Advances in Pure Mathematics, 2013, 3, 25-32
http://dx.doi.org/10.4236/apm.2013.37A003 Published Online October 2013 (http://www.scirp.org/journal/apm)
Primes in Arithmetic Progressions to Moduli with a Large
Power Factor
Ruting Guo
Network Center, Shandong University, Jinan, China
Email: rtguo@sdu.edu.cn
Received July 8, 2013; revised September 9, 2013; accepted October 6, 2013
Copyright © 2013 Ruting Guo. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
ABSTRACT
Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by high-
powers of a given integer and showed that for i nteger and real number Ahere is a B
ch that 2 a Tsu0.

0BA






11
2
,1
,1
max max;,,
B
A
yx rqd
dxqL
dq
Li yx
yqdr qd qL




13
3exp loglogqx x holds uniformly for moduli that are powers of . In this paper we are able to improve his
eywords: Primes; Arithmetic Progressions; Riemann Hypothesis
1. Introduction and Main Results
with
to count the number of primes in the arithmetic pro-
a
result.
K
Let p denote a prime number. For integer,aq

,1aq , we introduce
;,xq

mod
1
px
pa q
a
gression

modaq not exceeding
x
. For fixed q, we
have

 
1
;,
x
qa x
q

as
x
tends to infinity. However the most important
thinin this context is the range uniformity for the
moduli q in terms of
g
x
. The Siegel-Walfisz Theorem,
see for eample [1], shows that this estimate is true only
if A
qL, where and throughout this paper we denote
log
x
x
by L. The Generalized Riemann Hypothesis for
let L-functions could give a much better result:
non-trivial estimate holds for
Dirich 12
2
qxL
. Unfortunately
the Generalized Riemann Hypos withstood the
attack of several generations of researchers and it is still
out of reach. However number theorists still want to live
a better life with ou t the Generalized Riemann Hypothesis.
direction the famous Bombieri-Vinogradov theorem [2,
3], states that
Theorem A. For any 0A there exists a constant
thesis ha
Therefore they try to find a satisfactory substitu te. In this
0BBA
such that



,1
max max;y
, ,
A
yx aq
qQ
Li y
qa xL
q

where
q
is the Euler totient function, 1
2,
B
QxL
and

2
d.
log
yu
Li u
Re
y
cently in order to study the arithmetic functions on
shifted primes, Elliott [4] studied the distribution of
primes in arithmetic progressions whose moduli can be
divisible by high-powers of a given integer. More pre-
cisely, he showed that
Theorem B. Let a be an integer, 2a. If 0A,
then there is a
0ABB
such that





11
2
,1
,1
max, Li yx
r
max ;,
B
A
yx rqd
dxqL
dq
yq
dqd qL


C
opyright © 2013 SciRes. APM
R. T. GUO
26
3
3exp loglogqx x
holds uniformly for moduli
1
that are powers of
When result recovers the Bombieri-
Vinogradov theorem. And obviously his result gives a
n of primes in arithmetic
st imp
a.
, his
1q
deep insight into the distributio
progressions.
The moortant thing Elliott concerned in [4] is
that in Theorem B the parameter q may reach a fixed
power of
x
. However we want to purse the widest
uniformity in q by using some techniques estab-
lis l
new
hed in the study of Waring-Goldbach problems.
We shall prove the following resut.
Theorem 1.1. Let a be an integer, 2a. If 0A,
then there is a

0BA such that
B




11
2
,1
,1
B
yx rqd
dxqL
dq
qd q


max max;,Li
yq
dr
,
A
L
holds uniformly for moduli
yx


23
5exp loglogqx x
that are powers of
When and an odd prime, our result gives
that for tmoduli with the form
a.
1d
hes a
e particular q

,1,2,3,
n
qpn





;, 1,
A
xqrO Lq

Li x
holds uniformly for moduli


23
5exp loglog.qx x
Then the special case of our result shows that the least
prime in these special progressions
satisfies

min ,Pqr

mod qnr

52
min ,.Pqr q
Thisproves a former result given by Barb
hudakov [5
result iman,
Linnik and Ts],

