGNK
sp|Q8BYU6|TOIP2_MOUSE 0.9957 5 2 FESLPAGSTLIFYK
sp|Q9WTL7|LYPA2_MOUSE 0.9956 2 2 FGALTAEK
sp|Q9Z2R6|U119A_MOUSE 0.9949 1 2 QPIGPEDVLGLQR
sp|Q9CQT2|RBM7_MOUSE 0.9919 2 2 TLFVGNLETK
sp|Q9CY57|CA077_MOUSE 0.9917 1 2 EQLDNQLDAYM[147]SK
sp|P03930|ATP8_MOUSE 1 2 2 VSSQTFPLAPSPK
sp|P24610|PAX3_MOUSE 1 3 2 TTFTAEQLEELER
sp|P70302|STIM1_MOUSE 1 3 2 YAEEELEQVR
sp|P70677|CASP3_MOUSE 1 4 2 LEFM[147]HILTR
sp|Q09143|CTR1_MOUSE 1 2 2 VIYAM[147]AEDGLLFK
sp|Q3UA37|QRIC1_MOUSE 1 3 2 EIQEAIAVANATTM[147]H
sp|Q3UGY8|BIG3_MOUSE 1 4 2 NLIDTLSTPLTGR
sp|Q3UW53|NIBAN_MOUSE 1 4 2 VLTSEEEYSLLSDK
sp|Q64430|ATP7A_MOUSE 1 5 2 QIEAVGFPAFIK
sp|Q8BHY8|SNX14_MOUSE 1 3 2 LVSLITLLR
sp|Q8BTG3|T11L1_MOUSE 1 3 2 AIFSVLDLM[147]K
sp|Q8C5W3|TBCEL_MOUSE 1 3 2 YYVDVPQEEVPFR
sp|Q8CIM8|INT4_MOUSE 1 3 2 FLQEVDFFQR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
568
sp|Q91VZ6|SMAP1_MOUSE 1 3 2 LLYEANLPENFR
sp|Q9JLV1|BAG3_MOUSE 1 3 2 ELLALDSVDPEGR
sp|Q9QYC7|VKGC_MOUSE 1 3 2 DGLTGELGYLNPGVFTQSR
sp|Q9QYH6|MAGD1_MOUSE 1 3 2 ATEAVLWEALR
sp|Q9R0I7|YLPM1_MOUSE 1 3 2 VFSSEQGLGESSALSQSIIAAK
sp|P61028|RAB8B_MOUSE 0.9993 2 2 SSTNVEEAFFTLAR
sp|Q8JZR6|S4A8_MOUSE 0.9984 2 2 FLFILLGPVGK
sp|Q9CQK7|RWDD1_MOUSE 1 4 3 AKFDAELLEIKK
sp|P10922|H10_MOUSE 0.9999 2 2 YSDM[147]IVAAIQAEK
sp|Q3UUQ7|PGAP1_MOUSE 0.9998 3 2 AFFDLIDADTK
sp|Q8CHC4|SYNJ1_MOUSE 0.9998 3 2 VLDAYGLLGVLR
sp|Q8K370|ACD10_MOUSE 0.9998 4 2 LSLQPSEAIFLDDLGSNLK
sp|Q8BGZ2|F168A_MOUSE 0.9997 2 2 SIPSAIYPAPVAAPR
sp|Q922H1|ANM3_MOUSE 0.9997 3 2 QTVFLLEKPFPVK
sp|P58854|GCP3_MOUSE 0.9996 3 2 YLLLGQGDFIR
sp|Q9CQZ6|NDUB3_MOUSE 0.9996 3 2 M[147]ELPDYR
sp|P47713|PA24A_MOUSE 0.9995 3 2 DVPVVAILGSGGGFR
sp|Q99JP7|GGT7_MOUSE 0.9995 3 2 LPEDEPAPAAPLR
sp|O55242|OPRS1_MOUSE 0.9994 2 2 QYAGLDHELAFSR
