Advances in Pure Mathematics
Vol.04 No.12(2014), Article ID:52464,15 pages
10.4236/apm.2014.412074
Compactness of Composition Operators from the p-Bloch Space to the q-Bloch Space on the Classical Bounded Symmetric Domains
Jianbing Su*, Huijuan Li, Xingxing Miao, Rui Wang
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, China
Email: *sujb@jsnu.edu.cn
Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Received 31 October 2014; revised 30 November 2014; accepted 12 December 2014
ABSTRACT
In this paper, we introduce the weighted Bloch spaces on the first type of classical bounded symmetric domains
, and prove the equivalence of the norms
and
. Furthermore, we study the compactness of composition operator
from
to
, and obtain a sufficient and necessary condition for
to be compact.
Keywords:
Bloch Space, Classical Bounded Symmetric Domains, Composition Operators, Compactness, Bergman Metric
1. Introduction
Let be a bounded homogeneous domain in
. The class of all holomorphic functions on
will be denoted by
. For
a holomorphic self-map of
and
, the composition
is denoted by
, and
is called the composition operator with symbol
.
The composition operators as well as related operators known as the weighted composition operators between the weighted Bloch spaces were investigated in [1] [2] in the case of the unit disk, and in [3] - [7] for the case of the unit ball. The study of the weighted composition operators from the Bloch space to the Hardy space was carried out in [8] [9] for the unit ball. Characterizations of the boundedness and the compactness of the composition operators and the weighted ones between the Bloch spaces were given in [10] - [12] for the polydisc case, and in [13] - [18] for the case of the bounded symmetric domains. Furthermore, we will give some results about the composition operators for the case of the weighted Bloch space on the bounded symmetric domains.
In 1930s all irreducible bounded symmetric domains were divided into six types by E. Cartan. The first four types of irreducible domains are called the classical bounded symmetric domains, the other two types, called exceptional domains, consist of one domain each (a 16 and 27 dimensional domain).
The first three types of classical bounded symmetric domains can be expressed as follows [19] :
,
where and
is the
identity matrix,
is the transpose of
;
Let and
. The Kronecker product
of
and
is defined as the
matrix such that the element at the
-th row and
-th column
[19] . Then the Berg- man metric of
is as follows (see [19] ):
(1.1)
where is a complex vector,
is the conjugate transpose of
, and
.
Following Timoney’s approach (see [18] ), a holomorphic function is in the Bloch space
, if
Now we define a holomorphic function to be in the p-Bloch space
, if
(1.2)
where
We can prove that is a Banach space with norm
which is similar
with the case on
Let be a holomorphic self-map of
. We are concerned here with the question of when
will be a compact operator.
Let denote a diagonal matrix with diagonal elements
. In this work,we shall de- note by
a positive constant, not necessarily the same on each occurrence.
In Section 2, we prove the equivalence of the norms defined in this paper and in [20] .
In Section 3, we state several auxiliary results most of which will be used in the proofs of the main results.
Finally, in Section 4, we establish the main result of the paper. We give a sufficient and necessary condition for the composition operator Cf from the p-Bloch space to the q-Bloch space
to be compact, where
and
. Specifically,we prove the following result:
Theorem 1.1. Let be a holomorphic self-map of
. Then
is compact if and only if, for every
, there exists a
such that
(1.3)
for all whenever
,
.
The compactness of the composition operators for the weighted Bloch space on the bounded symmetric domains of is similar with the case of
; we omit the details.
2. The Equivalence of the Norms
Denote [20] .
Lemma 2.1. (Bloomfield-Watson) [21] Let be an
Hermitian matrix. Then
(2.1)
where is any
matrix and satisfies
.
Theorem 2.1. and
are equivalent.
Proof. The metric matrix of is
For any, let
with
. Then
Denote then
,
and
Thus
Hence
Furthermore,
Since
Thus
(2.2)
For
then we have
(2.3)
Combining (2.2) and (2.3),
Next,
and
Therefore, the proof is completed. □
3. Some Lemmas
Here we state several auxiliary results most of which will be used in the proof of the main result.
Lemma 3.1. [18] Let be a bounded homogeneous domain. Then there exists a constant
, depending only on
, such that
(3.1)
for each whenever f holomorphically maps
into itself. Here
denotes the Bergman metric
on,
denotes the Jacobian matrix of
.