83
min ,Pqr q
where

,1,2,3,
n
qpn.
If we focus our attention on the least prime in
arithmetic progressions with special moduli, we can
prove the following result.
rem 1.2. Let be anteger, . If
th Theo n i
a 2a0A,
en there is a

0BBA such that




91
20
,1
,1
B
yx rqd
dx qL
dq
qd q


max max;Li yx
y
, ,
A
q
dr L
holds uniformly for moduli


53
12 exp loglogqx x
that are powers of
Then our resuows that the least prime
a.
lt sh
min ,Pqr
in these special progressions
modnr q satisfies

12 5
min ,Pqr
It should be remrk
.q
aed that the Generalized Riemann
Hld allow
ypothesis for Dirichlet L-functions wou
11
2A
qdxL
with no further restrictionpon the natu ure
of . Therefore our Theorems 1.1 and 1.2 can be
compared with the resu lt under the Geralized Riemann
H
2. Prelimin
qen
ypothesis.
ary Reduction
Let
n denote von Mangoldt’s function, and for
mutually prime integers w and r, let

;, .
w
ywrn

r
mod
ny
nr
Fo 34
2wx and an integer 1q, define



 

,1
,1
1
max max;,;,.
rqdyx
dw
dq
Gwyqdr yqr
d



Lemma 2.1. For any
Then0,1 41 2K
, we have


 
3
1
6
1
1
exp logloglog
2
log .
K
K
GxqL Gxx
qq xx







(1)
unteg ers iformly for positive in

3
exp loglog,3qxxx

where 25
, if
920 12
and 512
, if 14 920
 . Here
1q
|nq
.
For Dirichlet characters
an defind real e 0y

ny
yn
 

,.n
Lemma 2.t
(2)
2. Le
,y
defined as in (2). Then



12 2512
max ,c
yxxQDQDL


4
mod ,
yx
dQ Dd
x
ho ers
Lemma 2.3. Let
(3)
lds uniformly for all integers 1D and real numb
2, 1.xQ
,y
defined as in (2). Then



11 202
mod max ,.
c
yx
dQ Dd
yxxQD

 L
ds uniformly for all integers
the innall
racters
3. Proof of Lemma 2.2
(4)
hol and real numbers
1D
2, 1.Q
Here er sum is taken over
hlet cha

mod Dd .
x
primitive Dirc
Let
2
5
X
YX
Copyright © 2013 SciRes. APM
R. T. GUO 27
and 110
,,
M
M be positive real numbers such that
1
5
1106 10
and 2,,2.YMM XMM X  (5)
For define
where is the Möbius function. Then we define
the fu
1, ,10j


1, if2,, 5,
,if 6,,10,
j
am j
mj

log ,if1,mj
(6)

n
nctions
 
,
j
j
js
mM
am m
fs m
,
,
and
 
110
,, ,Fsfsfs

(7)
where
is a Dirchlet character,
s
a complex
variable.
mma 3.1. Let Le

,Fs
be as in (7), and 1
A
0,
arbitrary. Then for an and y 12A
RX A
TX

mod
|
3
2log
dr
RR
T


)
11
10
22
12
2
,
rR rT
c
T
XX X
dd



(8
where is an absolute constant independent of
1,d
TFitt


0c
A
,
but thmplied in depends on e constant i.
A
Proof of Lemma 3.1. This lemma with 1d
was
established in [6], and in this general formWe
mention that in general the exponent 3/10 to [7].
X
in the
o
ixnvalue of
D
second termon the right-hand side is the best possiblen
considering the lack of sth power mea
irchlet L-functions.
Now we complete the proof of Lemma 2.2.
Proof of Lemma 2. 2. In (5), we take
2
5,.YxXx
Define
 
,,
jj
amfs
and

,Fs
as above. To
go s identity [8],
whic and
further, we first recall Heath-Brow
kn’
2nz with
h states that for any1z
1,k
 
 
12 2
12
11 2
1lo
j
jj
k
 
1
1 g
j
j
j
jnnnn
nnz
nnn
j


 
kn


 

