Applied Mathematics, 2011, 2, 874-882
doi:10.4236/am.2011.27117 Published Online July 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
On Certain Theta Function Identities Analogous to
Ramanujan’s P-Q Eta Function Identities
Kaliyur R. Vasuki, Abdulrawf Abdulrahman Abdullah Kahtan
Department of St udi es in Mat hemat i c s, University of Mysore, Mysore, India
E-mail: vasuki_kr@hotmail.com, raaofgahtan@yahoo.co.in
Received February 12, 2011; revised May 23, 2011; accepted M ay 26, 2011
Abstract
The purpose of this paper is to provide direct proofs of certain theta function identities analogous to Ra-
manujan’s P-Q eta functions identities.
Keywords: Eta Function Identities, Theta Function, P-Q Modular Equations
1. Introduction
In the unorganized pages of his second notebook [1,2],
Ramanujan recorded 23 identities involving ratio of
Dedekind’s eta function of which have been proved by B.
C. Berndt and L.-C. Zhang [3] by employing Ramanu-
jan’s modular equations of various degree, or via his
mixed modular equations or via the theory of modular
forms. Similar 14 identities involving ratio of Dede-
kind’s eta function found on page 55 of Ramanujan’s lost
notebook [4] have been proved by Berndt [5] employing
the above methods. Berndt and H. H. Chan [6], Berndt,
Chan and Zhang [7], have employed some of the above
mentioned P-Q modular equations for the explicit
evaluation of Rogers-Ramanujan’s continued fractions,
and Ramanujan-weber-class invariants. Motivated by
their works, several new P-Q eta functions identities
have been discovered and employed them in nding the
explicit evaluation of continued fractions, class invariant,
and ratio of theta functions by many mathematics. For
example see [8-20].
The purpose of this paper is to provide direct proofs of
some of P-Q eta functions identities. In Section 2 of this
paper, we found convenient to gather some denitions
and lemmas which are required to prove P-Q eta function
identities. In Section 3, we derive some P-Q eta function
identities.
2. Preliminary Results
First we shall provide some useful notations and denition.
In Chapter 16 of his second notebook [2,21,22] Ra-
manujan develops theory of theta function and his theta
function is defined by theta function and his theta func-
tion defined by



11
22
,:
,,,,ab
nn nn
n
faba b
a abb abab ab



1,

.
where we employ the customary notation


1
1
;1
k
k
ab aq

If we set , and π
where z
is complex and Im(j) > 0, then f (a, b) =
Ԃ
3 (z, j), where
Ԃ
3 (z, j) denote the classical theta function in its standard
notation [23]. Following Ramanujan, we dene
2iz
aqe2iz
bqe
,
ij
qe




 




22
222
3
11
222
2
0
2
312
0
:,
;;
:,
;;
:,
1(;)
n
n
nn
n
nnn
n
qfqq
qqqqq
qfqq
qqqqq
fq fqq
qqq



,
,



 
and

2
.
:;qqq

For convenience, we denote
n
f
q by n
f
for
positive integer n. It is easy to see that
K. R. VASUKI ET AL.875
  

 
22
12
22
21
14
14
2
3
12
214
,,
,
and
ff
qqq
ff
5
2
,
f
f
f
ff
qf
ff
qfq
fff

 

 
(2.1)
Lemma 2.1. We have


22
,qqq
 
 (2.2)



22
,qq q
 
(2.3)
 

22 2
2qq
 
 2
q
2
q
6
(2.4)
and

44 4
16( )qqq
 
 . (2.5)
The identities (2.2)-(2.5) are due to Ramanujan [2],
and for a proof see [22].
Lemma 2.2. We have



 
332
4qqqqqqq
 
 , (2.6)

 

236
223
2qqq
qq q



 , (2.7)

  


33 2
223
6
32
qq
qq qq

 
 , (2.8)
 



33 26
22 26
32
()
qqq
qqqqq

 


 , (2.9)
and
 



3
22 26
3
()
3.
(2.10)
qqq
qqq q
 



The identity (2.6) is due to Berndt [22]. The (2.7) and
(2.9) are due to N. D. Baruah and R. Barman [24]. Re-
cently K. R. Vasuki, G. Sharath and K. R. Rajanna [25]
have deduced (2.7)-(2.10) by employing the following
theta function identities due to Ramanujan [4,21,22]:
 

