Crystal Structure Theory and Applications, 2012, 1, 107-113
http://dx.doi.org/10.4236/csta.2012.13020 Published Online December 2012 (http://www.SciRP.org/journal/csta)
Crystal and Molecular Structure of
N-[2-(6-Methoxy-2-oxo-2H-Chromen-4-yl-Benzofuran-3-yl]-
Benzamide
G. Anuradha1, G. Vasuki1*, Imtiyaz Ahmed Khan2, Manohar V. Kulkarni2
1Department of Physics, Kunthavai Naachiar Government Arts College, Thanjavur, India
2Department of Chemistry, Karnatak University, Dharwad, India
Email: *vasuki.arasi@yahoo.com
Received October 28, 2012; revised November 25, 2012; accepted December 3, 2012
ABSTRACT
The crystal structure of the potential active N-[2-(6-Methoxy-2-oxo-2H-chromen-4-yl)-benzofuran-3-yl]-benzamide
(C25H17NO5) (I) has been determined from single crystal X-ray diffraction data. The title compound crystallizes in the
monoclinic space group P 21/n, with a = 12.0551(11), b = 9.7853(8), c = 16.6517(16) Å, β = 90.092(4)˚, V = 1964.28(3)
Å3, Dcalc = 1.391 Mg/m3, Z = 4. In the structure, intermolecular H-bonds lead to the formation of a centrosymmetric
dimer of the molecule. There is an intramolecular C7—H7…N1 hydrogen bond forming a closed seven membered ring.
There are also intramolecular π-π interactions presented between the 3,6-Dihydro-2H-pyran ring of the chromen moiety
[Cg2…Cg2 distance = 3.5812(13) Å]. The packing structure is stabilized by these C—H…N, N—H…O hydrogen
bonds, C—H… π and ππ interactions.
Keywords: Benzamide; Benzofuran; 2H-Chromen; Single Crystal Structure; X-Ray Diffraction
1. Introduction
The amide and sulfonamide moieties are the constituents
of many biologically important compounds [1]. Cou-
marin derivatives are known to be an interesting class of
natural or synthetic compounds, whose biological activ-
ity varies according to the substitutes on the benzopyran
ring. Their antibacterial, antifungal, antitumor, anti-HIV
and anti-inflammatory and analgesic activities have been
published [2]. Benzamide derivatives, known for their
anti-inflammatory and immunomodulatory, anti-tumoral,
antipsychotic and antiallergic activities, are drugs widely
used in medicine [3]. Benzanilides and benzamides ex-
hibit wide range of biological activity and are extensively
used in organic synthesis. Various N-substituted benza-
mides exhibit potent antiemetic activity [4]. The benzani-
lide core is presented in compounds with such a wide
range of biological activities that it has been called a
privileged structure. Benzanilides have established their
efficacy as centroid elements of ligands that bind to a
wide variety of receptor types. Thus benzanilides con-
taining aminoalkyl groups originally designed as a pep-
tidomimetic, have been incorporated in an Arg-Gly-Asp
cyclic peptide yielding a high affinity GΠIb/IIIa ligand.
Imatinib is an ATP-site binding kinase inhibitor and
platelet-derived growth factor receptor kinases. Pyridyl-
methyl containing benzanilide are vascular endothelial
growth factor receptor and tyrosine kinase inhibitor. Fur-
thermore, benzamides have been reported to have acti-
vities as acetyl-CoA carboxylase and farnesyl transferase
inhibitors [5]. N-substituted benzamides are well known
anticancer compounds and the mechanism of action for
N-substituted benzamide-induced apoptosis has been
studied, using declopramide as a lead compound. N-sub-
stituted benzamides inhibit the activity of nuclear factor-
B and nuclear factor of activated T cells activity while
inducing activator protein 1 activity in T lymphocytes.
Various N-substituted benzamides exhibit potent antie-
metic activity, while heterocyclic analogs of benzanilide
derivatives are potassium channel activators. O-Aryloxy-
lation of N-substituted benzamides induced by the copper
(II)/trimethylamine N-oxide system has been studied.
