Open Journal of Microphysics, 2011, 1, 1-12
doi:10.4236/ojm.2011.11001 Published Online May 2011 (http://www.SciRP.org/journal/ojm)
Copyright © 2011 SciRes. OJM
Hypothesis of Conservation of Particle Number
Kozo Aoki
Grande_Maison _Hosoyama 110, 5-25-7 Hosoyama, Asao-ku, Kawasaki-shi, Kanagawa, Japan
E-mail: kozoaoki@gmail.com
Received April 13, 2011; revised May 17, 2011; accepted May 24, 2011
Abstract
As for several nuclear reactions, the electroweak interaction is simply explained by a law of conservation of
particle number. We find that the positron and electron consist of the three fundamental particles, {, ,}
e
ud
and {, ,}
e
ud
, respectively. Furthermore, the members of the second and third generations quark composites
consist of the first generation quark and the neutrino of fundamental particles. The particle and its anti-
particle pair(or neutrino and its antineutrino pair) have to be an energy quantum (or a photon). The minimum
Higgs boson (called God particle”) might be a neutral pion. The fundamental particles are simply up and
down quark, neutrino, muon-neutrino, and those anti-particles.
Keywords: Members Of Electron And Positron; Member Of Muon, Members Of And
Higgs Boson, Members Of Second And Third Generations Quark
0
///WWZB

1. Introduction
The common knowledge has been changed from the
cosmological doctrine of the ancient greek Thales’s
famous belief, Water constituted the principle of all
things”. Now we have many brain waves again. We put
the new conceptual model for several nuclear reactions in
fundamental mathematics (set and identity) and particle
physics [1-4].
It is believing that the weak interaction is a CP
violation. However it is based on parity conservation due
to a conservation of particle number in this study. The
neutron decay, e
npevhv , is well-known nu-
clear reaction. With a weak boson for parity conservation,
we need to innovate the neutron decay (
decay), the
neutron-neutron chain reaction, the proton-proton chain
reaction (
decay), the tritium decay, the kaon decay,
and the decay by [5], by a law of conservation of
particle number with the up and down quarks, the
neutrinos, the muon-neutrinos, and their anti-particles. The
members of electron, positron, and other composites are
shown. It was drawn up the declaration of independence
of the first generation’s up and down quark.
2. A Paradox
Why an anti-matter is very low than a matter? To work
out it, we have a paradox. The early universe was began
from the sea of photons, and the early universe had equal
parts of the elementary particle and its anti-particle. The
broad or cosmological photon (
) means an electro-
magnetic wave including gamma-ray. We assume that
even now the anti-particle is equal amount of particle
based on the idea which a photon consists of particle-
antiparticle pair. Where is an anti-particle? It leads to a
consevation of particle number. This is the reversal idea.
3. Description of Nuclear Reactions
3.1. Description of Neutron Decay
The neutron decay is shown by the following
{,, }{,, }
e
e
npe h
udduud eh



The h
indicates a photon (
). Here we insert the
variable composite X into the left side to adjust the
numbers of elementary particles on both sides. The initial
mysterious composite X{} is an empty set.
e
nX Peh

{,, }{}{(,,),(,)}e
uddXudd udeh

The formulas are based on the law of conservation
spin of the quantum, the law of conservation charge, and
a law of conservation of particle number; the quantity
K. AOKI
2
adjustment of particle and anti-particle at the initial and
final states. We assume the newly defined composite of
proton



(,, ),, , ,,(, , )uud dduddududd

,ud , instead of the traditional proton {, .
The
}p{, ,}uu d
,dd
quark of number of both sides.



,,,,,, ,e
uddX ududdudeh

But a number of neutrino is not ajust. When we think
the electrons is not the fundamental particle, the number
of neutrino can be ajust.
pair is an energy quantum on the analogy of
a photon. The
,dd
rest mass is assumed zero, and the
spin is (1 2)(1 2)1, since a photon mass is zero.
Therefore it is considered as a broad (or an extended)
photon. It is feasible assumption since the photon is a
pair of neutrino and its anti-neutrino. If the

,dd is in
, the charged pion
P
,ud
The e
is added into the composite X due to adjust
the number of both sides.