The for
.
n
2
5
22YxyXx ,

,y
of which is of t
1 11010
110
111101010
,,
2
:,
mMmM
ymmy
amma mm




S
where
denotes the vector 12 with

10
,,,MMM
j
M
as in (5). Obviously some of tervals the in
,2
j
j
MM
may contain onusing
mmation formPropo-
sition 5.5 in [1]), and then shifting the contour to the left,
we have
ly integer 1. By
ula with Ty (see Perron’s su
  



11 2
11
1212112
1112 12
2
1,d
21.
2
s
s
Liy
Liy
iyiy L
Liy iyiy
yy
iy
F
ssOL
is
OL
i



 



On usin
S
g the trivial estimate


110
1111
1210
,,
,
Fiyf iyfiy,
M
LMMx L



 

the integral on the two horizontal segments above can be
estimated as

121 1
3
11
110
22
121 1
max .
L
max ,
L
y
Fiyy
y
x
LxyLxL
y


Then we ha


ve

113
2210
3
1
10
2
2
11
,d
1
22 2
1d
,.
21
it it
y
y
y
y
yy
F
ittO xL
it
t
yF itxL
t


 

 
 




S
,Fs
does not depend on , we have y
Noting that

3
1
10 11
10
2
2<
1d
max ,,.
21
x
x
Yyx
t
yLxFit x
t
 




L
(9)
hand weOn the other have
2
max ,.
yY yY

(10)
From (9) and (10), we have






mod max ,
yx
Q Dd
y

is a linear combination of terms, each
he form

10
OL

2<
mod mod
2
25
2
mod
max ,
d
,.
21
d
Yy
x
dQ DddQDd
x
dQ Dd
yy
t
Lx F itQDx
t

2
max ,
y Y
1
10 1
x







 

Copyright © 2013 SciRes. APM
R. T. GUO
28
Further let and then we obtain
qDd



mod
12
12 2
01 mod
|
2
25.QD
x
max ,
11
max max,d
12
yx
dQ Dd
T
T
Tx RQDqR q
Dq
y
LxF itt
T

 





From Lemma 3.1, we have


  
mod
3
111
2
210
22
12
01
2
2
3
11
10
22
2
12
2
25
4
11
25
22
max ,
1
max max1
11
.
yx
dQ Dd
c
Tx RQD
c
c
y
RR
LxTT xx
TD
D
QD QD
LxTxxT
DD
QDx
xxQDxQD L

 



















This completes the proof of Lemma 2.2.
4. Proof of Lemma 2.3
Firstly we recall one result of Choi and Kumchev [9]
about mean value of Dirichlet polynomials. Let
and Let denote the
er
5
2
11
QD
x
1, 1,mr
set of charact,Qr

,,mrQ

modulre o mq, whe
is a
character modulo m and
is a primitiv
, e cacter
with har
modulo qrqQrq and

qm,1.
as fos. Then the result of Choi and Kumchev states llow
Lemma 4.1. Let 1,1,2,2,mrT N and

,,mrQ be a set of characters as described as above,
Then

 
11
20
,, 2d,
Tit c
T
mrQNnN
nnnt NHNL






where c is an absolute constant, 12
H
mrQ T
and
plete the
log .HN Now we com 2.3.
Lemma 2.3. Let
L
Proof ofproof of Lemma
1
2
Yx and
X
x
. We
define


,.
s
YnX
F
sn



nn
If satisfies
wrmula
y
,YyX (11)
e apply Perron’s summation fo with Ty
(see
Proposi
  

 
12
12
2
d
,s OxL
s



2
1
,,d
2
2
,
2
s
s
biy
biy
s
s
iy
biy
yy
yFs sOxyL
is
yy
Fs
i
 



1b
where 1
0.bL
 If we let 0,b we have
 

12
1
,,d
1
y
y
yFit tOxy
t
 
.L
Noting that
,Fs
does not depend on , we have y
 
12
2
d
max ,,.
1
x
x
Yyx itOxL
 


t
yF
t


(12)
On the other hand we have

1
2
2
max ,.
yY
y
Yx

(13)
From (1 2 ) and (13) , we h ave






tion 5.5 in [1]), and then obtain


mod
2
mod mod
1
2
2
max ,
max ,
d
,.
yx
dQ Dd
YyxyY
dQ DddQ Dd
x
y
y
t
Fit QDxL


2
mod1
x
dQ Dd t
max ,y


 