N-Alkylated 2-nitrobenzamides are intermediates in the
synthesis of dibenzo[b,e] [1,4] diazepines and N-Acyl-
2-nitrobenzamides are precursors of 2,3-disubstitued 3H-
quinazoline-4-ones. A one-pot conversion of 2-nitro-n-
arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has
also been reported [6]. As a part of studying the ring and
side-chain substitutions on the crystal structures of che-
mically and biologically important class of compounds
such as benzanilides, we report herein the crystal struc-
*Corresponding author.
C
opyright © 2012 SciRes. CSTA
G. ANURADHA ET AL.
108
ture of the title compound (I).
2. Experimental
2.1. Synthesis of the Title Compound
A suspension of 0.01 mole of 4-(3’-amino-2’-benzo (b)
furanyl) coumarin and 8ml of benzoyl chloride was hea-
ted and stirred at 80˚C for about 45 minutes. The mixture
was cooled and solid separated was washed thoroughly
with cold water and then with ethyl acetate to give suffi-
ciently pure product. The compound is crystallised in
alcohol, yield 93%, melting point 204˚C. The compound
is recrystallized from ethanol to get good quality single
crystals.
2.2. X-Ray Crystallography
For the crystal structure determination, the single crystal
of the compound C25H17NO5 was used for data collection
on a Bruker Kappa APEXII CCD diffractometer [7]. The
MoKα radiation of wavelength, (λ = 0.71073 Å) and
multi-scan technique for absorption correction were used
for data collection. The lattice parameters were deter-
mined by the least-squares methods on the basis of all
reflections with F2 > 2σ (F2). The structures were solved
by direct methods using SHELXS-97 and refined by a
full-matrix least-squares procedure using the program
SHELXL-97 [8,9]. H atoms were positioned geometri-
cally and refined using a riding model, fixing the aro-
matic C—H distances at 0.93 Å [Uiso(H) = 1.2 Ueq (C)].
The softwares used for Molecular graphics are ORTEP-3
for Windows [10] and PLATON [11]. The software used
to prepare material for publication is WinGX publication
routines [12]. Chemical structure of the title compound is
shown in Figure 1. Molecular structure of the compound
showing the atomic numbering scheme is shown in Fig-
ure 2(a). The crystallography details for the structures
determination of the compound are presented in Table 1.
Atomic coordinates and equivalent isotropic displace-
ment parameters are shown in Table 2. Bond lengths and
bond angles are shown in Table 3. Anisotropic dis-
placement parameters are shown in Table 4. Hydrogen
coordinates and isotropic displacement parameters are
shown in Table 5. Torsion angles and Hydrogen bond
geometry are shown in Tables 6 and 7 respectively.
O
O
N
H
C
O
O
O
Figure 1. Chemical structure of the title compound.
3. Results and Discussion
Title compound crystallizes in the monoclinic centro-
symmetric space group P21/n (No: 14) with Z = 4. The
structure of the compound consists of 6-Methoxy-2-oxo-
2H-chromen and Benzofuran fragments that connect to
the benzamide moiety. None of the aromatic systems are
coplanar with the benzamide unit. Dihedral angles be-
tween 1 - 2, 1 - 3 planes have been calculated. The mean
plane through the benzamide unit (1 = N1/C19/O5/C20-
C25) is inclined at a dihedral angle of 65.85(5)˚ with
respect to the benzofuran unit (2 = O4/C11-C18) and
79.36(5)˚ with respect to the 2H-chromen (3 = C2-C10/
O2) ring system. The C11—C12—N1 angle is 126.86
(19)˚, implying that the benzofuran ring system attached
at the N1 atom is pushed away from the benzamide unit.
The relative orientation of this benzofuran system with
(a)
(b)
Figure 2. (a): Molecular structure of the title compound
showing the atomic numbering system; (b): Molecular struc-
ture with different orientation of benzoyl group and benzo-
furan ring. Displacement ellipsoids are drawn at the 50%
probability level.