,,,,,,, ,
ee
uddX ududdudeh


can exist in . The
and
Pu
d are added into the composite X due to adjust the
The u, , and e
d
are added into the composite X
for the neutrality and complementarity.



,,,,,, ,,,,,
ee e
uddX uudduddudeh



If a kind of photon is h
, the
,
are added
into the composite X. In this paper, the reactions are
including a kind of photon

,
}. The was
shown by
P

,,, ,uddud .



,,,,,,,, ,,,,,,
ee e
uddX uudduddude

  

The composite X consists of
,,,, ,
e
uudd
 . It is
a
Z
boson (0
Z
).
The ‘’ indicates a photon.
The ‘’ indicates the
e
,
ee
pair.
The ‘
’ indicates the
,
pair.
The ‘e
’ indicates the
,
e
 pair.
The
,,ud
e
and

,,
e
ud
components are e
and , respectively. A series of the neutron decay is as
follows. Since the lifetime of
e
0
Z
is very short, there are
and
0
π
e

in the initial state.
























00
π
,, ,,,,
,,, ,,,,,
,,,,,,,,
,,, ,,,,
,,, ,,,
e
e
e
ee
ee
ee
e
nnZ
udd uudd
udd udud
udd udud
udd udud
udd udud
Pe




 




 
The composite
,, ,
ee
ud
indicates the W
boson.
The

,,
ee
ud
is equal to

e
e
The com-
posite

,,ud e
} indicates the electron . We can
recognize that the spin of electron is simply explained by
the electron of three members of fundamental particles.

e
3.2. Description of Neutron-Neutron Chain
Reaction
The following is the initial expression for the neutron-
neutron chain reaction.
e
nn Deh

 
,,,,,, ,,e
uddudduud uddeh

The deuterium,

,, ,,Duud udd, is extended to
,,dd,,, ,uudud u. The nuclear reaction is rewritten
with , photons, and
0
π0
Z
.























00
,, ,, ,,,,
,, ,,, ,,,,,
,,, ,,,,,,
,,,,,,,,, ,
,,, ,,,,,,
e
e
e
e
ee
ee
e
nn nnZ
udd udd uudd
udd udd uudd
uddududd ud
udd ududdud
udd ududdud
De


 







3.3. Description of Proton-Proton Chain
Reaction
The two proton-proton chain reactions are shown.
e
pp Deh


,,,,,, ,,e
uuduuduud uddeh

and
()
e
ppD
De


 

Copyright © 2011 SciRes. OJM
K. AOKI3



,,,,,, ,,
,, ,,e
uuduuduud udd
uud udde

 
 

Those are shown with the expression of newly defined
proton


,,, ,uddud.



































,,, ,,,, ,
,,, ,,,, ,,
,,, ,,,,,,
,,, ,,,,,,
,,, ,,,,,
e
e
e
e
ee
ee
e
PP
udd ududd ud
udd ududd ud
udd ududdud
udd ududdud
udd ududdud
De










and

































{}
,,, ,,,, ,
,,, ,,,, ,,
,,, ,,,,,,
,, ,,,,,,,,
,,,,,,,,,,
e
e
e
e
ee
ee
e
PP
udd ududd ud
udd ududd ud
uddududd ud
udd ududdud
D
udd ududdud
De



 

 
 







 
The energy quantum,

, was written in the
former reaction. It is unknown whether the

can
be omit or not. The composite

,, ,ud ee
indicates
the boson. This reaction does not occur unless
there are the neutrino-antineutrino pairs. The
W
e
,,ud
e

is equal to

e
e
. The composite
e
,,ud
indicates the positron
. The composite
e
,,,
e
ud
u
,
e
indicates a
0
muon.
The cases with the
Z
boson are also considered. All
bosons are composites.

































00
0
0
0
0
0
π
,, ,,,, ,,
,, ,,,, ,,,π), ,
,,, ,,,,,,π,
,,, ,,,,,,π,
π
e
e
e
ee
e
PP PPZ
udd ududd udZ
udd ududd ud
udd ududdud
udd ududdud
De

 




 
and










































00
0
0
0
0
0
0
,,, ,,,, ,
,,, ,,,, ,,π,,
,,, ,,,,,,π
,,, ,,,
,,,,π
,,, ,,,
,,,,π
,,, ,,,
,,
e
e
e
ee
ee
PP PPZ
udd ududd udZ
udd ududdud
udd ududdud
udd ududd
ud
D
udd ududd
ud
udd ududd
ud



 
 
 
 




  





0
,, π
ee



3.4. Description of Tritium Decay
The tritium decay is 3
e
THee h

.