Further let
qDd
and then we obtain




mod
1
222
2
01 mod
|
max ,
1
max max,d.
1
yx
dQ Dd
T
T
Tx RQDqRDd
Dq
y
F
ittQDxL
T

 


Lemma 4.1 = 1 gives that with m


11
2
220
mod
|
,d
Tc
T
qR Dd
Dq
RT .
F
ittxxL
D





(14)
From (14), we have


 
mod yx
dQ Dd
11 1
222
20 2
01
211 1
122
2
11 2
20
max ,
1
max max1
1
.
c
Tx RQ
c
y
RT
20
c
x
xLQDx
TD
QD xTQDxL
xxQDL

 







 






This completes the proof of Lemma 2.3.
L
Lx
D


Copyright © 2013 SciRes. APM
R. T. GUO 29
5. Proof of Lemma 2.1
We partition the moduli as , where the prime
factor of not exceed qd 12
qd d
2
d
K
L
ber of
anofdo not. I f
detes the num ct primdivisors of
and
d those
distin 1
d
e

n
the integer
no n,2ltKoglog loglx

oglog x, with
estimate

;, ,
x
qrx q

for 14 12,
 we
have


 




 


112
112
11
;,
log 11
lo
g
gexp11 llog,
dx dx
dq xdt
dt
m
x
xqdr qdd
xx
xto x
q





which is
Moreover the corresponding sum, taken over those
moduli for which is divisible by the power
of someme,
1
k
1
!K
kt m
pL
qk p


log g1
lo k
kt
eK
LO
xx
qk



lo oglog
x


1.
K
OqxL
d
pri1
d
is
th
v
8,v
 


 
22
12
2
11
2log.
Kv
dx pLmx
v
x
qd p
qxx
 


1
m
With , this is

43loglogvK x



1,
K
xL
too.

Oq
We denote

3
1
exp loglog
2
x



by . Arguing
similarly for
 
1;, ,dxqr

we have


 

1
1
,1
1
max max;,;,
.
rqdy x
dq x
d
K
yqdr yqr
d
x
qL



We collect together those moduli with a fixed
value of needing set
qd
and
1
dot exc1.Dqd
Noting that
we see from the orthogonality of Dirichlet characters that

yDr
 


2
2
,,1
mod
;,log,
nynd
nr D
n Oyd



 
 





 
2
1
21
22
;, ;,
g
1
yD
d ryDr
d
dy


2
mod
22
1
;, ;,
11
;, ;,
1
lo
,.
Dd
yqdryqr
d
yqd ryqr
dd
ry O
Dd d



 










where denotes that if we factorise
'
as 12

defined
mod ,D defined the

, 2
2
character 2
moddn the
is not principal.
In ma
fice to prove that the sum S given by
order to establish Lem 2.1 it will therefore suf-
 


1
12
21mod 12
1
max ,,
Kyx
dDd
dL qdx
yqd d


 
 
6
1log .
K
qq xx
is For a fixed value of
1
Dqd, we collect togethe
characters r those terms involving the
induce
character d by a particular primitive
*1
mod ,D

where 1
DD and 2
d
.
Since
and *
differ on at most the integers for n
which
,1nD
1
but
2
,1,nDd

*O

2
,,logyy Dd

.y
Interchangi ng sum mations,
 






12
21
11
mod2
mod
1
max ,
1
max |,|.
Kyx
Dd
dL qdx
yx
DD D
yDd
y
 



 
Here
2
0 mod2
dDd
1K
LDx
*

, and the innermost bounding sum
is

og .Dx
We cover the range of
1l
with
adjoining 2U
intervals U
 subjeco
.
KK
LULDx , tt
1

