Advances in Pure Mathematics, 2011, 1, 204-209
doi:10.4236/apm.2011.14036 Published Online July 2011 (http://www.SciRP.org/journal/apm)
Copyright © 2011 SciRes. APM
A Modified Averaging Composite Implicit Iteration Process
for Common Fixed Points of a Finite Family of k–Strictly
Asymptotically Pseudocontractive Mappings
Donatus Igbokwe, Oku Ini
Department of Mat hematics, University of Uyo, Uyo, Nigeria
E-mail: {igbokwedi, inioku}@yahoo.com
Received April 4, 2011; revised June 3, 2011; accepted June 10 , 20 1 1
Abstract
The composite implicit iteration process introduced by Su and Li [J. Math. Anal. Appl. 320 (2006) 882-891]
is modified. A strong convergence theorem for approximation of common fixed points of finite family of
kstrictly asymptotically pseudo-contractive mappings is proved in Banach spaces using the modified itera-
tion process.
Keywords: Implicit Iteration Process, kStrictly Asymptotically Pseudo-Contractive Maps, Fixed Points
1. Introduction and Preliminaries
Let E be an arbitrary real Banach space and let
J
denote normalized duality mapping from E into *
2
E
given by


22 2
*
=:,=;=
J
xfExfxx f
where *
E denotes the dual space of E and ,
denotes the generalized duality pairing. If *
E is strictly
convex , then
J
is single-valued. In the sequel, we shall
denote single-valued duality mappings by j. A ma-
pping :TK K is called k-strictly asymptotically
pseudocontractive with sequence

[1, )
n
a,
1
limnn
a
 (see, for example [1]) if for all ,
x
yK
,
there exists
jx yJxy  and a constant [0,1)k
such that




2
2
,
11
11
22
nn
nn
n
Tx Tyjxy
axy kxTxyTy

  (1)
for all nN. If
denotes the identity operator, then
(1) can be written in the form





22
,
11
11
22
nn
nnn
IT xIT yjxy
kITxITya xy
 
 
(2)
The class of k
strictly asymptotically pseudocon-
tractive maps was first introduced in Hilbert spaces by
Qihou [2]. In Hilbert spaces, j is the identity and it is
shown in Osilike [3] that (1) (and hence (2)) is equiva-
lent to the the inequality

2
22
nnn n
n
TTyaxykITxITy (3)
which is the inequality considered by Qihou [2].
A mapping T with domain

DT and range
RT in E is called strictly pseudo-contractive in the
terminology of Browder and Petryshyn [4] if there exist
0
such that
 
2
2
,TxTyjxyx yx yTxTy
 (4)
for all
,
x
yDT and for all

jx yJxy .
Without loss of generality we may assume
0, 1
. If
denotes the identity operator, then (1) can be written
in the form

2
,
I
Tx ITyjxyITx ITy
(5)
In the Hilbert space ,
H
(4) (and hence (5)) is
equivalent to the inequality


2
22
=1 <1
TxTyxyk I TxI Ty
k

(6)
and we can assume also that 0k, so that [0,1]k
.
D. IGBOKWE ET AL.
Copyright © 2011 SciRes. APM
205
It is shown in [5] that a strictly ps eudocontractive map
is L-Lipschitzian (Tx Tyxy, for all
,
x
yDT
and for some 0L). It is also shown in [3] that a
kstrictly asymptotically pseudocontractive mapping is
uniformly LLipschitzian (i.e. for some 0L,
nn
Tx TyLxy, for all ,
x
yK and nN
).
The class of kstrictly asymptotically pseudocon-
tractive mappings and the class of strictly pseudo-contra-
ctive mappings are independent (see [1]). The class of
kstrictly asymptotically pseudocontractive mappings
is a natural extension of the class of asymptotically
nonexpansive mappings (i.e. mappings :TK K
such that
1, ,
nn n
Tx Tya xynxyK
(7)
and for some sequence