 



3
,,, ,,,,,
,, ,,,,,, ,,
,,ee
e
Tuddudeudd udd
udd udeuddudd ud
ud h
He eh





It seems that the 0
Z
boson is missing. The new
expression is 03
e
TZHeeh


















































00
3
,,, ,,,,,
,,,,
,,,, ,
,, ,,
,,,
,,
e
e
e
ee
ee
ee
e
TTZ
uddudeudd udd
uudd
Penn uudd
Pe nPud
Pe nP
ud
Pe nP
ud
He e












The
e is the tritium or Helium’s extranuclear
electron.
Copyright © 2011 SciRes. OJM
K. AOKI
Copyright © 2011 SciRes. OJM
4
4. Identity of Fundamental Particle
Composites 4.1. Identity of the 0
Z
boson in Early Universe
In early universe, the relationship among the 0
Z
boson,
elementary particles, leptons, and photons is described as
follows. In the initial early universe, it is thought that
It is considered that the traditional fundamental partricles
(a boson, a meson, and a second and third generation’s
quark) will be a composites, since the electron are not the
fundamental particle in this study. only the photons (u
, d
, , and
e
) exist.


0
=,,,,,, ,
=,,,, ,,π=, ,,,,,π
= ,,,,,π[]= ,,,,,π
ude ee
ee ee
ee ee
uudd Z
ududWud udW
ududud ud

 
 
 

 
 
 



 




 



 

 
 
 

 
 
 
 

 

 
=,,,,,, =,,,,π[][,]
=,, ,,π,=, ,,,ππ,
eeee e
ee eeeee
ududeeud ude
ududeud ud
 
 
 
 
 
 




 
 
 

 
 
 

 
 

 
 

 
0
,
=,,, ,,π,,
ee ee
udud
 
  




 
 
 
Next is the relationship among elementary particles, protons, neutrons, and photons.


 













0
[][][][][]=[,][,][,][,][,]
=[ ,,][,,][ ,,,][ ][][]
=,,,,,, ,ππ
=,, ,,,,,,
=,,,,,, ,
uddud uu dddduu dd
uddudduuddnn
uddudud dudnnPP
uuddduudd dpddpd dPP
uddudud dud



 




 



 




 







 





 


22 2
2
[( )()][()()]
=,, ,,,,,,
=,, ,,,,,,
=,, ,,,,ππ
=,,,,, ,,
nn
ddduudd duupuupuuPP
udduuuddddnuundd
uud uddddudpp
uddd dud duund dn


2




 

 
 
 


 
 

 




 









2
,
=,, ,,,,ππ
uu
ddd uduududpp



















00
0
,, ,,, , ,
,,, ,,,,
π,, π
π2
ee
ee
ee
eeud ud
udud




 


 

The 2 indicates a second newly defined proton
with negative charge.
P
The 2 indicates a second newly defined proton
with positive charge.
P
We have the sense of the duality principle between the
particle and wave for a photon. The next expression with
the boson is the electron-positron pair annihi- lation
by [6]. The gamma-ray (
0
π
) indicates the neutrino and its
antineutrino connection.
Next indicates an electron-positron pair creation.





00
ππ,
,,, ,,
,, ,,
e
ee
ee
ud ud
ud ud
ee

 











 

0
00
,,, ,,
,,, ,,π,
ππ
ee
ee e
e
eeud ud
udud






K. AOKI5
The energy quanta (or the photon) (

u,
d
,
and
) indicate

e
u

uu,
dd,,
ee
,,
and

,
, respectively.
The energy quanta and particle, , d,

u

e
,
and
may be dark energy and dark matter in
space.

u
0
π
4.2. Identity of the Strange and Charm quark
The charged kaons,
K
and
K
, consist of
,us
and

,us
, respectively. The main
K
decay is
K
. The
muon consists of

,,, ,
ee
ud

.