Copyright © 2012 SciRes. CSTA
G. ANURADHA ET AL. 109
respect to the 2H-chromen moiety is determined by the
C8—C11—C12—N1 torsion angle 5.4(4)˚, correspond-
ing to + sp.
The title compound shows an intramolecular C—
H…N hydrogen bond (Table 7) which results in the for-
mation of a seven membered ring (N1—C12—C11—
C8—C6—C7—H7) and leads to a synperiplanar confor-
mation between the benzofuran group and the 2H-chro-
men group. The torsion angles in this region, N1— C12—
C11—C8, 5.4(4)˚ and C7—C6—C8—C11, –1.5 (3)˚
confirm this conformation. This formation forces the two
amide hydrogen atoms to the opposite direction.
In the crystal structure, two intermolecular N—H…O
[N(1)…O(3)a = 3.003(3) Å, N(1)—H(1)…O(3)a =
156(2)˚, symmetry code (a); 2-x,-y,-z] H-bonds, which
lead to the formation of a centrosymmetric dimer of the
molecule in the crystal unit cell (Figure 3). Here the
molecules are linked by paired N1—H1…O3 hydrogen
bonds in R22(16) dimers, which are further linked into chains
Table 1. Crystal data and structure refinement.
Temperature 293(2) K
Wavelength 0.71073 Å
Crystal system monoclinic
Space group P 21/n
Unit cell dimensions a = 12.0551(11) Å α = 90˚
b = 9.7853(8) Å β = 90.092
(4)˚
c = 16.6517(16) Å γ = 90˚
Volume 1964.3(3) Å3
Z 4
Density (calculated) 1.391 Mg/m3
Absorption coefficient 0.098 mm1
F(000) 856
Crystal size 0.20 × 0.20 × 0.20 mm3
Theta range for
data collection 1.22˚ to 24.99˚
Index ranges –14 < = h < = 14, –11< =
k < = 8, –19 < = l < = 19
Reflections collected 17190
Independent reflections 3455 [R(int) = 0.0428]
Completeness to theta =
24.99˚ 99.90%
Max. and min. transmission 0.9807 and 0.9807
Refinement method Full-matrix least-squares on
F2
Data/restraints/parameters 3455/0/287
Goodness-of-fit on F2 1.038
Final R indices [I >
2sigma(I)] R1 = 0.0370, wR2 = 0.0845
R indices (all data) R1 = 0.0476, wR2 = 0.0915
Extinction coefficient 0.0073(9)
Largest diff. peak and hole 0.212 and –0.152 e·Å3
Table 2. Atomic coordinates (× 104) and equivalent isotropic
displacement parameters (Å2 × 103). U(eq) is defined as one
third of the trace of the orthogonalized Uij tensor.