,,, ,
,,
f
ab f cdfabfcd
facbdfadbc
 
and

22
,,, ,
2, ,
ab f cdfab fcd
bb
afac dfacd
cd
 



.
Lemma 2.3. We have

 
225 52
4,qqqqqq
 
 
5
(2.11)


225 52
4qqqqq
 
 
5
q, (2.12)

 
25
2
225
54
() ,
f
q
qq q

 (2.13)

 

25
2
225
54,
f
q
qq q

  (2.14)

 


25
225
5,
q
qq qqq
 


(2.15)

 


25
225
5
q
qq qqq
 
 , (2.16)




2252
15
5q
qqq fq


(2.17)
and




210 2525
22
22 1
qq q
q
qq
q



. (2.18)
The identities (2.11) and (2.15) are due to Ramanujan
[2,22], S. Y. Kang [26], has given proof of (2.11)-(2.17)
by employing the theta function identities. Recently S.
Bhargava, Vasuki and Rajanna [27] deduce (2.11)-(2.17)
from Ramanujan 1
1 summation formula. The identity
(2.18) is due to Berndt [22] and he given a direct and
interesting proof of the same by employing only simply
deducible theta function identity.
The following lemma is due to Berndt [22]. In fact
Berndt, obtained it from a modular equation of Ramanu-
jan, and expressed that a direct proof has not been given.
Lemma 2.4. We have


 
2252 2
32221022
216
168 .
qqq q
qqq qff
 

 

5
(2.19)
Proof. Squaring both sides of (2.12), we obtain




44522
22254 5
2
16 .
qq q
qqqq
 
 


5
q
(2.20)
Squaring both sides of (2.15), and then replacing q to
q2 and then multiplying by 16q, we obtain

 
4254 103222 10
410
22210
16 1632
()
16 .
qqqqqq q
q
qqq
 



(2.21)
Copyright © 2011 SciRes. AM
K. R. VASUKI ET AL.
876
Adding (2.20) and (2.21) and then employing (2.5),
we deduce that




 



 




44522
3222 10
2254
410
22210
252 10
22
210 222
2
32
16
16
qq qq
qq q
qq qqq
q
qq
qq
qf fqqq
 

 






5
5
upon using (1.1). Now employing (2.18) and then using
(2.16), in the right side of the above, we obtain



 

44522
322210
225
2520
14
2
32
16 .
qq qq
qq q
fffq
qff
 


5
(2.22)
From (2.11) and (2.13), it follows that

 

2222 52 52
210
165 ,qf fqqqq
 


 

which is equivalent to





2222 5
210
44522
16 2
54
qf fqq
qq qq

 
 5
.
(2.23)
From (2.23) and (2.22), we deduce that


 



 



2222 5
210
322210225
22
2520
22545
14
2
25 2252520
14
16 2
32 2
4416
44
qf fqq
qq qqq
5
0
f
ff q
qqq q ff
fff
qqqq
ff

 
 

 





upon using (2.11) and (1.1), This completes the proof.
3. P-Q Eta Function Identities
Lemma 3.1. Let


2
:,
q
Pq
and


2
:.
q
Qq
Then,
4
2
2
1PQ
 . (3.1)
Proof. We have




 





442
4
42
2
22
42
222
42
22
2
2
1
2
2
2
qq
Pq
qqq
q
qq
q
q
q
Q



 




where we have used (2.2) and (2.4). This completes the
proof.
Theorem 3.1. Let

2
:,
q
Pq
and


3
6
:q
Qq
.
Then,


44
2
2
1
64 .
PQ PQ
QP PQ

 


 
 
 
(3.2)
Proof. By (2.2) and (2.6),




 



23
2
2226 3
3
3
2
3
6
3
()
111
()
()( )
()
4.
qq qq
PQ qq qq
qqqq
qq
qq q
qq
 
 
 



 


 
3
Taking forth power on both sides and then employing
(2.5), we have









 



42 46
4
23
443
43
4
443
83
8
8286
8
11616
11
()
11
11,
qq
PQ qq
qq
q
q
qq
q
q
qq
PQ



 
 


 

 



 
 
 



 
 
 
 
 

 
Copyright © 2011 SciRes. AM
K. R. VASUKI ET AL.877
.
where, we have used (2.2). Thus, we have


4
288
111PQP Q



Now expanding both sides and then dividing through-
out by (PQ)4, we obtain the required result.
Corollary 3.1. Let

 

3
26
:,and:.
q
q
PQ
qq


Then,


42
42
2
2
36
2
4816 138.
PQ PQ
QPQP
PQ
PQ PQ
PQQ PPQ

 
 