Lemma 3.2. Let be a holomorphic self-map of
and
a compact subset of
.Then there exists a constant
such that
(3.2)
for all whenever
.
Proof. For, let
For any compact, there exists a constant
such that
. Then there exists
such that
, whenever
.
Thus
(3.3)
Combining Lemma 3.1 with (3.3) shows that (3.2) holds. □
Lemma 3.3. (Hadamard) [21] Let be an
Hermitian matrix. Then
(3.4)
and equality holds if and only if is a diagonal matrix.
Lemma 3.4. Let. Then
(3.5)
Proof. For any, we have
Thus we have,
It follows from Lemma 3.3 that □
Lemma 3.5. Let be a classical bounded symmetric domain, and
denote its metric matrix. Then a holomorphic function
on
is in
if and only if
(3.6)
If (3.6) holds, then
(3.7)
Proof. We can get the conclusion by the process of the proof on Theorem 2.1. □
Lemma 3.6. [18] Let
where and
are unitary matrices and
Denote,
. Then
(1)
(2)
(3);
(4) for
;
(5) for
;
(6) for
.
Lemma 3.7. is compact if and only if
as
for
any bounded sequence in
that converges to 0 uniformly on compact subsets of
.
Proof. The proof is trial by using the normal methods. □
4. Proof of Theorem 1.1
Proof. Let be a bounded sequence in
with
, and
uniformly on compact subsets of
.
Suppose (1.3) holds. Then for any, there exists a
, such that
(4.1)
for all whenever
and
.
By the chain rule, we have.
If and
, then we get
. If
and
, then
(4.2)
It follows from (4.1) and (4.2) that
(4.3)
(4.4)
whenever and
.
On the other hand, there exists a constant such that
So if, then
We assume that converges to 0 uniformly on compact subsets of
. By Weierstrass Theorem, it is easy to see that
converges to 0 uniformly on compact subsets of
. Thus, for given
, there exists
large enough such that
(4.5)
for any,
whenever
and
. Then by in- equalities (4.3) and (4.5) and Lemma 3.2, it follows that, for
large enough,
(4.6)
whenever and
.
Combining (4.4) and (4.6) shows that as
large enough. So
is compact.
For the converse, arguing by contradiction, suppose is compact and
the condition (1.3) fails. Then there exist an, a sequence
in
with
as
and a sequence
in
, such that
(4.7)
for all.
Now we will construct a sequence of functions satisfying the following three conditions :
(I) is a bounded sequence in
;
(II) tends to 0 uniformly on any compact subset of
;
(III)
The existence of this sequence will contradict the compactness of.
We will construct the sequence of functions according to the following four parts: A - D.
Part A: Suppose that
where is the
matrix whose element at the
row and
column is 1 and the other elements are 0. Since
maps
into itself,
and
Denote by
Using formula (1.1), we have
Denote
then
(4.8)
We construct the sequence of functions according to the following three different cases.
Case 1. If for some,
(4.9)
then set
(4.10)
where is any positive number.
Case 2. If for some,
(4.11)
then set
(4.12)
where, if for some
,
or for some
,
, replace the corresponding term
by 0 (the same below).
Case 3. If for some,
(4.13)
then set
(4.14)
Next, we will prove that the sequences of functions defined by (4.10), (4.12) and (4.14) all satisfy the conditions (I), (II) and (III).
To begin with, we will prove the sequence of functions defined by (4.10) satisfies the three con- ditions. We can get that
It follows from Lemma 3.5 that.
This proves that the sequence of functions defined by (4.10) satisfies condition (I).
Let be any compact subset of
. Then there exists a
such that
(4.15)
for any. By (4.10), we have
Since
But as
. Thus,
converges to 0 uniformly on
. Therefore,
converges to 0 uniformly on
as
. Thus, the sequence of functions
defined by (4.10) satisfies the condition (II).
Now (4.8) and (4.9) mean that
(4.16)
Combining (4.7) and (4.16), we have
Since
This proves that as
, which means that the sequence of functions
defined by (4.10) satisfies condition (III).
We can prove that the sequence of functions defined by (4.12) or (4.14) satisfies the conditions (I) - (III) by using the analogous method as above.
Part B: Now we assume that
It is clear that and for
we can assume that
and
as
, where
.
If, we can use the same methods as in Part A to construct a sequence of functions
satisfy- ing conditions (I)-(III).
Using formula (1.1), we have
Denote
Then,
(4.17)
We construct the sequence of functions according to the following six different cases.