,,,,,= ,,
,,,,
ee e
ee
Kud ud
ud


 
 














()=,
=,,
=,,
=π,
=, =,,
e
e
e
ee
Kus
ud
ud
sd d

In the same way, the
K
kaon and
s
quark
compositions are found.










=,
=,,
=,,
=,
()=, =,,
e
e
e
ee
Kus
ud
ud
sd d

The charged kaons consist of the charged pion and the
neutrino-antineutrino pairs (or energy quanta). The
neutral kaons, 0
K
and 0
K
, consist of
,ds
and
,ds
, respectively.




0=,
=,,
=,
e
de
Kds
dd







0
0
=,
=,,
=,
=
e
de
Kds
dd
K


















00 0
0
0
=π,=π,,
=,,
=,,,,
=,,,,
=,,,,
=,,
=,
=,
ee
e
e
e
e
ude
u
u
Z
ud ud
uu d d
uu dd
K
K




By the result of the strange quark, the charm and
anti-charm quarks are shown from the decay by [7].
0


0π
,,,, ,
s
scsss ud















0
()= ,,= ,π
=, ,,
=, ,π=,
=,,, =,
e
e
e
csud s
dud
dd
udduK

K











0
=,,=,
=, ,,
=, ,=,
=,,, =,
e
e
e
csuds
dud
dd
uddu K

K
The second, third, and fourth
K
decays are shown
by ,
0
ππK
 πππK


, and K
00
πππ
. It seems that the 0
Z
bosons are missing
in the left sides. We consider about ,
00
ππ

KZ
0ππKZ π


00
KZZ
00
πππ
, and
 . Their reactions are
revolved.




0
0
,, ,,,,
,,,,,, ,
ππ ,
ee
ee
ee
KZ uduudd
ud udud


 









0,, ,,,,
,,,,,, ,
,,,,,, ,
πππ,
ee
ee
ee
ee
KZ uduudd
ud udud
ud ud ud




 



Copyright © 2011 SciRes. OJM
K. AOKI
6
and




00
00
,, ,,,,,,,,
,, ,,,, ,,,,,,,
πππ ,,
eee
ee
eee
KZZ
ud uudd uudd
ududud udud

e







The rare
K
decay is 0
πe
Ke


. It seems
that the 0
Z
boson is also missing in the left side. We
consider about 00
πe
eKZ









0
0
,, ,,,,,,
,,,, ,,, ,,
,,, ,,,
π,
eee
ee e
ee e
ee
KZ uduudd
udud ud
udud ud
e






 



It is considered that the creation is more favorable
than the
π
e
e
one by comparing the second, third,
and fourth
K
decays with the rare
K
one. The
s
K
consists of the

,,,dssd .





=,,,=,, ,, ,
see
K
ds sddddd


The
s
K
decays are and s
. It seems that the
ππ
s
K

0
K
0
ππ0
Z
bosons are missing in the
left sides. Their reactions are as follows.






 





0,, ,, ,,,,,
,,,, ,,, ,,,
,, ,,,,
ππ ,, ,,
see
eee
edede
edede
KZdddd uudd
ududdddd
ud ud

e





 






 



00
00
,, ,, ,
,,,,,,,,
,,, ,,,,, ,,
,,,,,
,,,,,,,, ,, ,
ππ ,,,,,
see
ee
ee
ee
e e de de
e e de de
KZZ dddd
uudd uudd
udud udud
dd dd
udud udud






  

 

 
 
The l
K
decay is π
le
Ke

.






 




0,, ,, ,,,,,
,,,, ,, ,,,,,,
{, }, ,,,,,
π,, ,,
lee
eee e
ee dede
edede
KZdddd uudd
ududdddd
ud ud
e
The very rare
K
decay is πKv

 by [8].
It is connsidered that π
K
vh

. Since the
K
consists of
+
π,e
, the e and
corresponding to
and h
, respectively. The
pair connection of the particle and its antiparticle is
regarded as an annihilation in this study.
4.3. Identity of the Lambda particle (Description
of the Lambda Decay)
The 0
decays are shown by the three reactions.
00
0
π
π
n
P
 

and
0P

The expressions of the quarks and neutrinos as
follows.
 

 



,,,, ,,,
,,,,, ,,
udsudd udud
udsudd udud


and
 

,,,,,,,, , ,
ee
udsudd udud
 

The expressions are changed by
,e
sd

,,
e
d
 .