sp|Q8K5B2|MCFD2_MOUSE 0.9994 2 2 DDDKNNDGYIDYAEFAK
sp|Q5U430|UBR3_MOUSE 0.9992 3 2 LDPDYFISSVFER
sp|Q9QZH6|ECSIT_MOUSE 0.9992 3 2 IFVHYPR
sp|Q9Z0J0|NPC2_MOUSE 0.9991 2 2 LPVKNEYPSIK
sp|Q6P8H8|ALG8_MOUSE 0.999 2 2 AILLAILPM[147]SLLSVEK
sp|Q8K4M5|COMD1_MOUSE 0.999 2 2 LSEVEESINR
sp|Q9CQB5|CISD2_MOUSE 0.9987 3 2 QLPVPDSITGFAR
sp|Q03173|ENAH_MOUSE 0.9986 2 2 VEDGSFPGGGNTGSVSLASSK
sp|Q9EPN1|NBEA_MOUSE 0.9984 3 2 EISNFEYLM[147]FLNTIAGR
sp|Q9R0Q4|MO4L2_MOUSE 0.9983 2 2 EYAVNEVVGGIK
sp|Q8VCI5|PEX19_MOUSE 0.9975 2 2 ELAEEEPHLVEQFQK
sp|Q80U78|PUM1_MOUSE 0.9973 1 2 SASSASSLFSPSSTLFSSSR
sp|Q6ZPE2|MTMR5_MOUSE 0.9964 2 2 GLLALLFPLR
sp|Q8CHT3|INT5_MOUSE 0.9957 2 2 EQPLLFELLK
sp|Q91XL9|OSBL1_MOUSE 0.9917 1 2 ITM[147]PVIFNEPLSFLQR
sp|Q80UG2|PLXA4_MOUSE 0.9911 1 2 FVDDLFETIFSTAHR
sp|A2AAJ9|OBSCN_MOUSE 0.9904 3 2 EDENFVCIR
sp|P97857|ATS1_MOUSE 0.99 1 2 GIGYFFVLQPK
sp|O89017|LGMN_MOUSE 1 2 2 DYTGEDVTPENFLAVLR
sp|Q3UFM5|NOM1_MOUSE 1 3 2 ELITEAQTQASGAGNK
sp|Q5PRF0|HTR5A_MOUSE 1 2 2 VLILEQLLNSIK
sp|Q5SUC9|SCO1_MOUSE 1 2 2 LVGLTGTKEEIDGVAR
sp|Q64282|IFIT1_MOUSE 1 3 2 ISEQVQFLDIK
sp|Q91WG2|RABE2_MOUSE 1 2 2 LQAELETSEQVQR
sp|Q99MU3|DSRAD_MOUSE 1 3 2 YLNTNPVGGLLEYAR
sp|Q9CR88|RT14_MOUSE 1 2 2 HLADHGLLSGVQR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
569
sp|Q9D187|FA96B_MOUSE 1 2 2 SGERPVTAGEEDEEVPDSIDAR
sp|Q9Z0R9|FADS2_MOUSE 1 3 2 ALIDIVSSLK
sp|Q61771|KIF3B_MOUSE 1 2 2 HLIIENFIPLEEK
sp|O08601|MTP_MOUSE 0.9999 3 2 SGFTTANQVLGVSSK
sp|O35350|CAN1_MOUSE 0.9999 2 2 APSDLYQIILK
sp|O88879|APAF_MOUSE 0.9999 2 2 GSPLVVSLIGALLR
sp|Q3SXD3|HDDC2_MOUSE 0.9999 2 2 LQDFYDSTAGK
sp|Q3U5F4|YRDC_MOUSE 0.9999 2 2 LPESEPVEAASPER
sp|Q80XQ2|TBCD5_MOUSE 0.9999 2 2 TFPEM[147]QFFQQENVR
sp|Q8BKX6|SMG1_MOUSE 0.9999 4 2 AQDTFQTIEGIIR