 

 
 
 

 



 





4
Proof. Squaring both sides of (3.2) and then employ-
ing (3.1) and after some simplification, we obtain the
required result.
Corollary 3.2. Let




3
3
: and :
q
q
PQ
qq
.
Then,
221
64 .
PQ PQ
QP PQ
 


 

 
Proof. We have




2
22 .
qq
q
q


Using this in (3.2), we obtain the required result.
Corollary 3.1 and 3.2 are due to Vasuki and Srivatsa-
kumar [19].
Theorem 3.2. Let


3
:,
q
Pq
and


2
6
:q
Qq
.
Then,
2
2
2
2
3.
QP
QPQ
Q


 


 
(3.3)
Proof. By (2.7), (2.8) and (2.2),






23 2
2
2
2
223 223
42
22
4
2323 46
3(
3
1
()().
()()
qq
q
P
PPqqq
q
qq Q
qq q










 

The required result follows from the above after some
algebraic manipulations.
Corollary 3.3. Let



33
: and :.
qq
PQ
qq



Then,
3.
QP
PQ
PQP Q

(3.5)
Proof. We have from (2.2)

2
6.
qPQ
q
Using this in (3.3), we obtain (3.5).
Theorem 3.3. Let

 

2
36
: and :
q
q
PQ
qq

.
Then,


2
2
22
93
2
12.
PQ
PQPQ PQQ P
PQ
PQ
QP
 
 
 
 
 

 


(3.6)
Proof. By (2.2), (2.7) and (2.8),





23 2
2
2232
22 3
32 6
2
22
3()
3
1
()
()
()
.
qq
P
Pqq
qqq
qq q
q
q


 
 


(3.7)
Changing q to in (3.7), we obtain
2
q


22
2
226
3.
1
q
Q
Qq
(3.8)
From (3.7), (2.2) and (3.8), we deduce that
  
 


22
2
2
223 23
4
22
26
2
2
2
3
1
3.
1
qq
P
PPqq
q
q
Q
Q












)
(3.4)
Copyright © 2011 SciRes. AM
K. R. VASUKI ET AL.
878
Thus, we have
2
22
2
22
33
,
11
PQ
PPQ





which is equivalent to (3.6).
Identities (3.3), (3.5) and (3.6) are due to Bhargava et
al. [12].
Theorem 3.4. Let




3
13
2
88
: and :.
q
q
PQ
qq qq


6
Then,


44
2
2
16 49.
(3.9)
PQ
PQ QP
PQ

 
 

 




Proof. By (2.3) and (2.5),



8
8
82
4
42
4
42
()
16 16
() 16
()
.
q
Pqq
q
qq
q
qq
 
(3.10)
Changing q to in (3.10), we have
3
q

43
8
34 6
16 .
q
Qqq
 (3.11)
By (2.3) and (2.6),
 

 


 


 
223
2
22 26
3
226
3
226
4
4
qq
PQ qq q
qq
qq q
qq
qq q






 


4
From (3.10), (3.11) and the above, it is easy to see that

4
88 2
1616() 4PQ PQ



,
which equivalent to (3.9).
Corollary 3.4. Let




3
13
26
44
: and :
q
q
PQ
qq qq

.
Then,
22
16 49
PQ
PQ PQQ P

  .

 




(3.12)
Proof. By from (2.3), we have



2
11
22 2
44
,
qq
qqqq


using this in (3.9), we obtain (3.12).
The identity (3.12) is due to Vasuki and Srivatsakumar
[18].
Theorem 3.5. Let



2
11
36
42
()
: and :.
q
q
PQ
qq qq


Then,
2
2
2
2
3.
QP
PPQP


 


 
(3.13)
Proof. By (2.3), (2.9) and (2.10), we have



 

 

22 243
2
2
2264326
22 2
26 23
4
43
4
3
1
()
()
.
qqq
Q
QQqqq q
qq
qq q
q
qq
P








 
This is equivalent to (3.13).
Theorem 3.6. Let
 

5
21
()
: and :.
q
q
PQ
qq



0
Then,


33
2
2
1
45
PQ PQ
PQ QP QP
PQ

 






 

.
(3.14)
Proof. By (2.2) and (2.5),






8
8
82
4
4
42
4
11
1
16 .
q
Pq
q
q
qq
q


(3.15)
Copyright © 2011 SciRes. AM
K. R. VASUKI ET AL.879
Changing q to in (3.15), we obtain
2
q