x y z U(eq)
O(4) 11144(1)2298(2) 2014(1) 40(1)
O(3) 12148(2)–307(2) –446(1) 60(1)
O(1) 7940(2) 5367(2) –523(1) 53(1)
N(1) 8170(2) 2391(2) 1750(1) 34(1)
C(11) 10195(2)2252(2) 1543(1) 34(1)
C(6) 9883(2) 2613(2) 43(1) 35(1)
C(9) 11192(2)948(2) 541(1) 40(1)
O(2) 11010(1)1284(2) –869(1) 51(1)
C(12) 9283(2) 2508(2) 1994(1) 31(1)
C(22) 4702(2) 1585(2) 1476(1) 44(1)
C(8) 10416(2)1898(2) 704(1) 33(1)
C(21) 5822(2) 1785(2) 1598(1) 38(1)
C(17) 9826(3) 3160(2) 4199(1) 56(1)
C(23) 3985(2) 2668(3) 1497(2) 48(1)
C(13) 9665(2) 2758(2) 2800(1) 34(1)
C(14) 10800(2)2625(2) 2776(1) 39(1)
C(16) 10973(3)3039(3) 4152(2) 59(1)
C(7) 9102(2) 3667(2) 126(1) 35(1)
C(24) 4385(2) 3955(3) 1640(2) 60(1)
O(5) 7707(1) 4463(2) 2222(1) 55(1)
C(20) 6234(2) 3079(2) 1749(1) 32(1)
C(15) 11489(2)2776(3) 3437(2) 53(1)
C(2) 8700(2) 4331(2) –541(1) 39(1)
C(5) 10230(2)2292(2) –725(1) 42(1)
C(18) 9156(2) 3031(2) 3532(1) 44(1)
C(10) 11496(2)581(3) –263(2) 44(1)
C(4) 9847(2) 2982(3) –1391(1) 55(1)
C(3) 9084(2) 4005(3) –1305(1) 51(1)
C(25) 5493(2) 4158(2) 1772(2) 51(1)
C(19) 7416(2) 3373(2) 1930(1) 34(1)
C(1) 7353(2) 5572(3) 195(2) 68(1)
by means of C—H…π (Table 7) and ππ stacking in-
teractions. The latter involve the intramolecular interac-
tions between 3,6-Dihydro-2H-pyran rings (O2,C5,C6,
C8,C9,C10 = Cg2) of the chromen moiety [Cg2…Cg2
distance = 3.5812(13) Å; symmetry code: (i) 2-x,-y,-z].
Packing diagram and H bonding geometry along the
a-axis [symmetry code: 2-x,-y,-z] is shown in Figure 4.
H atoms involved in the interactions have only been
shown in this Figure.
IR spectral details:
IR data of the title compound are:
3302 (-NH-), 1696 (C = O), 1678 (C = O), 1616 (-C = C),
1036 (-C-O-C-).
Copyright © 2012 SciRes. CSTA
G. ANURADHA ET AL.
110
Table 3. Bond lengths [Å] and angles [˚].
O(4)-C(14) 1.375(3) C(12)-C(11)-C(8) 136.1(2)
O(4)-C(11) 1.386(3) O(4)-C(11)-C(8) 113.33(18)
O(3)-C(10) 1.211(3) C(5)-C(6)-C(7) 117.6(2)
O(1)-C(2) 1.367(3) C(5)-C(6)-C(8) 117.2(2)
O(1)-C(1) 1.404(3) C(7)-C(6)-C(8) 125.05(19)
N(1)-C(19) 1.357(3) C(8)-C(9)-C(10) 122.6(2)
N(1)-C(12) 1.406(3) C(8)-C(9)-H(9) 118.7
N(1)-H(1) 0.87(3) C(10)-C(9)-H(9) 118.7
C(11)-C(12) 1.355(3) C(10)-O(2)-C(5) 121.76(18)
C(11)-C(8) 1.465(3) C(11)-C(12)-N(1) 126.86(19)
C(6)-C(5) 1.381(3) C(11)-C(12)-C(13) 106.78(19)
C(6)-C(7) 1.404(3) N(1)-C(12)-C(13) 125.96(19)
C(6)-C(8) 1.453(3) C(23)-C(22)-C(21) 120.3(2)
C(9)-C(8) 1.347(3) C(23)-C(22)-H(22) 119.8
C(9)-C(10) 1.434(3) C(21)-C(22)-H(22) 119.8