,, ,,,,,,
,,,,,, ,,
e
e
ud duddudud
ud duddudud
 

and




,,,
,, ,,,,,,
e
ee
ud d
udd udud
 

It seems that the 0
Z
bosons are missing in the left
sides.



,, ,,,,
,, ,,,
ee
ud duudd
udd udud
 






,, ,,,,,
,,, ,,
ee
ud duudd
udd udud
 

e







 

 

and




,, ,,,,,
,,,,,, , ,
ee
eee
ud duudd
udd udud


 
 

The reactions with the addition of photon as follows.
Copyright © 2011 SciRes. OJM
K. AOKI
Copyright © 2011 SciRes. OJM
7









00
0
,, ,,,,,
,,,,,,,,
,, ,,,
π
ee
ee
ee
ee
Zudduudd
ud duudd
udd udud
n




00
,,,,,,,,,
ee
dudud ddZ

 

 
 
 
 











00 ,,,,,,,
,,,,,,,,
,,, ,,
π
ee
ee
ee
ee
Zudduudd
ud duudd
udd udud
P



 
 

 
We recognize the top and anti-top quarks produced in
proton-antiproton collisions by [10]. The top quarks
instantly decay into two W bosons and two b quarks. One
in turn decays into a muon and a neutrino, the other
into up and down quarks. The general reaction is con-
sidered.
W

PP ttWbWb

 


=,,=π,
ee
Wud




=,,=π,
ee
Wud




0
=,,,,=,πbdudud d
and








 

00 ,,,,,,,
,,,,,,,,,,,
,,,,,,,,
ee
eee
ee
e
e
Zudduudd
ud duudd
udd udud
P






 






0
=,,,, =,πbdududd
The proton-antiproton collision,
PP tt 
WbWb


, is shown from the above relation-
ship.


















=,,,,,, ,
=,,,,,,
,,,,,,
=,, ,,,,,
,,,, ,,,
e
e
ee
ee
PPuddududdud
ttWbW b
udd udud
uddudud
uddudud
udd udud


 




The particle consists of
0


,,, e
ud d

,e
d
,,ud
. The particle includes the neutron.
0
4.4. Identity of the Bottom and Top quark
The consists of
. Its two decays are
0
b
,,udb 0
b
and as shown by [9]. Their
decays are shown.
πp
 0
b
pK
0
b
 


 



,,,,, ,,
,,,,,,,,e
udbudd udud
udbudd udud


The anti-proton is used by



,. , ,uddud instead
of
,,uud . It can not explain by
,,uud
. Therefore
the anti-proton is either by the

,,udd
,ud or
,,,,uddud structure in nature. The following is the
tt
configuration.
If quark is a composite, the minimum configura-
tion’s quark is equal to
b
b

0
,,,,,πdududd.
The other configuration’s quark consists of
b

































0
=
=,,,,,, ,,,,,,
=,,,,,,, ,,,,,,,
=,,,,,,,,,,,, ,
=,,,,,,,, π,
ee
ee
ee
ee
ttW bW b
udd udududd udud
uddudduud dudud
uddudud dududud
uddudud dud



 


Thus, the proton-antiproton collision needs the
component of


0
π,ee Z 0
. The following is
the ideal expression of a series of proton-antiproton
colisions. l
K. AOKI
8






 

































0 0
,,,,,,,,,,,
,,,, ,,,,, ,,,,,
=,,,,,, ,,,,,,, ,
=,,, ,,,
,,,,,, ,,,,,,
,,,, ,,,(,,
ee ee
ee
ee
ee
ee
ee
PPudd ududdud
ttuddudduud dudud
uudd udduudd udd
unn unn
WbWbudd udududdudud
udd ududud

 

 
 
 
 
  
 










00
,,,,,
,π,π
ee
ee
dudud
ed ed


 
From the above nuclear reactions, the energy quanta
air is a pair of and , not a pair ofp e ee
and
. Therefore we try to use the

,
e
 pair instead
of the

,
ee
 o
he expression such as the ex is considered
ne.
Tperiment
llowingby the fo.