54 10
8
45
16
1
qq
Qq
 . (3.16)
From (3.15) and (3.16), we have
  


3222 10
88
225
16
11 qqq
PQ qq


 .
(3.17)
By (2.2), we have
 





445225
4
42410225
.
()()
qq qq
PQ qq qq
 
 
 

(3.18)
By (2.1), (3.17) and (3.18), we deduce that




12
414 520
88 3
24
210
11 16
ffff
PQPQq ff
 . (3.19)
By (2.1), (2.19), (3.17), and (3.18), we also deduce that





 


488
225225 32221
225
22
210
225
4
14520
8
210
111
16
()()
8
()()
8.
PQPQ
qqqq qq q
qq
qf f
qq
ffff
qff
 



 
0
(3.20)
From (3.19) and (3.20), we obtain




3
488
488
111
3211 ,
PQP Q
PQP Q





which implies

32
422
3,
32 3
AAB B
PQ BA

where

4
1
A
PQ
and

88
11BPQ .
0,
6
6
,
Squaring the above on both sides and then factoring
using maple, we obtain

,,,CPQDPQEPQ
where
 
 
5
62442
5
62442
,5544
,5544
C PQPPQPQPQPQQ
D PQPPQPQPQPQQ
 

and


10
1210 28 4
648 210
212
,101615
2015 10
16 .
EPQPPQPQPQ
PQPQPQ
PQ Q
 


It is easy to see that, P and Q have the following series
expansion
23456
12 246812Pqqqqqq

and
510152025 30
12 246812Qqqqqq q
 
Using these in C(P,Q), D(P,Q) and E(P,Q), we obtain
11 121314
,
2560 1376049600149760
CPQ
qqq q

23 45
,
64284 14084352 12096
DPQ
qq qqq
 
and
23 4
,
64 768q 537628672129024
EPQ
qq q
 
One can see that q–1 D(P,Q) and q–1 E(P,Q) does not
tends to 0 as q tends to 0, whereas q–1C(P,Q) tends to 0
as q tends to 0. Hence q–1C(P,Q) = 0 in some neighbor-
hood q = 0. By analytic continuation q–1C(P,Q) = 0 in
1q
. Thus we have
,0CPQ.
Dividing the above throughout by , we obtain
(3.14).

3
PQ
Corollary 3.5. Let



5
5
: and :
q
q
PQ
qq
.
Then,


31
31
22
22
1
45.
PQ PQ
PQ PQQP QP



 

 


 

 

 

Corollary 3.5 follows from (2.2) and (3.14). The fol-
lowing theorem is due to
Adiga et al. [9].
Theorem 3.7. Let

 

2
21
: and :.
q
q
PQ
qq



0
Copyright © 2011 SciRes. AM
K. R. VASUKI ET AL.
880
0.
Then,

2
42 442
45QP QPQPP 
Or
22
2
2
5
4.
PQ Q
QPQ
 

 


Proof. By (2.1), (2.2), (2.3), (2.12) and (2.14),















225
2
2225
2
2
225
4
2
24 5
1
2
25
2
510
222 2
22 1010
2
2
10
5
5
1
()
()
() ()
.
qq
P
Pqq
f
qqq
f
qf q
q
qq
qq
qqq
qqq
qqq q
q
Q
Pqq






 
 
 


Thus


2
22
210
5.
1
q
PQ
P
Pqq
(3.22)
Changing q to in the above, we obtain
2
q

 

424
2
2220 220
51 .
1
qq
Q
Q
Qqqq q


(3.23)
From (2.3), (3.22), and (3.23), we have

 
 


2
22 2520 2 20
5
242102 4
22
10
54
22
2
51 ()
51
.
PP qqq
Q
Pqqq
QQ
q
QQ
PP
q

 







Thus,
2
22
24
22
55
.
11
PQ
PQ
PQ





This is equivalent to (3.21).
Theorem 3.8. Let



5
15
21
88
()
: and :.
q
q
PQ
qq qq


0
Then,


64
64
2
2
4
4
10
15
256 20.
QP QP
PQ PQ
QP
PQ
PQ PQ

 

 

 



 













(3.24)
Proof. By (2.1), (2.2), (2.3), (2.15), and (2.18),




 

 













25
2
22
15
22 210
44
5
510
2
4
22 210
5251
4
22 210
52 25
4
2225 210
52
22
25
4
22
5
25
4
1()
()
1
()( )
1
1
q
q
PQ
qqqq
q
q
qq
q
q
qq
qqqq q
q
qq
qqq
q
qq
qqq
qq
q
qq