C(9)-H(9) 0.93 C(9)-C(8)-C(6) 119.1(2)
O(2)-C(10) 1.353(3) C(9)-C(8)-C(11) 118.84(19)
O(2)-C(5) 1.384(3) C(6)-C(8)-C(11) 121.91(19)
C(12)-C(13) 1.439(3) C(22)-C(21)-C(20) 120.5(2)
C(22)-C(23) 1.368(3) C(22)-C(21)-H(21) 119.8
C(22)-C(21) 1.380(3) C(20)-C(21)-H(21) 119.8
C(22)-H(22) 0.93 C(18)-C(17)-C(16) 121.9(2)
C(21)-C(20) 1.384(3) C(18)-C(17)-H(17) 119.1
C(21)-H(21) 0.93 C(16)-C(17)-H(17) 119.1
C(17)-C(18) 1.378(4) C(22)-C(23)-C(24) 119.6(2)
C(17)-C(16) 1.389(4) C(22)-C(23)-H(23) 120.2
C(17)-H(17) 0.93 C(24)-C(23)-H(23) 120.2
C(23)-C(24) 1.370(4) C(14)-C(13)-C(18) 118.9(2)
C(23)-H(23) 0.93 C(14)-C(13)-C(12) 105.94(19)
C(13)-C(14) 1.374(3) C(18)-C(13)-C(12) 135.1(2)
C(13)-C(18) 1.393(3) C(13)-C(14)-O(4) 110.51(19)
C(14)-C(15) 1.385(3) C(13)-C(14)-C(15) 124.3(2)
C(16)-C(15) 1.368(4) O(4)-C(14)-C(15) 125.2(2)
C(16)-H(16) 0.93 C(15)-C(16)-C(17) 121.3(2)
C(7)-C(2) 1.375(3)
C(15)-C(16)-H(16) 119.3
C(7)-H(7) 0.93 C(17)-C(16)-H(16) 119.3
C(24)-C(25) 1.368(3) C(2)-C(7)-C(6) 120.2(2)
C(24)-H(24) 0.93 C(2)-C(7)-H(7) 119.9
O(5)-C(19) 1.223(2) C(6)-C(7)-H(7) 119.9
C(20)-C(25) 1.383(3) C(25)-C(24)-C(23) 120.4(2)
C(20)-C(19) 1.484(3) C(25)-C(24)-H(24) 119.8
C(15)-H(15) 0.93 C(23)-C(24)-H(24) 119.8
C(2)-C(3) 1.390(3) C(25)-C(20)-C(21) 118.2(2)
C(5)-C(4) 1.378(3) C(25)-C(20)-C(19) 117.80(19)
C(18)-H(18) 0.93 C(21)-C(20)-C(19) 123.92(19)
C(4)-C(3) 1.368(4) C(16)-C(15)-C(14) 115.9(2)
C(4)-H(4) 0.93 C(16)-C(15)-H(15) 122
C(3)-H(3) 0.93 C(14)-C(15)-H(15) 122
C(25)-H(25) 0.93 O(1)-C(2)-C(7) 124.6(2)
C(1)-H(1A) 0.96 O(1)-C(2)-C(3) 114.5(2)
C(1)-H(1B) 0.96 C(7)-C(2)-C(3) 120.9(2)
C(1)-H(1C) 0.96 C(4)-C(5)-C(6) 122.2(2)
C(14)-O(4)-C(11) 106.20(17) C(4)-C(5)-O(2) 115.9(2)
C(2)-O(1)-C(1) 117.61(18) C(6)-C(5)-O(2) 121.9(2)
C(19)-N(1)-C(12) 121.23(19) C(17)-C(18)-C(13) 117.7(2)
C(19)-N(1)-H(1) 120.7(18) C(17)-C(18)-H(18) 121.2
C(12)-N(1)-H(1) 118.0(18) C(13)-C(18)-H(18) 121.2
C(12)-C(11)-O(4) 110.55(17) O(3)-C(10)-O(2) 117.3(2)
O(2)-C(10)-C(9) 117.2(2) O(3)-C(10)-C(9) 125.5(2)
C(3)-C(4)-C(5) 119.9(2) O(5)-C(19)-N(1) 120.9(2)
C(3)-C(4)-H(4) 120.1 O(5)-C(19)-C(20) 121.59(19)
C(5)-C(4)-H(4) 120.1 N(1)-C(19)-C(20) 117.51(19)
C(4)-C(3)-C(2) 119.3(2) O(1)-C(1)-H(1A) 109.5
C(4)-C(3)-H(3) 120.3 O(1)-C(1)-H(1B) 109.5
C(2)-C(3)-H(3) 120.3 H(1A)-C(1)-H(1B) 109.5
C(24)-C(25)-C(20) 121.0(2) O(1)-C(1)-H(1C) 109.5
C(24)-C(25)-H(25) 119.5 H(1A)-C(1)-H(1C) 109.5
C(20)-C(25)-H(25) 119.5 H(1B)-C(1)-H(1C) 109.5
Table 4. Anisotropic displacement parameters (Å2 × 103).