Case 1. If for some,
then set
(4.18)
Case 2. If for some,
then set
(4.19)
Case 3. If for some,
then set
(4.20)
Case 4. If for some,
then set
(4.21)
Case 5. If for some,
then set
(4.22)
Case 6. If for some,
then set
(4.23)
By using the same methods as in Part A, we can prove the sequences of functions defined by (4.18)-(4.23) satisfying conditions (I) - (III).
Now, as an example,we will prove that the sequence of functions defined by (4.19) satisfying the conditions (I) - (III).
For any, we have
(4.24)
Thus
By Lemma, we have
(4.25)
It follows from Lemma 3.5 and (4.25) that. This proves that the sequence of functions
defined by (4.19) satisfy the condition (I).
Let be any compact subset of
. Since there exists a
such that
,
Thus
Since
So as
. Thus,
converges to 0 uni-
formly on E. Therefore,the sequence of converges to 0 uniformly on
as
. Thus, the sequence of functions
defined by (4.19) satisfies the condition (II).
For case 2,
(4.26)
Combining (4.7) and (4.26), we have
Since
This proves that as
, which means that the sequence of functions
defined by (4.19) satisfies condition (III).
If, then by Lemma 3.6, there exist
and
in
such that
If we denote, then
and
, where.
Denote, where the sequence of functions
is the sequence obtained in Part A. We have
(4.27)
where and
. Now (4.27) implies that
and
It is clear that, and combining the discussion in Part A,we can get that
as
; that means the sequence of functions
satisfies condition (III).
We prove that the sequence of functions is a bounded sequence in
.
Since,
So is bounded.
Next we prove that converges to 0 uniformly on any compact subset
of
. Let
then by the definition of
and Lemma 3.6, we can get a calculation directly that
It is clear that converges uniformly to
in
.
Since and
, there similarly exist
in
such that
, and the first component of
is
. It is clear that
is holo-
morphic on. Let
for
. For
, we know
. We may choose
such that
. Thus, for
large enough,
and from this it follows that
by the definition of,
converges to 0 uniformly on
.
Hence satisfies conditions (I)--(III), and this contradicts the compactness of
.
Part C: Assume that
where. For
we may assume that
,
,
as
, where
,
.
Just as in Part B, we can use the same methods to prove the conclusion. And for,
, we may only show the sequence of functions
which satisfy the conditions (I) - (III) here.
Using formula (1.1), we have
Denote
then,
(4.28)
We construct the sequence of functions according to the following three different cases.
Case 1. If for some,
then set
(4.29)
Case 2. If for some,
then set
(4.30)
Case 3. If for some,
then set
(4.31)
Using the same methods as in Part A and Part B, we can prove the sequences of functions defined by (4.29)-(4.31) satisfying conditions (I) - (III).
Part D: In the general situation. For, there exist an
unitary matrix
and an
unitary matrix
such that
We may assume that and
as
. Let
and
;
means
that as
for any
,
. Let
and
for
. Of course, P is an
unitary matrix,
is an
unitary matrix, and
con-
verges uniformly to on
.
Let,
where the sequence of
are the functions obtained in Part C.
From the same discussion as that in Part B, we know that satisfies conditions (I) and (III). For the compact subset
,
is also a compact subset of
, so we can choose an open sub-
set of
such that
. Since
converges uniformly to
on
, it follows that
as
. Since
tends to 0 uniformly on
, we know
tends to 0 uniformly on
. Thus,
satisfies condition (II). □
Acknowledgements
We thank the Editor and the referee for their comments. Research is funded by the National Natural Science Foundation of China (Grant No. 11171285) and the Postgraduate Innovation Project of Jiangsu Province of China (CXLX12-0980).
Cite this paper
JianbingSu,HuijuanLi,XingxingMiao,RuiWang, (2014) Compactness of Composition Operators from the p-Bloch Space to the q-Bloch Space on the Classical Bounded Symmetric Domains. Advances in Pure Mathematics,04,649-664. doi: 10.4236/apm.2014.412074
References
- 1. Ramos-Fernández, J. C. (2011) Composition Operators between μ-Bloch Spaces. Extracta Mathematicae, 26, 75-88.
- 2. Wolf, E. (2011) Weighted Composition Operators between Weighted Bloch Type Spaces. Bulletin de la Société Royale des Sciences de Liège, 80, 806-816.