When 12
, by Lemma .2 a
typical 2
interval contributes
4
11
5
5
22
11 loglog
log .
x
x
xxUD xD
U

D



Since
 
12 3
12 1215
11 1
exploglog ,
4
DD qdxx

 


the
whole sum over
is

logloglog .x x
Arguing similarly for
5
1K
Dx
920
, by Lemma 2.3 the
whole sum over
is also
5
gloglog .
K
1lo
D
x
x x
Noting that
Copyright © 2013 SciRes. APM
R. T. GUO
30

 

  
 
11
1
1
1
2
1
2
22
1
6
1
1
1
1
loglog .
dd
p
p
1
l
og
d
Dd
p
p
qq pp
qq qq
p
qq x

 




 



 


summation over delivers the desired bund on S.
f of Lem
icunctions
Lemma 4.1. Let , denote an
L-function formet character
D
qq

1
d o
This completes the prooma 2.1.
6. Zeros of Dirhlet L-F

,,Ls sit


ed with a Dirichl

mod ,3,.
pq
qq hp

With
log3,lqt
define


34
14
4.10 loglog2.hl l

Then there can be at most one non-principal character
for which the corresponding L-function has a
region

mod q
zero in the1.
 Moreover such a character
would be real and the zero would be real and simple. ,
[1Lemma 4.2. Let be distinct
e real so
Proof of Lemma 4.1. This is Theorem 2 of Iwaniec
0].

mod, 1,2Dj
v
functions

,Ls
jj
primitive real characters. There is a positi1
c
that at most one of the
formed with
these characters can vanish on the line segment
1,
t
 )

1
112
1logcDD
0.
(15
Proof of Lemma 4.2. This is result of Lawhich
can be found at Satz 6.4, p. 127, of Prachar [1].
ndau,
1
Lemma 4.3. For any modulus ,01, 0,DT
  let

,,TD
denote the number of zeros, counted with
multiplicity, of all functions

,Ls
N
formed with a
character

mod ,D
that lie in the rectangle
Re1, Im.
s
sT
  Then we have


12 1
5
,, ,NTD DT
uniformly for 01,2.T
 
Proof of Lemma 4.3. This ism of Heath-
Brown [12], on p. 249. Theore
7. Proof of Theorems 1.1 and 1.2
We shall first provide a version of the theorem with

;,
y
qd r
in place of

;,.
y
qdr
After Lemma 2.1
ed positive A.
We employ the repr
it will suffice to establish the boun
 

1
lo ,
A
Gxq
for any fixesentation
d
gx


2
14
log log ,
yD
y
OyDy



nyT
y
nnEy
T
 



valid for all characters
mod D, where ; 2yT
E
is 1 if
is principal, zero otherwise; i

runs through all the zeros of
,Ls
in the rectangle
0Re 1,Im
s
sT
 with a ha disc lf
 
1
4log0,Re 0sc Ds
 remove
versi
d. Th
o
in Satz 4.6, pp. 232-234 of Prachar [11].
is givenrepresentation is a slightly modified n of that
Since
,Ls
has log DT zeros in the strip
0Re1, Im1,sT sT
 
220, cf. Prachar [11], Satz
3.3, p.
 
12
12 1
||
2
12112
1
log 2
loglog ,
mTmm
T
mT
yyD
yDymyDy









and at the expense of raising 14log
y
Dy to

2logyDy we may confine the zeros
2
1
to the half-
plane
Re12.s of Dirichlet characters From the orthogonality

 

mod
2
12
12 log ,
Dny
T
yy
yD Dy
T








where it is understood that the
;,DyDry

rnnEy


i


with the character
arethe
zeros of the L-function formed
of
the outer summation.
We replace byand average over the interval
y z
y
zyw
 with