[1, )
n
a such that
1
limnn
a
 .) If =0k, we have from (3) (and hence
(1) ) that T is asymptotically nonexpansive. In fact, an
asymptotically nonexpansive map is 0strictly asymp-
totically pseudocontractive (see Remark 1 [6]). T is
called asymptotically quasi-nonexpansive if there exists
a sequence

[1, )
n
a such that 1
limnn
a
 , and
,1
nn
Tx pax pn  (8)
for all
x
K and
 
:pFT xKTxx
In [7], Xu and Ori introduced an implicit iteration
process and proved weak convergence theorem for
approximation of common fixed points of a finite family
of nonexpansive mappings (i.e. a subclass of asympto-
tically nonexpansive mappings for which
Tx Tyxy
, ,
x
yK
). In [8], Osilike extended
the results of [7] from nonexpansive mappings to strictly
pseudocontractive mappings. In [9], Su and Li introduc-
ed a new implicit iteration process and called it
composite implicit iteration process. Using the new
implicit iteration process, they proved the results estab-
lished by Osilike in [8]. In compact form, the composite
iteration process introduced in [9] is the sequence
n
x
generated from arbitrary 0
x
K by


1
1
=1
=1
nnnnnn
nnnnnn
x
xTy
yx Tx




(9)
where {},{}[0,1].
nn
In [10] Sun modified the
implicit iteration process of Xu and Ori and applied the
modified iteration process for the approximation of fixed
points of a finite family of asymptotically quasi-nonex-
pansive maps. In compact form, the modified implicit
iteration process of Sun is the sequence {}
n
x
generated
from arbitrary 0
x
K
by
1
=1 ,1
k
nnnnin
xx Txn

 (10)
where

1, 1,2,,nk NiiIN .
In this paper, we modify (9) as follows. Let
K
be
a nonempty closed convex subset of E,

=1
N
ii
T a finite
family of k
strictly asymptotically pseudocontractive
self-maps of K, then for 0
x
K
and

, [0,1]
nn

.

 
 
 

110111110111
221222221222
1 1
2 2
1111111111
2
2122222
2
=1, =1
=1, =1
=1,=1
=1,=1
=1,=1
NNNNNNNNNNNN
NNNNNNNNNN
NNNNNNN
n
xxTyyxTx
xxTyyxTx
xxTyyxTx
xxTyyxTx
xxTyyx
 
 
 
 
 
 


 
 
 
 
 


 
 
 
2
22
2 2
22 212222 2122
3 3
212122112121212 21121
3 3
22222122 22221222122 222
=
=1,=1
=1 ,=1
=1 ,=1
NNN
NNNNNN NNNNNN
NNNNNNNNNN
NNNNNNNNNN
Tx
xxTyyxTx
xxTyyxTx
xx Tyyx Tx
 
 
 

 
  

 
 
 


Our iteration process can be expressed in a compact
form as

1
1
=(1) 1
=1
k
nnn nin
k
nnnnin
xx Ty
n
yx Tx




(11)
where
1,1,2,,nk NiiN . Observe that if
:TK K is kstrictly asymptotically pseudocon-
tractive mapping with sequence

[1, )
n
a such that
1
limnn
a

, then for every fixed uK and
,1,1ts LL, the operator ,, :
tsn
SKK defined
for all
x
K
by


,, =1 1
nn
tsn
Sxtu tTsusTx
satisfies
 
2
,, ,, 11
tsn tsn
SxSyt sLxy
 ,
,
x
yK
. Since

2
11 0,1tsL, it follows that
D. IGBOKWE ET AL.
Copyright © 2011 SciRes. APM
206
,,tsn
S is a contraction map and hence has a unique fixed
point ,,tsn
x
in K. This implies that there exists a
unique ,,tsn
x
K such that
 

,, ,,
11
nn
tsn tsn
xtu tTsusTx . Thus our mod-
ified composite implicit iteration process (11) is
defined in
K
for the family