sp|Q9CQ75|NDUA2_MOUSE 0.9999 2 2 TVSLNNLSADEVTR
sp|Q9DBA9|TF2H1_MOUSE 0.9999 2 2 M[147]LQEDPVLFQLYK
sp|Q9EQG9|C43BP_MOUSE 0.9999 2 2 DVLYLSAIR
sp|Q3TEL6|RN157_MOUSE 0.9999 2 2 VSYLLQEIYGIENK
sp|Q66T02|PKHG5_MOUSE 0.9998 3 2 SLGEVLLPVFER
sp|Q8R080|GTSE1_MOUSE 0.9998 2 2 VPQFSVGESPGGVTPK
sp|Q8VHL1|SETD7_MOUSE 0.9998 2 2 VYVADSLISSAGEGLFSK
sp|Q99LH1|NOG2_MOUSE 0.9998 2 2 VIDSSDVVVQVLDAR
sp|Q05793|PGBM_MOUSE 0.9997 5 2 VIPYFTQTPYSFLPLPTIK
sp|Q3UGP8|AG10B_MOUSE 0.9997 2 2 YFILPYIIYR
sp|Q9D4H2|GCC1_MOUSE 0.9997 2 2 TQLATLTSSLATVTQEK
sp|Q9Z1X9|CC45L_MOUSE 0.9997 2 2 LQEFLADM[147]GLPLK
sp|Q6IQX7|CHSS2_MOUSE 0.9996 2 2 LTVLLPLAAAER
sp|Q6PEV3|WIPF2_MOUSE 0.9996 2 2 GSSGGYGPGAAALQPK
sp|Q6XUX1|RIPK5_MOUSE 0.9996 2 3 SPLYGQLVDLGYLSSSHR
sp|Q6ZWZ2|UB2R2_MOUSE 0.9996 2 2 FPIDYPYSPPTFR
sp|P40201|CHD1_MOUSE 0.9927 2 2 M[147]LDILAEYLK
sp|Q5SWT3|S2535_MOUSE 0.9994 2 2 LGTYGLAESR
sp|Q91ZR1|RAB4B_MOUSE 0.9994 2 2 M[147]GSGIQYGDISLR
sp|P46414|CDN1B_MOUSE 0.9993 2 2 NLFGPVNHEELTR
sp|Q3U5Q7|CMPK2_MOUSE 0.9993 2 2 AFYSLGNYLVASEIAK
sp|Q9CQ86|CQ037_MOUSE 0.9993 2 2 EEYPGIEIESR
sp|P62311|LSM3_MOUSE 0.9992 2 2 GDGVVLVAPPLR
sp|Q5BLK4|ZCHC6_MOUSE 0.9992 2 2 NTEPVGQLWLGLLR
sp|Q8R550|SH3K1_MOUSE 0.9992 2 2 M[147]EPAVSSQAAIEELK
sp|P54116|STOM_MOUSE 0.9991 2 2 EASM[147]VITESPAALQLR
sp|Q501J2|F173A_MOUSE 0.9991 2 2 LQAELPVGAR
sp|Q3UDR8|YIPF3_MOUSE 0.999 2 2 DIPAVLPAAR
sp|Q9EPQ7|STAR5_MOUSE 0.999 2 2 SM[147]AEFYPNLQK
sp|Q9CYZ6|CS060_MOUSE 0.9989 2 2 DAPIATLVQR
sp|P28741|KIF3A_MOUSE 0.9988 2 2 SAKPETVIDSLLQ
sp|Q9CYA6|ZCHC8_MOUSE 0.9988 2 2 LVNYPGFNISTPR
sp|Q9R1S3|PIGN_MOUSE 0.9988 2 2 EATLPFLFTPFK
sp|Q9R207|NBN_MOUSE 0.9988 2 2 LLPAAGAAPGEPYR
sp|Q9JKX4|AATF_MOUSE 0.9987 2 2 ALLTTNQLPQPDVFPVFK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