 








0
q



















25
2
22 3
25
5
252110
4
12 510
5
22
4
420
q
qq
qff
ff
qqq
ffff
qff







(3.25)
Changing to in (3.10), we have
q5
q


45
8
54 10
16 .
q
Qqq

Thus, from (2.1), (3.10) and the above, we have

6
228812510
5
22
4
420
16 16.
ffff
PQ PQ
qff




(3.26)
Copyright © 2011 SciRes. AM
K. R. VASUKI ET AL.881
Comparing (3.25) and (3.26), we obtain
 
6
22 2288
1616 ,PQ PQPQ 
which is equivalent to the required result.
The following corollary is due to Vasuki and Srivat-
saKumar [18].
Corollary 3.6. Let



5
15
21
44
()
: and :
q
q
PQ
qqqq


0
.
Then,


32
32
2
2
10 15
256 20.
QP QPQP
PQ PQPQ
PQ PQ

 
 
 


 
 
 

 



Corollary 3.6 follows from (2.3) and (3.24). The fol-
lowing theorem is due to
Adiga et al. [9].
Theorem 3.9. Let




2
110
5
2
: and :.
q
q
PQ
qq
qq

0
Then,
42222 44
45PQPQQP Q.
(3.27)
Proof. By (2.15), (2.17) and (2.1),








22
2
222
25
22
1
25
2
5
15
.
qq q
P
Pqqq
q
fq
q
q


5
5
(3.28)
Changing to in (3.28), we obtain
q2
q


210
2
222
1.
5
q
Q
Qq
(3.29)
By (2.2), (2.3), (3.28), and (3.29),






22542
22
222
410
24
2
25
15
51
.
qq
PQ
PQ qq
qP
Q
q








Thus, we have
 
22
22 2422
15 51QP QPPQ0.
 