2
log A
wyy

to obtain
 


2
12
2
12
1;,d
log .
yw
yzDrzz
wD
T
yy
y
y
Dy
wT







Replacing in the integrand by introduces an
error of
z y
 

modnr D
and we may remove the integral averaging:
log1 log,
ynyw
w
wD ywD y
D







Copyright © 2013 SciRes. APM
R. T. GUO 31
 


2
2
12
,log A
T
Dy
Dry y
2
12
1
;
log .
log A
y
yy
yD Dy
Ty







This bound will be satisfactory for
Otherwise, we shall employ the crude b.)log(> 2 A
xxy
ound



log 2
;, 1,y rDD

yy
y
D
which is valid for all positive y. W ith these bounds
 




2
logA
xx
2
mod1 2
2
12
1
max; ,
log ,
log
Dyx
DT
A
y
RDyDr
D
i
xx
xD x
Tx





 



holds uniformly for

234
2log,
A
Tx xDx

 .
We
set 12
.Tx
The double-sum does not exceed


1
2
mod1 2
12 2
1
21ku k
12
12
42
42 d,2,
k
k
k
k
D
T
T
x
x
NuD




where



1
is the largest value of
taken over all
the zeros i
in the rectangle
 
0Re 1,Im2.
s
sT
Supp for the moment that and that
there is no zero that is exception al in tha
4.1, then we may take

osing Dqd
e sense of Lemm
 

1
34
loglog 23loglog 23.c dqTqT

InLe view of mma 4.3, typically

 


1u
12
11
12
12
12
11
12 5
212
d,,
,,,,lo d
12,,logd .
uu
uu
xNu D
g
x
Nu DNu Dxxu
x
NDcDxxu



 

with restriction 512 2
qx
 we have


integral is
78
12 5exp log,Dx x then the




78 19
32 32
exp logexp,xxxlog x


uniformly for 2T
and d . Moreover,

2,
her
12, ,NDD

2 l
s earlier.

1
log A
qd
Rxx

ogD Prachar [11],
Satz 3.3, p. 220, aAltoget
with for which
,and the corresponding function
the same uniformity in d.
If there is an exceptional zero

mod qd ,

1
1
12log4ca

,Ls
is attached to a real character induced by a
itive character prim
mod ,D
,d thenis a disor
with D vi
of some4ad
a
ows that there is no
character
e line-se
nd anication of
fuher L-function
that
n th
0
appl
rt
,DD
Lemma 4.2 sh
formed with a real

mod
has a real zero ogment 4 ,a
 
1
1
12log4Re 1,Imcas s
 
unless that
character is also induced by. In particul,
le by

mod D
 ar
D will be divisib .D
For those m
le of D we m
oduli qd for
which 4ad is not ay choose the
same a multip
as before and recover the above estima for
.
qd
R te
Hence


  
1,
log log
AA
dqd
xq
x


where '' icates that the moduli are not divisible by
the (possibly non-existent) modulus D.
A theorem of Siegel shows that foere is
a positive constant
max;,yq
dr

1
yx
dqd

y
xx
ind
r any th
0
c so that an L-ffromed
with a real chunction
aracter
mod D has n o zero on the
line-segment
()0;cD s

e1R1,Im
  cf.
Prachar [ 1 1], Satz 8. 2, p .144. Unles s


1
12
log ,Dc x
this again allows the argument
to pceed. We may therefore assume that

ro 2A
Dxlog
the above summ
and remove the restriction from
ation over at an expense o
''
f d



2
40mod
log
log .
log A
d
ad D
xx
xx x
qdqD qx


A modified version of this argument delivers the
bound

  
1A
o excepti
tion we see that
max;,,
log
yx yqrqqx
and in this case there is nonal zero.
By substrac
 
yx
1
lo A
Gxqx
g
indeed holds for every fixed
0.A
Since
log ,qq
an application of Lemma 2.1
6,BA
shows that with
Copyright © 2013 SciRes. APM
R. T. GUO
Copyright © 2013 SciRes. APM
32