570
sp|Q5KU39|VPS41_MOUSE 0.9986 4 2 IVLLM[147]DFDSEK
sp|P0C1Q2|PDE11_MOUSE 0.9985 2 2 DISNDLDLTSLSYK
sp|Q76KJ5|RPA34_MOUSE 0.9985 2 2 EATLLASSSEAGGR
sp|Q9D850|TMM68_MOUSE 0.9985 2 2 TFLGDPIPYDPK
sp|Q9R0D8|WDR54_MOUSE 0.9985 2 2 TISALDLAPEVGK
sp|Q8K2F8|LS14A_MOUSE 0.9981 2 2 YEGILYTIDTENSTVALAK
sp|Q9CPV5|PMF1_MOUSE 0.9981 2 2 NQELADAVLAGR
sp|Q9DCI9|RM32_MOUSE 0.998 2 2 QQIGAQEGGPFR
sp|Q9CQ18|RNH2C_MOUSE 0.9978 2 2 HDADGLQASFR
sp|Q9D8Y1|T126A_MOUSE 0.9978 2 2 ILNVTQAR
sp|Q9WTK3|GPAA1_MOUSE 0.9976 2 2 YGVEALTLR
sp|P70444|BID_MOUSE 0.9975 2 2 IEPDSESQEEIIHNIAR
sp|Q07139|ECT2_MOUSE 0.9974 2 2 LPSVALLLNDLK
sp|Q8BMD6|CN101_MOUSE 0.9974 3 2 LPGTGIDPEVLLSEAIR
sp|Q9D600|PSF2_MOUSE 0.9974 2 2 TNLQPSESTQSQDF
sp|Q8BTJ4|ENPP4_MOUSE 0.9973 2 2 EVDDLIGDIVLK
sp|Q8QZX2|CD015_MOUSE 0.9973 2 2 TNPM[147]VFLSQFPLGK
sp|Q924L1|LTMD1_MOUSE 0.9972 2 2 LGIGQLTAQEVK
sp|Q7TSZ8|NACC1_MOUSE 0.9971 2 2 FSTPDLALNR
sp|Q61207|SAP_MOUSE 0.997 2 2 TVVTEAGNLLK
sp|Q9D023|BR44_MOUSE 0.9969 3 2 YSLVIIPK
sp|Q8K1A6|C2D1A_MOUSE 0.9967 2 2 SFDPVLEALSR
sp|Q9CPR1|RWDD4_MOUSE 0.9966 2 2 SIYEGDNSFR
sp|Q3TBW2|RM10_MOUSE 0.996 2 2 VFPSQVLKPFLENSK
sp|Q8BK75|CC075_MOUSE 0.9958 2 2 GQLVFLEGLK
sp|P50096|IMDH1_MOUSE 0.9954 1 2 NLIDAGVDGLR
sp|P63139|NFYB_MOUSE 0.9951 2 2 EQDIYLPIANVAR
sp|Q9R059|FHL3_MOUSE 0.9949 2 2 TLTQGGVTYR
sp|Q3ULF4|SPG7_MOUSE 0.9944 2 2 EGGFSAFNQLK
sp|Q80UZ2|SDA1_MOUSE 0.9943 1 2 DLLVQYATGK
sp|Q8VE19|MIO_MOUSE 0.9932 2 2 NLAIFDLR
sp|Q9JKK8|ATR_MOUSE 0.9931 3 2 FLDLIPQDTLAVASFR
sp|Q8CIG3|AOF1_MOUSE 0.9927 2 2 VLVTVPLAILQR
sp|Q3TDD9|KLRAQ_MOUSE 0.9917 2 2 EGLAQQVQQSLEK
sp|Q6PCM2|INT6_MOUSE 0.9917 1 2 NLQAEGLTTLGQSLR
sp|Q8K2F0|BRD3_MOUSE 0.9917 1 2 EYPDAQGFAADIR
sp|Q8R0J7|VP37B_MOUSE 0.9917 1 2 SLAEGNLLYQPQLDAQK
sp|Q9QUG2|POLK_MOUSE 0.9912 2 2 ASTVPAAISTAEEIFAIAK
sp|Q68EF0|RAB3I_MOUSE 0.9908 1 2 IDVLQAEVAALK
sp|Q7TPM1|BAT2L_MOUSE 0.99 1 2 LLSFSPEEFPTLK
sp|O35379|MRP1_MOUSE 1 2 2 LYAWELAFQDK
sp|P70399|TP53B_MOUSE 1 3 2 VITDVYYVDGTEVER
sp|Q4FZC9|SYNE3_MOUSE 1 2 2 AATLLEQVTSSVR
sp|Q6P8M1|TATD1_MOUSE 1 2 2 HQDDLQDVIER
sp|Q8BK03|FA73B_MOUSE 1 2 2 PAAAYEEALQLVK