=1
N
ii
T of N k
strictly
asymptotically pseudocontractive self maps of a
nonempty convex subset K of a Banach space pro-
vided
,,1
nn

where

1LL
and

1
max Ni
LL
.
The purpose of this paper is to study the convergence
of the new modified averaging implicit iteration scheme
(11) to a common fixed point of a finite family of
kstrictly asymptotically pseudocontractive maps in
arbitrary Banach spaces. The results presented in this
paper, generalize the result of Su and Li [9] and several
others in the literature (see for example [8], [11], [10],
[7]).
In the sequel, we shall need the following:
Lemma 1.1 OAA ([3], p. 80):
Let {}
n
a, {}
n
b and {}
n
be three sequences of
nonnegative real numbers satisfying the inequality

11,1
nnnn
aban
  (12)
If n

and n
b
then limnn
a
 exists.
If in addition {}
n
a has a subsequence which converges
strongly to zero, then 0
limnn
a
 .
Definition 1.1 [12] A bounded convex subset
K
of a
real Banach space E is said to have normal structure
if every nontrivial convex subset C of
K
contains at
least one nondimetrial point. That is, there exists
0
x
E such that


0:< :,=
s
upx xxCsupxyxyCdC 
where

dC is the diameter of C
Every uniformly convex Banach space and every
compact convex subset
K
of a Banach space E has
normal structure. For the definition of modulus of
convexity of E and the characteristic of convexity 0
of E, see [13].
Theorem 1.1 ([13] Corollary 3.6)
Let E be a real Banch space with normal structure


0
>1,NE max
, 0>0,
K a nonempty bounded
closed convex subset of E and :TKK a uni-
formly LLipschitzian mapping with <L
, >1.
Then T has a fixed point.
2. Main Results
Lemma 2.1 Let E be a real Banach space with normal
structure
0
>1,NE max
and let
K
be a nonempty
closed convex subset of E. Let

=1
N
ii
T be N i
k
strictly asymptotically pseudo-contractive self-map s of K
with sequences {}[1,)
in
a such that

=1 1<
in
na
, and let

=i
FFT. Let {}
n
,
{} ,1
n
be two real sequences satisfying the condi-
tions:
()i

=1 1n
na

, ()ii

2
=1 1<
n
n

,
()iii

=1 1n
n

, ()iv

2
11 <1
nn
L

 ,
where
1LL
and

1
=max iN i
LL
 , i
L the
Lipschitzian constants of

=1
N
ii
T. Let

n
x
be the
implicit iteration sequence generated by (11). Then
()i limnn
x
p

exists for all pF.
()ii
,
n
dxF exists, where
,inf pF
nn
dxFx p
()iii 0
liminf nnnn
xTx

.
Proof
The existence of fixed point follows from Theorem 1.1.
We shall use the well known inequality (see for example
[7,14])

22
,
x
yxyjxy  (13)
which holds for all ,
x
yE
and for all
jx yJx y
. Let pF, then using (11) and
(13) we obtain


 

 


2
2
1
2
21
2
21
2
21
2
=1
21 ,
=21
,,
21
21 ,
k
nnn nin
k
nnn inn
nn n
kk k
inin nin n
nn n
nnn n
k
nninn
xpx pTyp
x
pTypjxp
xp
TyTx jxpTx jxp
xp
Lyx xpxp
xTxjxp





 

 


 

 
(14)
Since each :
i
TK K, iI, is i
k
strictly
asymptotically pseudocontractive, then




22
,
11
11
22
nn
ii
nn
ii iim
IT xIT yjxy
kxTx yTyaxy
 
 
D. IGBOKWE ET AL.
Copyright © 2011 SciRes. APM
207
[0, 1)
i
k. Let

1
min iN i
kk

. Then





22
,
11
11
22
nn
ii
nn
ii im
IT xITyjxy
kxTx yTyaxy
 
 
Thus it follows from (14) that




22
21
2
2
1
12 1
11
nnn nnnn
nnn
k
nnin
x
pxpLyxxp
xp
kxTx




 