- 3. Dai, J.N. (2012) Compact Composition Operators on the Bloch Space of the Unit Ball. Journal of Mathematical Analysis and Applications, 386, 294-299. http://dx.doi.org/10.1016/j.jmaa.2011.07.067
- 4. Li, J.F. (2010) Composition Operators from p-Bloch Spaces to Little q-Bloch Spaces on the Unit Ball of Cn. Acta Mathematica Sinica (Series B), 30, 1013-1020.
- 5. Zhang, M.Z. and Xu, W. (2007) Composition Operators on α-Bloch Spaces of the Unit Ball. Acta Mathematica Sinica (Series B), 23, 1991-2002.
- 6. Zhang, X.J. and Li, J.X. (2009) Weighted Composition Operators Between μ-Bloch Spaces over the Unit Ball of Cn. (Chinese). Acta Mathematica Sinica (Series A), 29, 573-583.
- 7. Zhou, Z.H. and Zeng, H.G. (2003) Composition Operators between p-Bloch Space and q-Bloch Space in the Unit Ball. Progr. Progress in Natural Science (Engl. Ed.), 13, 233-236.
- 8. Stevo, S. (2008) Norm of Weighted Composition Operators from Bloch Space to on the Unit Ball. Ars Combinatoria, 88, 125-127.
- 9. Tang, X.M. and Zhang, R.J. (2013) Weighted Composition Operator from Bloch-Type Space to H∞ Space on the Unit Ball. Mathematical Inequalities and Applications, 16, 289-299. http://dx.doi.org/10.7153/mia-16-22
- 10. Li, S.X. and Zhu, X.L. (2004) Essential Norm of Weighted Composition Operator between α-Bloch Space and β-Bloch Space in Polydiscs. International Journal of Mathematics and Mathematical Sciences, 69-72, 3941-3950.
- 11. Zhou, Z.H. and Shi, J.H. (2001) Compact Composition Operators on the Bloch Space in Polydiscs. Science in China Series A, 44, 286-291. http://dx.doi.org/10.1007/BF02878708
- 12. Zhou, Z.H. and Wei, Z.Q. (2005) Weighted Composition Operators on the Bloch Space in Polydiscs (Chinese). Journal of Mathematics (Wuhan University), 25, 435-440.
- 13. Allen, R.F. and Colonna, F. (2010) Weighted Composition Operators on the Bloch Space of a Bounded Homogeneous Domain. In: Operator Theory: Advances and Applications, Volume 1. Operators, Matrices and Analytic Functions, Oper. Theory Adv. Appl., 202, Birkh?user Verlag, Basel, 11-37.
- 14. Allen, R.F. and Colonna, F. (2009) Multiplication Operators on the Bloch Space of Bounded Homogeneous Domains. Computational Methods and Function Theory, 9, 679-693. http://dx.doi.org/10.1007/BF03321751
- 15. Deng, F.W. and Ouyang, C.H. (2006) Bloch Spaces on Bounded Symmetric Domains in Complex Banach Spaces. Science in China Series A, 49, 1625-1632. http://dx.doi.org/10.1007/s11425-006-2050-0
- 16. Shi, J.H. and Luo, L. (2001) Composition Operators on the Bloch Space of Several Complex Variables (Chinese). Acta Mathematica Sinica (Chinese Series), 44, 1-10.
- 17. Timony, R.M. (1980) Bloch Functions in Several Complex Variables, I. Bulletin of the London Mathematical Society, 12, 241-267. http://dx.doi.org/10.1112/blms/12.4.241
- 18. Zhou, Z.H. and Shi, J.H. (2002) Compactness of Composition Operators on the Bloch Space in Classical Bounded Symmetric Domains. Michigan Mathematical Journal, 50, 381-405.
http://dx.doi.org/10.1307/mmj/1028575740 - 19. Lu, Q.K. (1963) The Classical Manifolds and the Classical Domains (Chinese). Shanghai Scientific and Technical Publishers, Shanghai.
- 20. Pan, W.Q. (2012) Composition Operators between p-Bloch Space and q-Bloch Space in the First Classical Bounded Symmetric Domain. Master’s Thesis, Jiangsu Normal University, Xuzhou.
- 21. Kuang, J.C. (2004) Applied Inequalities (Chinese). 3nd Edition, Shandong Science and Technology Press, Shandong.
NOTES
*Corresponding author.