0
π,PP e

or






















 




 











0
0
2
00
,,, ,,,,,
π,
,,, ,,,
(,,,,,,,
π
,,,,,
,,, ,,,
,,,,, ,,,,,
,,,,
,π,π
e
e
e
ee
PP Z
uddudud dud
tt
udd uddu
udd udud
bWb
uddudud
udd udud
uddudududv
dudud
ud dd

 







 


 
 
The

,
e

an the sy
pair may be prefered through all reac-
tions thmmetric experiment with the
,
ee
pa
itions of some hypothe-
tical Higgs bosons by [11,12].
The light Higgs boson
ir. Thons are not a two-body collision.
4.5. Identity of Higgs Boson
ose reacti
The followings show the compos








0
00
,,,,,
=π,,,π
dudud
dd
The heavy Higgs bosons
=,
=,,,,
light
Hbb
dudud
 




0
(1)
0
=,
=,ud,,,
=π,
heavy
ee
ee
HWW
ud


and






000 0
2
00
=,=,,,
=π,π,,
heavy
ee
HZZuuK


0
Z
A neutral pion
0
π
son.
is the common minimum
particle of Higgs bo
4.6. Identity of Pentaquark Composite
It was reported on the evidence of pentaquark composite
by [13].


,,,,( )uud d sKpothers
n K
(.) ()n petccomposite



()
K pothers

  

 
4.6.1. Analisys
The composition of pentaquark composite is analized.
The following is the new expression.




,,,,() ()uuddsKPothers


  

 
(.) ,π,, ,(.)
()
etccompositen Petc
n KKPothers
 
  
00
πn P

Copyright © 2011 SciRes. OJM
K. AOKI9
Next is the simple expression.



















0
,,,,,,,,,(,,),,
,,,, ,
,,,,,,
,,,,,,,,, ,
ee
e
udd ud
e
ee
nP
udud udduddud
ududd ud
uddudududd ud
nKKP








 
 
This pentaquark composite consists of th
energy quanta and the fimbers of quark.
However this reaction can be also explained with the
traditional proton

ve me
e

,,uud .













,,
,,,,,,,,,
,,,, ,,,,,
ee
e
udud udd uud
uddudud uud



 



0
π
,, ,,,,,,
e
ee
np
udd ududuud
nKKp



 
 
4.7. Identity of the Debated Pentaquark
Composite
4.7.1. 2005 JL Release, Pentaquark Debate
Heats Up (April 28)
ve quarks:
two down
quarksange quark.” by [14].
ab News
It was reported that Pentaquarks are built of fi
for example, the
is built of two up quarks,
and an ant
i-str

0ππpKKn


4.7.2. Results of Analysis
The composition of
composite is analized. The pro-
ton decays with a neutral pion

0
π and some gamma-
rays by a law of coion ober of partie. It is
shown that the composiare
nservat
f num
tions
cl
,,,,,uddud
e
. It is an exotic composite.
0
π oPPr

 
 

















 

00
0
=π or=
=, π,
ee e
ee
PPZ
P
 

  
 
 






















0
0
=,,
=,,,,
π=,
π=,
π=,,,
=,
=,, =π,
=,,=, =,,
e
ee
ee
nudd
Puddud
ud
ud
udud
sd
Kud
Kdd dsdd





4.7.3. Details of Analysis
 








0ππ
,,,, ,,
,,,, ,,
e
e
PKKn
ududd udud
ududd udud etc

 
 
  
The
,,udud etc must have the components
of 0
K
,, e
dd
 is

e
. The
etc .



















 
00
00
0
,,,,,,
,, ,,,,,,,
,,,,, ,,,,
,, or,
(I is
PP
P


fπa kind of)
e
ee
ee
ee e
ee
ududd udud
ududdud ud
ud uddudud
PPZ





 
 

  
 
4.7.4. Analized Description
e














































0
0
0
0
0
00
0
=, ,
=,,
=,
=
,,,
,,, ,,,,,,
,, ,,,,,,,
,,,, ,,
ee
ee
e
e
ee
ee
ee
P
P
P
or nZ
nK Z
Z
PuuK
udd ududud
ududdud ud
ududd udud







 


 

 
 
0
0
0
,,
,π,
π,, π,
ππ
eu
e
ee
e
PK
nZ
n
Kn




  
 
  

Copyright © 2011 SciRes. OJM
K. AOKI
10
The composite consists of the newly defined
quanta. This reaction cannot be
explaith the traditional proton
4.8. Identity of the B Composites
Θ
proton and the energy
ned wi

,,uud .