U11 U22 U33 U23 U13 U12
O(4) 34(1) 49(1)37(1) –2(1) –6(1)6(1)
O(3) 52(1)63(1)66(1) –17(1) 12(1)14(1)
O(1) 57(1)57(1)45(1) 13(1) 0(1) 12(1)
N(1) 32(1)34(1)36(1) –7(1) 2(1) 0(1)
C(11)34(1)34(1)34(1) 2(1) -4(1) 2(1)
C(6) 30(1)40(1)34(1) –2(1) 2(1) –7(1)
C(9) 37(1)43(1)41(1) –3(1) 2(1) 2(1)
O(2) 50(1)63(1)41(1) –10(1) 8(1) 12(1)
C(12)32(1)31(1)31(1) 2(1) 1(1) 2(1)
C(22)40(1) 46(1) 46(1) –9(1) –1(1) –7(1)
C(8) 29(1)34(1)37(1) –2(1) 4(1) –2(1)
C(21)40(1) 34(1) 39(1) –5(1) 4(1) 4(1)
C(17)86(2) 52(2) 29(1) –2(1) 1(1) –9(2)
C(23)33(1)59(2)53(2) 2(1) –4(1) 1(1)
C(13)45(1)28(1)31(1) 3(1) 1(1) –2(1)
C(14)44(2)35(1)36(1) 2(1) –5(1) 3(1)
C(16)87(2)50(2)38(1) 4(1) –22(2)–5(2)
C(7) 34(1)42(1)29(1) 2(1) 3(1) -4(1)
C(24)40(2)47(2)91(2) 4(2) –3(1)13(1)
O(5) 48(1)37(1)80(1) –16(1) –7(1)–2(1)
C(20)33(1)34(1)30(1) 0(1) 4(1) –1(1)
C(15)56(2)52(2)51(2) 2(1) –19(1)6(1)
C(2) 36(1)42(1)38(1) 5(1) 0(1) –3(1)
C(5) 35(1)52(1)39(1) –8(1) 7(1) 1(1)
C(18)58(2)42(1)32(1) 1(1) 7(1) –4(1)
C(10)35(1)48(1)49(1) –11(1) 6(1) 0(1)
C(4) 54(2)82(2)30(1) –1(1) 4(1) 4(2)
C(3) 49(2) 69(2) 34(1) 10(1) –2(1) –2(1)
C(25)44(2) 32(1) 76(2) –3(1) 5(1) 5(1)
C(19)37(1)32(1)33(1) 0(1) 4(1) –2(1)
C(1) 73(2)77(2)53(2) 8(1) 7(2) 35(2)
Table 5. Hydrogen coordinates (× 104) and isotropic dis-
placement parameters (Å2 × 103).
x y z U(eq)
H(9) 11545 513 967 48
H(22) 4432 709 1378 53
H(21) 6305 1044 1579 45
H(17) 9502 3334 4696 67
H(23) 3230 2531 1415 58
H(16) 11398 3138 4614 70
H(7) 8856 3917 634 42
H(24) 3901 4695 1648 71
H(15) 12256 2704 3397 64
H(18) 8390 3124 3570 53
H(4) 10107 2752 –1899 66
H(3) 8824 4478 –1751 61
H(25) 5753 5034 1879 61
H(1A) 6989 4738 346 101
H(1B) 6809 6276 117 101
H(1C) 7859 5840 611 101
H(1) 7970(20) 1660(30) 1489(16) 61(8)
Copyright © 2012 SciRes. CSTA
G. ANURADHA ET AL. 111
Table 6. Torsion angles [˚].