 
,1
log
1
max max;,
,
log
Brqdy x
qd xx
A
y
yqdr qd
x
qx

of wh
uniformly for moduli


3
exp loglogqx x
 that are
powers aere 25
, if 12
and
512,
if 920.
Replacing

;,
y
qd r
in this bound by

;, log
py
yqdr p

moprdqd
introduces an error
 


12
12
log
6
12 1
log
log
log ,
Bm
B
qd x x
A
qd xx
p
xxq x


the congruence condition
havi
ignored.
Employing the Brun-Titchmarsh bound
valid unifromly for
1
2log
mod
m
mx
px
pr qd

mod
m
pr qdng been
 

1
;,log ,yDry Dy


34
1,,1,DyrD bution to
the sum in the theorem s from that
e rangeA
yy
occur in th
We see that the contri
that arise maxima
g is

0
0loxx 





12 1
1
logdy y
1
000
1
log .
dx q
A
yq q
xq x
e confine our attention to maxima
over the range
Integration bys that

We may therefor
0.yyx
parts show





 

0
max;,
1max;
yyx
Li y
yDr D
yD D

The theorems hold with
0
logyy
x
Dx

6.
0;, , .
Li yy
yDr r

BA
8. Acknowledgements
This work is su (Gpported by IIFSDUrant No
2012JC020). Th e author would like to thank to Prof
Jianya Liu and Guangshi Lü for their encouragements.
REFERENCES
[1] H. Iwaniec and E. Kowalski, “Analy tic Number Theory,”
American Mathematical Society, P r o v i d e n c e , 2004.
[2] rge Sieve,” , Vol. 12,
0025579300005313
E. Bo mb ie r i, “ On the LaMathematika
No. 2, 1965, pp. 210-225.
http://dx.doi.org/10.1112/S
[3] A. I. Vinogradov, “The Density Hypothesis for Dirichlet
L-Series,” Izvestiya Rossiiskoi Akademii Nauk SSSR.
Seriya Matematicheskaya, Vol. 29, 1965, pp. 903-934.
http://dx.doi.org/10.1007/s11139-006-0250-4
[4] P. D. T. A. Elliott, “Primes in Progressions to Moduli
with a Large manujan Journal,
Vol. 13, No. 1
h a
t in Four
-
ford), Vol.
Power Factor,” The Ra
-3, 2007, pp. 241-251.
[5] M. B. Barban, Y. V. Linink and N. G. Chudakov, “On
Prime Numbers in an Arithmetic Progression wit
Prime-Power Difference,” Acta Arithmetica, Vol. 9, No . 4,
1964, pp. 375-390.
[6] J. Y. Liu and M. C. Liu, “The Exceptional Se
Prime Squares Problem,” Illinois Journal of Mathematics,
Vol. 44, No. 2, 2000, pp. 272-293.
[7] J. Y. Liu, “On Lagrange’s Theorem with Prime Vari
ables,” Quarterly Journal of Mathematics (Ox
54, No. 4, 2003, pp. 453-462.
http://dx.doi.org/10.1093/qmath/hag028
[8] D. R. Heath-Brown, “Prime Numbers in Short Intervals
and a Generalized Vaughan’s Identity,” Canadian Jour-
nal of Mathematics, Vol. 34, 1982, pp. 1365-1377.
http://dx.doi.org/10.4153/CJM-1982-095-9
[9] S. K. K. Choi and A. Kumchev, “Mean Values of Dirich-
let Polynomials and Applications to Linear Equations
with Prime Variables,” Acta Arithmetica, Vol. 123, No. 2,
2006, pp. 125-142.
http://dx.doi.org/10.4064/aa123-2-2
[10] H. Ivaniec, “On Zeros of Dirichlet’s L-Series,” Inventio-
nes Mathematicae, Vol. 23, No. 2, 1974, pp. 97-104.
http://dx.doi.org/10.1007/BF01405163
[11] K. P rach ar, “Primzahlverteilung,” Grund. der mat h. W iss. ,
Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.
[12] D. R. Heath-Brown, “Zero-Free Regions for Diri
L-Functions and the Least Prime in an Archlet
ithmetic Pro-
gressions,” Proceedings of the London Mathematical So-
ciety, Vol. 64, No. 2, 1992, pp. 265-338.
http://dx.doi.org/10.1112/plms/s3-64.2.265
.
essor