 
(15)
Observe that
 
1
11
kk
nn nninnnnin
yxTyx xTx
 
 
(16)
 
2
11
11
k
innnnn n
TyxLxp Lxp


 
(17)
and

1
k
nin n
x
TxLx p (18)
Substituting (16)-(18) into (15), we obtain
 



 


23
2
2
2
21
2
1
121(1 )2111
12 1
21 1
11
nnnn n
nik n
nnnnn
k
nn nnin
LLL
axp
xp LL
xpxp kxTx
 

 
 

 
(19)
Observe that

11
ik in
aa , kn , since

1nkNi ,

1, 2,,iI N . Setting
 



22
2
21 1
2111 11
nnnn
nn nn
bL
LL a

 
 
 
then it follows from (19) that


 

2
22
1
2
1
2
1
1121
21 1
121
(1)(1 )
12(1)
nn
nn
nn
nnn nn
nn
k
nnin
nn
b
xpx p
b
LL
x
px p
b
kxTx
b




 














 

(20)
Since



3
121
=1 121
211 211
nn
nin
nn nn
b
a
LLL
 

 
 
and
,1
nn

, then we obtain that
  


3
3
2121 1211
21221
inn nnn
m
aL LL
aLLL
 
  
  
Setting

3
12221MLLL
 , then there must
exist a natural number 1
N, such that if 1
nN then

12
121 nn
b
 , (since

2
=1 1n
n

and

=1 1
in
na

). Therefore it follows from (20) that

 




2
22
1
2
1
2
2
121
221 1
11
11
nnnn
nnn nn
k
nnin
k
nnin
xpb xp
LLx pxp
kx Tx
kx Tx


 





  
  
(21)
Observe that,









2
1
1
1
2
=,
=, 1
,
=, 1
,1
,
1
1
nnn
nn nn
k
in n
nn nn
kk
in innn
k
in n
nn nn
nnnn n
xp xpjxp
xpjxp
Ty pjx p
xpjxp
TyTx jxp
Tx pjx p
xpxpL
yxxp Lxp





 

 
 

 
(22)
Substituting (16)-(18) into (21) and simplifying this
inequalities, we have
 


 
2
3
2
2
1
111 1
11 1
11
nnnn
nn n
nnnnnn
LL
LLxp
LLxpxp



 
 

 

D. IGBOKWE ET AL.
Copyright © 2011 SciRes. APM
208
 

 

 
 



2
1
2
3
2 2
3
1
32
2
3
(1 )1
11111(1)1
1(1)1(1)1 111
=1 11(1)1111
111111
1
nnnn
n n
nnnnnn
nnnnnnn nnn
nnnnnn
nn nnn
LL
xpx p
LLL L
LLLLL
x
p
LLL L
LLLL


 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

2
1
2
3
1
11111 11
nn nn
nnnnnn
Lxp
LLL L





  

(23)
Now, we consider the second term on the right-hand
side of (23) . Since


,1
nn

, then
 


3
3
11111
11
nnnnn
n
LLL L
LL LL


 


 

Set

3
2=1MLLLL

 

. Since
10
limnn

,
then there exists a natural number 2
N, such that if
2
nN then



2
3
111 1
1
11 1
2
nnnn
nn
LL
LL


 
 
Again it follows from the condition

,1
nn

,
that


 




2
3
2
22
3
11111
11
11111
nn nnn
nn n
nn n
LLL
LL
LLLLL
 

 

 
 
Theref o r e i t follow s f rom (23) that





2
3
2
1
1
12 111
11
=1
nnn
nn
nn
xpLL L
LLxp
xp

 
 

(24)
where




22
3
21 111 1
nnn n
LLLLL



From conditions ()ii, ()iii it is easy to see that





22
3
=1 2111 11
<
nn n
n
LLLLL
 




Thus using Lemma ,OOA we have limnn
x
p

exists, completing the proof of ().i Also it follows from
(24) that


1
,1,
nnn
dxFdxF
 , and it again
follows from Lemma OOA that limn exists, this
completes the proof of ()ii.
Now, we consider the second term on the right-hand
side of (21). Since {}
n
x
is bounded,