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
571
sp|Q8BW10|NOB1_MOUSE 1 2 2 TDVFAPDYIAGVSPFAENDISSR
sp|Q99K74|MED24_MOUSE 1 2 2 VESLVALLNNSSEM[147]K
sp|Q9CQF4|CF203_MOUSE 1 2 2 SEQEEELESEPGVAK
sp|Q9Z2A7|DGAT1_MOUSE 1 2 2 LQDSLFSSDSGFSNYR
sp|P59016|VP33B_MOUSE 0.9999 2 2 AGLLTEQAPGDTLTAVESK
sp|Q5DU25|IQEC2_MOUSE 0.9999 2 2 LIEAFSQR
sp|Q8VDD9|PHIP_MOUSE 0.9999 2 3 YHDM[147]PDVIDFLVLR
sp|A2AR02|PPIG_MOUSE 0.9998 2 2 DFM[147]VQGGDFSEGNGR
sp|Q8C3X8|LMF2_MOUSE 0.9998 2 2 LFGSVEHLQLANSYGLFR
sp|P70188|KIFA3_MOUSE 0.9997 2 2 SLNANTDITSLAR
sp|Q9ER69|FL2D_MOUSE 0.9997 2 2 STM[147]VDPAINLFFLK
sp|Q9QZ73|DCNL1_MOUSE 0.9997 2 2 QFM[147]IFTQSSEK
sp|P58501|GCFC_MOUSE 0.9996 2 2 TLQELSIDGLLNR
sp|P22366|MYD88_MOUSE 0.9991 2 2 FALSLSPGVQQK
sp|P97480|EYA3_MOUSE 0.999 2 2 SNVGGLLSPQR
sp|Q0P678|ZCH18_MOUSE 0.999 2 3 ASQQAAAPQPAVPGQPQQGSFVAHK
sp|Q9CX00|K0174_MOUSE 0.999 2 2 ELDSGLAESVSTLIWAAPR
sp|Q61037|TSC2_MOUSE 0.9987 3 2 LGYLPYSLLFR
sp|P46938|YAP1_MOUSE 0.9985 2 2 GDSETDLEALFNAVM[147]NPK
sp|P62046|LRCH1_MOUSE 0.9985 2 2 NLESIDPQFTIR
sp|P97473|TRBP2_MOUSE 0.9985 2 2 TPISLLQEYGTR
sp|Q5PSV9|MDC1_MOUSE 0.9985 3 2 LGLPLLSPEFLLTGVLK
sp|Q9JKL4|CC060_MOUSE 0.9985 2 2 IEIVVVGTGNK
sp|P97300|NPTN_MOUSE 0.9984 2 3 KRPDEVPDDDEPAGPM[147]K
sp|Q99KY4|GAK_MOUSE 0.9984 2 2 IAVM[147]SFPAEGVESAIK
sp|P59672|ANS1A_MOUSE 0.9981 3 2 LLLNGFDDVR
sp|Q8VDR9|DOCK6_MOUSE 0.9979 2 2 VAELYLPLLSLAR
sp|Q80VQ1|LRRC1_MOUSE 0.9967 1 2 SLEELLLDANQLR
sp|Q9CXF7|CHD1L_MOUSE 0.9963 2 2 GIPTYIYYFPR
sp|Q9D820|U566_MOUSE 0.9962 2 2 FVLDSAFLEGGHEK
sp|Q8K2J4|CCD14_MOUSE 0.9952 3 2 NVSQTAEK
sp|P49769|PSN1_MOUSE 0.9937 2 2 NETLFPALIYSST
sp|Q3V1H1|CKAP2_MOUSE 0.9924 2 2 IEPITSPIENIISIYEK
sp|P70236|MP2K6_MOUSE 0.9923 2 2 ADDLEPIVELGR
sp|O35375|NRP2_MOUSE 0.9917 1 2 IFQANNDATEVVLNK
sp|P50427|STS_MOUSE 0.9917 1 2 VLAALDELGLAR
sp|P84089|ERH_MOUSE 0.9917 1 2 ADTQTYQPYNK
sp|Q5DTK1|CHSS3_MOUSE 0.9917 1 2 DNTVQGQQVYYPIIFSQYDPK
sp|Q8K4R9|DLGP5_MOUSE 0.9917 1 2 ANEILVQQGLESLTDR
sp|Q91YU8|SSF1_MOUSE 0.9917 1 2 TEEELQAILAAK
sp|Q9CQ39|MED21_MOUSE 0.9917 1 2 IQSALADIAQSQLK