B
B
4.8.1. On “Enhanced CP Violation with

00
B
KD D Modes and Extraction of the
ashi-Maskawa Angle Cabibbo-Kobay
[15
The quark expression are as follows.
]”
B decay and the


















,,
,,,,π,π,π
ee
00
0
00
π
π,π,π,,,
,,,, ,,,
π,π,π,π,,,π,
e
BD
D
Kbbuu
cu uuddcu ud
dudu




 
Next expression
du
duud


  
The undetected energies are missing.
is complete.











 
 

 

00
000
0
,,
,,,,,
,,,π,π,π
() ππ
(π,π,π
e
e
ee e
cuuudd uudd
cu ud
BD
DK





 

 
 
,π,, ,π,
,,,, ,,
ee
ee
dudu
duduud


 
 
π,π,π,,,ee
bb uu





0 0000
=,π,, ,π,=π,π,πBdudu




















 














0
0
0
0
=K

,, =,
=, 16=,,,
=,,,,=,=
=, =,(,,,
=, =,,,,
=,=,,
=, =,(,
=, =,
ee
e
ee
ud
Dcuref sudu
duducuD
bd duudd
bd duudd
cs sud
cs sud
sds d




4.8.2. On “First Evidence of the Decay

B
DK
Followed by &

DK
(2010
Two
)”
B
decays and tk expressi-
lows [17].
he quarons are as fol





















00
0
(First)
),,, ,,,,
,π,,,,,,,
ee
ee
BDW DK
bucu udcu ud
du d uduud


 

 
The quark expression is uncomplete. It seems that the
undetected energy is missing. Next expression is com-
plete.



0
,π,,,
,,,, ,,
ee
ee
du
dudu ud



 


,,
,, ,,
ee
du
duud

  



0
ee
BDW
 
 




0
DK


 





















0
0
(S eco n d)
{()}{}{()} {}
,, ,,
,,,,,,
e
ee
BuWu
DK
duuud u
dududu




 
 
The undetected energies and
,,
,
,,
e
bu u udu
cu su
 


,dd are missing.
Next expression is complete.








0
,,
,,
,,,, ,,
ee
ee
ee
du
uddud u
dududu




 
 
,







,
,,
,,
ee
ee
bu
uddud u
cus u



 

,










0
,
ee
e
B
uddW u
DK



 

Copyright © 2011 SciRes. OJM
K. AOKI11
 

 

00
=,π,=πBdu


,π
5. Summary
The fundamental particles are expected to be up qark
, down quark
u

u
d, neutrino
e
, muon-neutrino

, and those anti-particles. The difference between
no and muon-neutrino is their kinetic energies.
The leptons of electron, positron, and energy qu nta
have the subatomic structure.
neutri
a








=,,
=,,
=,
=,
=,
=,
e
e
u
d
eee
eud
eud
uu
dd



The members of charged muons,

, were shown.






=,,, =π
ee e
ud
 







=,,, =πud ,
ee e
he
m
 
The members of 0
//WWZ
 bosons and t
inimum member of Higgs boson were shown.
























00
1
00
2
00
=,,, =π
=,,, =π
=,,,,,,,=π
= ,,,,,,,=π
=,,, =
ee e
ee e
ee e
eeee ee
Wud
Wud
Zuudd
Zuudd
minimumHu udd



 



The members of 00
///////
s
K
KKK BB


composites were shown.

































0
00
=, =,,
=,,=π,
,
=,=,,= ,
=,=,, =, =
=,,, =,,,,,
e
ee
e
ede
ede
see
Kusud
ud
d
Kdsdd
KdsddK
=, =,
=,, =π,
ee
Ku
su
ud

























 

0
=,π,Bdu

The second and third qu


0
00
0 0000
0
=,,,
=,,,= ,
=,,,,,, =,π
=,,,,,= ,
=,π,,,π,=π,π,π
=π,π
e
ee
b
ee
ud d
udd n
udd uuddn
uddud P
Bdudu





ark no longer say quark. They
are the exotic second and third states of the first
generation’s quark composites.
 
