,1
n
,
then there exists a constant 30M such that
 

2
1
2
3
221 1
41
nnn nn
n
LLx pxp
M





Thus, it follows from (21) that

 

2
22
1
2
3
121
211 1
nnnn
k
nnnin
xpb xp
M
kx Tx





 
(25)
Since {}
n
x
is bounded, then there exists a constant
40M such that 2
4
n
x
pM. It follows from (25)
that





2
22
43
22
1
11
21 41
k
nnin
nn n
nn
kxTx
MbM
xpxp

 


Hence,





2
=1
22
43
=1 =1
2
11
21 41
<
nk
jjij
jN
nn
jn j
jN jN
N
kxTx
MbM
xp




 

(26)
Using condition ()ii and ()iii, it follows from (26)
that

2
=1 1<
k
nnin
nxTx

, and using condition
()i, =0
liminf k
nnin
xTx
 . Thus
=0
liminf k
nnnn
xTx
 .
For all nN we have nnN
TT
so that
1
kk
n nnn nnnn nn
kk
nnn nnn
x
TxxTxTxTx
xTxLTxx
  
 
D. IGBOKWE ET AL.
Copyright © 2011 SciRes. APM
209
Thus, =0
liminf nnnn
xTx
 , completing the proof
of ().iii
Theorem 2.1 Let E be a real Banach space with
normal structure


0
>1,NE max
and let K be a
nonempty closed convex subset of E. Let

=1
N
ii
T,
n
,

n
and

n
x
be as in Lemma2.1. Then

n
x
exists
in K and converges strongly to a common fixed point
of the mappings

=1
N
ii
T if and only if

,=0
liminf nn
dxF
 where

,=
inf pF
nn
dxFx p
.
PROOF
The existence of fixed point follows from Theorem 1.1.
If

n
x
converges strongly to a common fixed point of
of the mappings

=1
N
ii
T, then =0
liminf nn
xp
 .
Since

0,
nn
dxFx p, we have

,=0
liminf nn
xF
 .
Conversely, suppose

,=0
liminf nn
xF
 then our
Lemma implies that

,=0
limnn
dxF
 . Thus for
arbitrary 0
, there exists a positive integer 3
N such
that

,<4
n
dxF
, 3
nN . Furthermore =1n
n
implies that there exists a positive integer 4
N such that
=4
<4
j
jn
M
, 4
nN . Choose
34
=max ,NNN,
then

,4
n
dxF
and =4
4
j
jN
M
. For all
,nm N and for all pF we have
44
=1 =1
4=
22
nm nm
nm
njNj
jN jN
Nj
jN
xxxpxp
xpMx pM
xpM





Taking infimum over all pF
, we obtain

4=
22
2,2 44
nm Nj
jN
M
xxdxFM
M

 
Thus

n
x
is Cauchy. Suppose limnn
x
u
 . Then
uK since K is closed. Furthermore, since
i
F
T
is closed for all iI, we have that
F
is closed. Since

