N. H. FONTON ET AL.

class frequencies. The method based on moment (MOM) appears

to be the most appropriate.

Distribution models for marketable products were developed

for coppices and for high forests using stand variables and

MOM.

Acknowledgements

This study was sponsored by the Belgiun “Commission Uni-

versitaire pour le Développement (CUD)”—through le Projet

Interuniversitaire Ciblé: Contribution au développement d’une

filière du teck au départ des forêts privées du Sud-Bénin (Dé-

partement de l’Atlantique)”.

REFERENCES

A

L.f.) poles value chain in Southern

Benin. Forest Policy and Economics, 15, 98-107.

http://dx.doi.org/10.1

nyonge, C. H., & Roshetko, J. M. (2003). Farm-level timber produc-

tion: Orienting farmers towards the market. Unasylva, 54, 48-56.

Aoudji, A. K. N., Adégbidi, A., Agbo, V., Atindogbé, G., Toyi, M. S.

S., Yêvidé, A. S. I., Ganglo, J. C., & Lebailly, P. (2012). Functioning

of farm-grown timber value chains: Lessons from the smallholder-

produced teak (Tectona grandis

016/j.forpol.2011.10.004

valuation et caractérisa

Atindogbé, G. (2012). Etion de la ressource en

B

Fr meter distribution

H

teck (Tectona grandis L.f.) dans les plantations privées du Sud-Bénin.

Thèse de doctorat, Bénin: Université d’Abomey-Calavi.

Bailey, R. L., & Dell, T. R. (1973). Quantifying diameter distributions

with Weibull function. Forest Sciences, 19, 97-104.

orders, B. E., Souter, R. A., Bailey, R. L., & Ware, K. D. (1987). Per-

centile-based distributions characterize forest stand tables. Forest

Sciences, 33, 570-576.

azier, J. R. (1981). Compatible whole-stand and dia

models for loblolly pine stands. Ph.D. Thesis, Blacksburg: Virginia

Polytechnic Institute.

afley, W. L., & Schreuder, H. T. (1977). Statistical distributions for

fitting diameter and height data in even-aged stands. Canadian Jour-

nal of Forest Research, 7, 481-487.

http://dx.doi.org/10.1139/x77-062

Harrison, S. R., Herbohn, J. L., & Niskanen, A. J. (2002). Non-indus-

trial, smallholder, small-scale and family forestry: What’s in a name?

Small-Scale Forest Economics. Management and Policy, 1, 1-11.

Kilkki, P., & Paivinen, R. (1986). Weibull function in the estimation of

the basal area dbh-distribution. Silva Fennica, 20, 149-156.

Kilkki, P., Maltamo, M., Mykkanen, R., & Paivinen, R. (1989). Use of

the Weibull function in estimating the basal area dbhdistribution.

Silva Fennica, 23, 311-318.

noebel, B. R., Burkhart, H. E., & Beck,K D. E. (1986). A growth and

L

yield model for thinned stands of yellow-poplar. Forest Sciences Mo-

nograph, 27, 64.

afond, V., Cordonnier, T., De Coligny, F., & Courbaud, B. (2012).

Reconstructing harvesting diameter distribution from aggregate data.

Annals of Forest Science, 69, 235-243.

http://dx.doi.org/10.1007/s13595-011-0155-2

Leduc, D. J., Matney, T. G., Belli, K. L., & Baldwin, V. C. (2001). Pre-

dicting diameter distributions of longleaf pine plantations: A com-

parison between artificial neural networks and other accepted me-

thodologies. USDA For Serv Res Pap SRS-25.

ei, Y. (2008). Evaluation of three methods for estimating the Weibull L

L

picéa commun (Picea

distribution parameters of Chinese pine (Pinus tabulaeformis). For-

est Sciences, 54, 566-571.

ejeune, P. (1994). Construction d’un modèle de répartition des arbres

par classes de grosseur pour des plantations d’é

abies L Karst) en Ardenne belge. Annals of Forest Science, 51, 53-

65. http://dx.doi.org/10.1051/forest:19940104

indsay, S. R., Wood, G. R., & Woollons, R. C. (1996). Stand table

modeling through the Weibull distribution and usage of skewness

information. Forest Ecology and Management, 81, 19-23.

http://dx.doi.org/10.1016/0378-1127(95)03669-5

ittle, S. N. (1983). Weibull diameter distributions for mixed stands of

western conifers. Canadian

L

Journal of Forest Research, 13, 85-88.

http://dx.doi.org/10.1139/x83-012

iu, C., Zhang, S. Y., Lei, Y., Newton, P. F., & Zhang, L. (2004).