0
0
= ,,,,= ,
=,,=,π
=, ,,=, ,=,
=,,, =,, =,
=,,,,=,π
ee e
ee
ede
sd d
csud s
dudd dK
udduuK
bdudud d
 












1
0
{, }
=,,,,,,,,,,,
ee
tt
uddud uddud






2
0
,
=,,,,,,,,,, ,
e
tt
uddud udd ud
The proton might be a pentaquark.
 






,, ,,udd ud
6. Acknowledgement
=,,,,
,,,,
Puuddd
uddud
I thank you for great accomplishment for mankind. May
peace be upon all living things forever and ever.
I thank my dead father for this study. All t
inheritance from him helped me.
7. References
[1] Ryden, B. (2003) Introduction to Cosmology, 1st edition,
Japanese language edition, (Pearson Education, Inc.),
Chapter 10.
[2] M. Gell-Mann, “A Schematic Model of Baryons and
Mesons,” Physics Letters Vol 8, 1964, PP. 214-215.
[3] Zweig, G. (1964) “AN MODEL FOR STRONG
K
ds sddddd










he
3
SU
Copyright © 2011 SciRes. OJM
K. AOKI
Copyright © 2011 SciRes. OJM
12
INTERACTION SYMMETRY AND ITS BREAKING
I,” CERN Reports 8182/TH.401 and “AN
MODEL FOR STRONG INTERACTION SYMM
AND ITS BREAKING II 8419/TH.412”
[4] hysics of ph
lecture course, Tokyo Metropolitan University.
[5] A. Kernan, W. M. Powell, C. L. Sandler, W.L. Knight,
and F. Russell Stannard, “Muonic-Decay Br
Ratio of the Lambda Hyperon,” Phys. Rv. Vol 13
B1271-B1273.
[6] Yuksel, H, (2006) “Positron Annihilations at the
n
1.
. Petrov, “Eff
the charm scale in
3
U S
ETRY
ysics
anching
3, 1964,
Galactic
swers,”
ects from
Hamatsu, R. (1990) High Energy P
e
Center: Generating More Questions Than A
arXiv:astro-ph/0609139v
[7] W. M. Yao et al. (Particle Data Group), “Review of
Particle Physics,” J. Phys. G Vol 33, 2006, PP. 1-1232.
and 2007 partial update for edition 2008,
http://pdg.lbl.gov/
[8] A. F. Falk, A Lewandowski, A.A
π+
K
vv

,” Phys. Lett. B
107-112.
[9] J.-E. Augustin et al., “Discovery of a Narrow Re
al., “Identification of top quark
D Vol 52, 1995, PP.
. 325-335 and
05 by P. Igo-Kemenes.
s. Rev
kinematic variables,” Phys. Rev.
R2605-R2609.
[11] P. Igo-Kemenes, “Searches for Higgs bosons at LEP2,” J.
Phys. G: Nucl. Part. Phys. Vol 24, 1998, PP
Updated October 20
[12] P.W. Higgs, “Broken Symmetries and the Masses of
Gauge Bosons,” Phy. Lett. Vol 13, 1964, PP.
508-509.
[13] T. Nakano et al., “Evidence for a Narrow S = + 1 Baryon
Resonance in Photoproduction from the Neutron,” Phys.
Rev. Lett. Vol 91, 2003, PP. 012002.
[14] JLAB News Release, (2005) Pentaquark debate heats up,
http://www.jlab.org/divdept/diro/publicaairs/newsreleases
/2005/pentaquarks.html
[15] D. Atwood, I. Dunietz, and A. Soni, “Enhanced CP
Violation with 00
B()
K
DD Modes and Extraction of
the Cabibbo-Kobayashi-Maskawa Angle γ,” Phys. Rev.
and Results,” Phys. Lett. B Vol 592, 2004, PP.
Lett. Vol 78, 1997, PP. 3257-3260.
[16] S. Eidelman, et al., “Charm Dalitz Plot Analysis
Formalism
Vol
505, 2001, PP.
1-1109.
[17] Horii, Y, et al., (2010) First Evidence of the Decay
BDK
Followed by D&K
sonance
s using
in ee

Annihilation,” Phys. Rev. Lett. Vol 33, 1974,
PP. 1406-1408.
[10] F. Abe et
,
http://belle.kek.jp/results/summer10/dk_ads/.