sp|Q9Z0R4|ITSN1_MOUSE 0.9917 1 2 LQEIDVFNNQLK
sp|Q8VCF0|MAVS_MOUSE 0.9914 2 2 DTLWGLFNNLQR
sp|Q6TEK5|VKORL_MOUSE 0.9908 1 2 GFGLLGSIFGK
sp|Q9JIA7|SPHK2_MOUSE 0.9908 1 2 LLILVNPFGGR
X. Y. LIU ET AL.
Copyright © 2011 SciRes. AJAC
572
sp|Q99LC9|PEX6_MOUSE 0.9902 3 2 LVFVGASEDR
sp|Q3U1G5|I20L2_MOUSE 0.9985 2 2 IDLLGEFQSALPK
sp|Q8BXA1|GOLI4_MOUSE 0.9981 2 2 DAGFQALEEQNQVEPR
sp|P70158|ASM3A_MOUSE 0.998 2 2 NGNPLNSVFVAPAVTPVK
sp|Q61624|ZN148_MOUSE 0.9979 2 2 LPQGLQYALNVPISVK
sp|Q9QXE7|TBLX_MOUSE 0.9979 2 2 HQEPVYSVAFSPDGK
sp|P59997|JHD1A_MOUSE 0.9974 2 2 ILLEELASSDPK
sp|Q8BRG8|TM209_MOUSE 0.9918 2 2 YTVAPTSLVVSPGQQALLGLK
sp|Q3URD3|SLMAP_MOUSE 0.9917 1 2 IEALQADNDFTNER
sp|Q62388|ATM_MOUSE 0.9917 1 2 SVATSSIVGYILGLGDR
sp|Q7TMW6|NARFL_MOUSE 0.9917 1 2 APDTEGSELLQQLER
sp|Q80YR4|ZN598_MOUSE 0.9917 1 2 TPGLAPTPQAYLVPENFR
sp|Q8K3K8|OPTN_MOUSE 0.9917 1 2 ADLLGIVSELQLK
sp|Q9CPS7|PNO1_MOUSE 0.9917 1 2 RPVFPPLSGDQLLTGK
sp|P70261|PALD_MOUSE 0.9908 1 2 ALGNILAYLSDAK
sp|Q8BW49|TTC12_MOUSE 0.9908 1 2 ANTAIGILTDLALEER
sp|Q91W92|BORG5_MOUSE 0.9908 1 2 LTADM[147]ISPPLGDFR
sp|Q9Z0P7|SUFU_MOUSE 0.9908 1 2 VSILPDVVFDSPLH
sp|P62737|ACTA_MOUSE 1 5 2 AVFPSIVGR
sp|P12246|SAMP_MOUSE 0.9965 1 2 APPSIVLGQEQDNYGGGFQR
sp|P62835|RAP1A_MOUSE 0.9952 1 2 INVNEIFYDLVR
sp|Q80Y17|L2GL1_MOUSE 0.9948 1 2 APVVAIAVLDGR
Table S3
All the abbreviated words and their full name
1DE-LC-MS/MS dimensional gel electrophoresis- liquid chromatography-mass spectrometry
ACN Acetonitrile
BSA Bovine Albumin Standards
DMEM Dulbecco's Modified Eagle Media
Dnmt3a DNA methyltransferase 3A
Dnmt3a-D Dnmt3a depletion B16 melanoma
ERK extracellular signal-regulated kinase
FBS Fetal bovine serum
GO Genome Ontology
IEF isoelectro- focusing
IPG immobilized pH gradient
IPI International Protein Index
JNK c-Jun N-terminal kinase
KEGG Kyoto Encyclopedia of Genes and Genomes
LTQ-Orbitrap Linear ion trap Orbitrap
MAPK mitogen activated protein kinase signaling pathway
NC negative control cell line
PBS phosphate-buffered saline
PMSF phenylmethanesulfonyl fluoride
TPP Trans-Proteomic Pipeline