Evaluation of three methods predicting diameter distributions of

black spruce (Picea mariana) plantations in ce

L

ntral. Canadian Jour-

nal of Forest Research, 34, 2424-2432.

http://dx.doi.org/10.1139/x04-117

ouppe, D. (2008). Tectona grandis (L. f). In D. Louppe, A.

Amoako, & M. Brink (Eds.), Ressources végé

LA. Oteng-

tales de l’Afrique

n

ys Publishers; Wageningen, Pays-

M

M the diameter distribution of

n’s SB probability density func-

Tropicale. Bois d’oeuvre 1. [Traduction de: Plant Resources of Tro-

pical Africa. Timbers 1. 2008]. Wageningen, Pays-Bas: Fondatio

PROTA; Leiden, Pays-Bas: Backhu

Bas: CTA.

aldonado, G., & Louppe, D. (1999). Les plantations villageoises de

teck en Côte d’Ivoire. Bois et Forêts des Tropiques, 262, 19-30.

ateus, A., & Tomé, M. (2011). Modelling

eucalyptus plantations with Johnso

tion: Parameters recovery from a compatible system of equations to

predict stand variables. Annals of Forest Science, 68, 325-335.

http://dx.doi.org/10.1007/s13595-011-0037-7

urthy, P. D. N., Xie, M., & Jiang, R. (2004). Weibull models. Wiley

series in probability and statistics. Hoboken.

M

Nanang, D. M. (1998). Suitability of the normal, log-normal and Wei-

7.

bull distributions for fitting diameter distributions of neem planta-

tions in Northern Ghana. Forest Ecology and Management, 103, 1-

http://dx.doi.org/10.1016/S0378-1127(97)00155-2

awir, A. A., Kassa, H., Sandewall, M., Dore, D., Campbell, B., Ohls-

son, B., & Bekele, M. (2007). Stimulating smallholder tree plant-

ing—Lessons from Africa and Asia. Unasylva, 58, 53-59.

ewton, P. F., & Amponsah, I. G. (2005). Evalua

N

Ntion of Weibull-based

structural stand density

parameter prediction equation systems for black spruce and jack pine

stand types within the context of developing

management diagrams. Canadian Journal of Forest Research, 35,

2996-3010. http://dx.doi.org/10.1139/x05-216

iskanen, A. (1998). Financial and economic profitability of reforesta-

tion in Thaïland. Forest Ecology and Management,

N

104, 57-68.

http://dx.doi.org/10.1016/S0378-1127(97)00263-6

diwe, A. F., Adewumi, R. A., Alami, A. A., & Ogunsanwo, O. (2012).

Carbon stock in topsoil, standing floor litter and above g

O

round bio-

P

ry of the SB distribu-

P la decision pour

R

eibull distribution. Proceed-

R

R992). Construction d’une

62, 357-370.

mass in Tectona grandis plantation 10-years after establishment in

Ile-Ife, Southwestern Nigeria. International Journal of Biological

and Chemical Sciences, 6, 3006-3016.

arresol, B. R., Fonseca, T. F., & Marques, C. P. (2010). Numerical

details and SAS programs for parameter recove

tion. Forest Service, Southern Research Station, General Technical

Report SRS-122, United States Department of Agriculture, 31 p.

auwels, D. (2003). Conception d’un systeme d’aide à

le choix d’un Scenario sylvicole: Application aux peuplements de

mélèze en Région wallonne. Thèse de Doctorat, Gembloux: Faculté

Universitaire des Sciences Agronomiques.

azali, A. M., Salih, A. A., & Mahdi, A. A. (2009). Best estimate for

the parameters of the three parameter W

ings of the 5th Asian Mathematical Conference, Malaysia, 2009.

ennolls, K., Geary, D. N., & Rollinson, T. J. D. (1985). Characterizing

diameter distributions by the use of the Weibull distribution. For-

estry, 58, 57-66.

Reynolds, M. R., Burk, T. E., & Huang, W. C. (1988). Goodness of fit

tests and model selection procedures for diameter distribution models.

Forest Sciences, 34, 373-399.

ondeux, J., Laurent, C., & Thibaut, A. (1

table de production pour le douglas (Pseudotsuga mensiesii Mirb.

Franco) en Belgique. Bulletin des Recherches Agronomiques de

Gembloux, 27, 327-347.

Scherr, S. J. (2004). Building opportunities for small-farm agroforestry

to supply domestic wood markets in developing countries. Agrofor-

estry Systems, 61-

Lhttp://dx.doi.org/10.1023/B:AGFO.0000029010.97567.2b

orres-Rojo, J. M., Magaña, O. S., & Acosta, M. (2000). Metodología

para mejorar la predicción de

T

parámetros de distribuciones diamé-

tricas. Agrociencia, 34, 627-637.

Copyright © 2013 SciRes.

120