Factorizing the above, we find that
 
,,CPQDPQ0,
where
42 422 42
,4CPQPQPPQQQ 5
and
22 22
,Q5DPQ PQP.
If
,DPQ0,
then


2
2
2
225
5
1
q
P
QPq

by (3.28). This is not true by the definition of Q.
Hence
,DPQ0
. Thus we most have
,0CPQ
.
This completes the proof.
4. Acknowledgements
The authors are thankful to DST, New Delhi for award-
ing research project [No. SR/S4/MS:517/08] under which
this work has been done.
5. References
[1] B. C. Berndt, “Ramanujan’s Notebooks, Part IV,” Sprin-
ger-Verlag, New York, 1994.
[2] S. Ramanujan, “Notebooks (2 Volumes),” Tata Institute
of Fundamental Research, Bombay, 1957.
[3] B. C. Berndt and L.-C. Zhang, “Ramanujan’s Identities
for Eta Functions,” Mathematische Annalen, Vol. 292,
No. 1, 1992, pp. 561-573. doi:10.1007/BF01444636
[4] S. Ramanujan, “The Lost Notebook and Other Unpub-
lished Paper,” Narosa, New Delhi, 1988.
[5] B. C. Berndt, “Modular Equations in Ramanujan’s Lost
Notebook,” In: R. P. Bamvah, V. C. Dumir and R. S.
Hans-Gill, Eds., Number Theory, Hindustan Book Co.,
Delhi, 1999, pp. 55-74.
[6] B. C. Berndt and H. H. Chan, “Some Values for Rogers-
Ramanujan Continued Fraction,” Canadian Journal of
Mathematics, Vol. 47, 1995, pp. 897-914.
doi:10.4153/CJM-1995-046-5
[7] B. C. Berndt, H. H. Chan and L.-C. Zhang, “Ramanujan’s
Class Invariants and Cubic Continued Fraction,” Acta
Arithmetica, Vol. 73, 1995, pp. 67-85.
[8] C. Adiga, K. R. Vasuki and M. S. M. Naika, “Some New
Explicit Evaluations of Ramanujan’s Cubic Continued
Fraction,” New Zealand Journal of Mathematics, Vol. 31,
2002, pp. 109-114.
[9] C. Adiga, K. R. Vasuki and K. Shivashankara, “Some
Copyright © 2011 SciRes. AM
K. R. VASUKI ET AL.
Copyright © 2011 SciRes. AM
882
Theta Function Identities and New Explicit Evaluation of
Rogers-Ramanujan Continued Fraction,” Tamsui Oxford
Journal of Mathematical Sciences, Vol. 18, No. 1, 2002,
pp. 101-117.
[10] N. D. Baruah, “On Some of Ramanujan’s Identities for
Eta Functions,” Indian Journal of Mathematics, Vol. 43,
2000, pp. 253-266.
[11] N. D. Baruah and N. Saikia, “Some General Theorems on
the Explicit Evaluations of Ramanujan’s Cubic Contin-
ued Fraction,” Journal of Computational and Applied
Mathematics, Vol. 160, No. 1-2, 2003, pp. 37-51.
doi:10.1016/S0377-0427(03)00612-5
[12] S. Bhargava, K. R. Vasuki and T. G. Sreeramamurthy,
“Some Evaluations of Ramanujan’s Cubic Continued
Fraction,” Indian Journal of Pure and Applied Mathemat-
ics, Vol. 35, 2004, pp. 1003-1025.
[13] S.-Y. Kang, “Ramanujan’s Formulas for Explicit Evalua-
tion of the Rogers-Ramanujan Continued Fraction and
Theta Functions,” Acta Arithmetica, Vol. 90, 1999, pp.
49-68.
[14] M. S. M. Naika and B. N. Dharmendra, “On Some New
General Theorem for the Explicit Evaluations of Ra-
manujan’s Remarkable Product of Theta Function,” Ra-
manujan Journal, Vol. 15, No. 3, 2008, pp. 349-366.
doi:10.1007/s11139-007-9081-1
[15] K. R. Vasuki, “On Some Ramanujan’s P-Q Modular
Equations,” Journal of the Indian Mathematical Society,
Vol. 73, No. 3-4, 2006, pp. 131-143.
[16] K. R. Vasuki and K. Shivashankara, “A Note on Explicit
Evaluations of Products and Ratios of Class Invariants,”
Math Forum, Vol. 13, 2000, pp. 45-46.
[17] K. R. Vasuki and T. G. Sreeramamurthy, “A Note on
Explicit Evaluations of Ramanujan’s Continued Frac-
tion,” Advanced Studies in Contemporary Mathematics,
Vol. 9, 2004, pp. 63-80.
[18] K. R. Vasuki and B. R. Srivasta Kumar, “Certian Identi-
ties for Ramanujan-G¨ollnitz-Gordan Continued Frac-
tion,” Journal of Computational and Applied Mathemat-
ics, Vol. 187, No. 1, 2006, pp. 87-95.
doi:10.1016/j.cam.2005.03.038
[19] K. R. Vasuki and B. R. S. Kumar, “Evaluations of the
Ramanujan-Gollnitz-Gordon Continued Fraction H(q) by
Modular Equations,” Indian Journal of Mathematics,
Vol. 48, No. 3, 2006, pp. 275-300.
[20] J. Yi, “Evaluations of the Rogers-Ramanujan’s Continued
Fraction R(Q) by Modular Equations,” Acta Arithmetica,
Vol. 97, No. 2, 2001, pp. 103-127. doi:10.4064/aa97-2-2
[21] C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson,
“Chapter 16 of Ramanujan’s Second Notebook: Theta
Functions and Q-Series,” Memoirs of the American
Mathematical Society, Vol. 53, No. 315, 1985, pp. 55-74.
[22] B. C. Berndt, “Ramanujan’s Notebooks, Part III,”
Springer-Verlag, New York, 1991.
[23] E. T. Whittaker and G. N. Watson, “A Course of Modern
Analysis,” 4th Edition, Cambridge University Press,
Cambridge, 1966.
[24] N. D. Baruah and R. Barman, “Certain Theta Function
Identities and Ramanujan’s Modular Equations of De-
gree 3,” Indian Journal of Mathematics, Vol. 48, No. 3,
2006, pp. 113-133.
[25] K. R. Vasuki, G. Sharath and K. R. Rajanna, “Two
Modular Equations for Squares of the Cubic-Functions
with Applications,” Note di Mathematica, In Press.
[26] S.-Y. Kang, “Some Theorems in Rogers-Ramanujan Con-
tinued Fraction and Associated Theta Functions in Ra-
manujan’s Lost Notebook,” Ramanujan Journal, Vol. 3,
No. 1, 1999, pp. 91-111. doi:10.1023/A:1009869426750
[27] S. Bhargava, K. R. Vasuki and K. R. Rajanna, “On Cer-
tain Identities of Ramanujan for Ratios of Eta Functions,”
Preprint.