,0
limnn
dxF
 , we must have that uF.
3. References
[1] M. O. Osilike, A. Udomene, D. I. Igbokwe and B. G.
Akuchu, “Demiclosedness Principle and Convergence
Theorems for K-Strictly Asymptotically Pseudocontrac-
tive Maps,” Journal of Mathematical Analysis and Ap-
plications, Vol. 326, No. 2, 2007, pp. 1334-1345.
HHHHHHH0UUUUUdoi:10.1016/j.jmaa.2005.UU12UU.052UUUU
[2] L. Qihou, “Convergence Theorems of the Sequence of
Iterates for Asymptotially Demicontractive and Hemi-
contractive Mappings,” Nonlinear Analysis, Vol. 26, No.
11, 1996, 1835-1842.
HHHHHHH1UUUUUdoi:10.1016/0362-546X(94)00351-HUUUU
[3] M. O. Osilike, S. C. Aniagboso and G. B. Akachu, “Fixed
Points of Asymptotically Demicontractive Mapping in
Arbitrary Banach Space,” Pan American Mathematical
Journal, Vol. 12, No. 2, 2002, pp. 77-88.
[4] F. E. Browder and W. V. Petryshyn, “Construction of
Fixed Points of Nonlinear Mappings in Hilbert Spaces,”
Journal of Mathematical Analysis and Applications, Vol.
20, No. 2, 1967, pp. 197-228.
HHHHHHH2UUUUUdoi:10.1016/0022-247X(67)90085-6UUUU
[5] M. O. Osilike and A. Udomene, “Demiclosedness Princi-
ple and Convergence Results for Strictly Pseudocontrac-
tive Mappings of Browder-Petryshyn Type,” Journal of
Mathematical Analysis and Applications, Vol. 256, No. 2,
2001, pp. 431-445. HHHHHHH3UUUUUdoi:10.1006/jmaa.2000.7257UUUU
[6] H. Zhou, “Demiclosedness Principle with Applictions for
Asymptotically Pseudocontractions in Hilbert Spaces,”
Nonlinear Analysis, Vol. 70, No. 9, 2009, pp. 3140-3145.
HHHHHHH4UUUUUdoi:10.1016/j.na.2008.04.017UUUU
[7] H. K Xu and R. G. Ori, “An Implicit Iteration Process for
Nonexpansive Mappings,” Numerical Functional Analy-
sis and Optimization, Vol. 22, No. 5-6, 2001, pp. 767-733.
HHHHHHH5UUUUUdoi:10.1081/NFA-100105317UUUU
[8] M. O. Osilike,Implicit Iteration Process for Common
Fixed Point of a Finite Family of Strictly
Pseudo-contrac-
tive Maps,” Journal of Mathematical Analysis and Ap-
plications, Vol. 294, No. 1, 2004, pp. 73-81.
HHHHHHH6UUUUUdoi:10.1016/j.jmaa.2004.01.038UUUU
[9] Y. Su and S. Li, “Composite Implicit Iteration Process for
Common Fixed Points of a Finite Family of Strictly
Pseudocontractive Maps,” Journal of Mathematical Analy-
sis and Applications, Vol. 320, No. 2, 2006, pp. 882-891.
HHHHHHH7UUUUUdoi:10.1016/j.jmaa.2005.07.038UUUU
[10] Z. H. Sun, “Strong Convergence of an Implicit Iteration
Process for a Finite Family of Asymptotically Quasi-
nonexpansive Mappings,” Journal of Mathematical
Analysis and Applications, Vol. 286, No. 1, 2003, pp.
351-358. HHHHHHH8UUUUdoi:10.1016/S0022-247X(03)00537-7UUUU
[11] M. O. Osilike and B. G. Akuchu, “Common Fixed Points
of a Finite Family of Asymptotically Pseudocontractive
Maps,” Journal Fixed Points and Applications, Vol. 2004,
No. 2, 2004, pp. 81-88. HHHHHHH9UUUUUdoi:10.1155/S16871820043UU12UU027UUUU
[12] C. E. Chidume, “Functional Analysis: Fundamental
Theorems with Application,” International Centre for
Theoretical Physics, Trieste Italy, 1995.
[13] L. C. Ceng, H. K. Xu and J. C. Yao, “Uniformly Normal
Structure and Uniformly Lipschitzian Semigroups,”
Nonlinear Analysis, Vol. 73, No. 12, 2010, pp. 3742-3750.
UUUUdoi:10.1016/j.na 2010.o7.044 .
[14] W. V. Petryshyn, “A Characterization of Strict Convexity
of Banach Spaces and Other Uses of Duality Mappings,”
Journal of Functional Analysis, Vol. 6, No. 2, 1970, pp.
282-291. HHHHHHH1UUUUUdoi:10.1016/0022-UU12UU36(70)90061-3UUUU