C(14)-O(4)-C(11)-C(12) –1.4(2)
C(14)-O(4)-C(11)-C(8) –179.38(17)
O(4)-C(11)-C(12)-N(1) –171.91(19)
C(8)-C(11)-C(12)-N(1) 5.4(4)
O(4)-C(11)-C(12)-C(13) 1.1(2)
C(8)-C(11)-C(12)-C(13) 178.4(2)
C(19)-N(1)-C(12)-C(11) –135.3(2)
C(19)-N(1)-C(12)-C(13) 53.0(3)
C(10)-C(9)-C(8)-C(6) –1.8(3)
C(10)-C(9)-C(8)-C(11) –177.2(2)
C(5)-C(6)-C(8)-C(9) –1.6(3)
C(7)-C(6)-C(8)-C(9) –176.8(2)
C(5)-C(6)-C(8)-C(11) 173.7(2)
C(7)-C(6)-C(8)-C(11) –1.5(3)
C(12)-C(11)-C(8)-C(9) –138.6(3)
O(4)-C(11)-C(8)-C(9) 38.6(3)
C(12)-C(11)-C(8)-C(6) 46.1(3)
O(4)-C(11)-C(8)-C(6) –136.68(19)
C(23)-C(22)-C(21)-C(20) 0.5(4)
C(21)-C(22)-C(23)-C(24) 0.0(4)
C(11)-C(12)-C(13)-C(14) –0.3(2)
N(1)-C(12)-C(13)-C(14) 172.8(2)
C(11)-C(12)-C(13)-C(18) –177.7(2)
N(1)-C(12)-C(13)-C(18) –4.6(4)
C(18)-C(13)-C(14)-O(4) 177.31(18)
C(12)-C(13)-C(14)-O(4) –0.6(2)
C(18)-C(13)-C(14)-C(15) –1.6(3)
C(12)-C(13)-C(14)-C(15) –179.4(2)
C(11)-O(4)-C(14)-C(13) 1.2(2)
C(11)-O(4)-C(14)-C(15) –179.9(2)
C(18)-C(17)-C(16)-C(15) -0.4(4)
C(5)-C(6)-C(7)-C(2) 0.8(3)
C(8)-C(6)-C(7)-C(2) 176.0(2)
C(22)-C(23)-C(24)-C(25) –0.9(4)
C(22)-C(21)-C(20)-C(25) –0.1(3)
C(22)-C(21)-C(20)-C(19) 176.6(2)
C(17)-C(16)-C(15)-C(14) –0.8(4)
C(13)-C(14)-C(15)-C(16) 1.8(3)
O(4)-C(14)-C(15)-C(16) –176.9(2)
C(1)-O(1)-C(2)-C(7) –14.5(3)
C(1)-O(1)-C(2)-C(3) 167.6(2)
C(6)-C(7)-C(2)-O(1) –180.0(2)
C(6)-C(7)-C(2)-C(3) –2.2(3)
C(7)-C(6)-C(5)-C(4) 0.9(3)
C(8)-C(6)-C(5)-C(4) –174.7(2)
C(7)-C(6)-C(5)-O(2) 179.0(2)
C(8)-C(6)-C(5)-O(2) 3.4(3)
C(10)-O(2)-C(5)-C(4) 176.5(2)
C(10)-O(2)-C(5)-C(6) –1.7(3)
C(16)-C(17)-C(18)-C(13) 0.7(4)
C(14)-C(13)-C(18)-C(17) 0.3(3)
C(12)-C(13)-C(18)-C(17) 177.4(2)
C(5)-O(2)-C(10)-O(3) 178.2(2)
C(5)-O(2)-C(10)-C(9) –1.7(3)
C(8)-C(9)-C(10)-O(3) –176.4(2)
Continue
C(8)-C(9)-C(10)-O(2) 3.5(3)
C(6)-C(5)-C(4)-C(3) –1.1(4)
O(2)-C(5)-C(4)-C(3) –179.3(2)
C(5)-C(4)-C(3)-C(2) –0.3(4)
O(1)-C(2)-C(3)-C(4) 180.0(2)
C(7)-C(2)-C(3)-C(4) 2.0(4)
C(23)-C(24)-C(25)-C(20) 1.2(4)
C(21)-C(20)-C(25)-C(24) –0.7(4)
C(19)-C(20)-C(25)-C(24) –177.7(2)
C(12)-N(1)-C(19)-O(5) 9.1(3)
C(12)-N(1)-C(19)-C(20) –171.69(18)
C(25)-C(20)-C(19)-O(5) 12.3(3)
C(21)-C(20)-C(19)-O(5) –164.5(2)
C(25)-C(20)-C(19)-N(1) –166.9(2)
C(21)-C(20)-C(19)-N(1) 16.3(3)
Table 7. Hydrogen bonds [Å and ˚], Cg4 is the centroid of
the C13-C18 ring; Cg5 is the centroid of the C20-C25 ring.
D-H...A d(D-H) d(H...A) d(D...A)<(DHA)
C(7)-H(7)…N1 0.93 2.52 3.184(3)128
N(1)-H(1)...O (3)i 0.87(3) 2.19(3) 3.003(3)156(2)
C(4)-H(4)…Cg(5)ii 0.93 2.54 3.427(3)160
C(22)-H(22)…Cg(4)iii 0.93 2.78 3.608(3)149
Note: Symmetry transformations used to generate equivalent atoms: (i)1 – x +
2, –y, –z; (ii)1/2 + x,1/2 – y, –1/2 + z; (iii) 3/2 – x, –1/2 + y, 1/2 – z.
The authenticity of the compound has been established
from the obtained peak values.
4. Conclusion
The N-substituted benzamide derivatives have been re-
viewed for antibacterial, anti-inflammatory, analgesic
and antiulcer actions. Pharmaceutical compositions of
amide derivatives are used as, therapeutic agents for hy-
pertension, angina, pectoris, asthma, renal and peripheral
circulatory disturbances and inhibitors of vasospasm. The
compounds are useful where cell death is due to trauma,
viral infection, neurodegenerative disorder, cardiovascu-
lar disease, immune deficiency disorder, autoimmune
disorder, renal disease, syndromes or pancreatitis. Sub-
stituted benzamides are acting as inhibitors of HIV pro-
tease [13]. These reported points are very useful to un-
derstand the benefit functions of the substituted ben-
zamides in general. The title compound belongs to a
class of 4-2’-benzofuranyl coumarins, the methoxy de-
rivatives of which have exhibited potential anti inflam-
matory activity [14]. Further the 6-methoxy group is well
known to undergo biotransformation to the correspond-
ing 6-hydroxy coumarin possessing a phenolic group
which enhances its ability of binding with biomolecules
which is the basis of its pharmacological activity. The
N-benzoyl moiety will also undergo cleavage to generate
Copyright © 2012 SciRes. CSTA
G. ANURADHA ET AL.
112
(a)
(b)
(c)
Figure 3. (a): Formation of centrosymmetric dimers; π-π
interaction shown as dotted line; (b): Part of the crystal
structure of the compound, showing formation of a centro-
symmetric R22(16) dimmer; (c): Packing diagram, showing
infinite chains running along the b-axis direction. Hydrogen
bonds are shown as dashed lines. For the sake of clarity H
atoms not involved in the motif shown have been omitted.
a potential pharmacophoric amino group. The stereo-
chemistry of the amide linkage has been established by
present X-ray studies which is not possible by the con-
ventional spectral studies. The title compound is air-sta-
ble in the solid state, crystallized from ethanol and in-
soluble in water. The authenticity of the compound has
been established by IR technique. The crystallographic
Figure 4. Packing diagram and H bonding geometry along
the a-axis [symmetry code: 2 – x, –y, –z]. H atoms not in-
volved in these interactions have been omitted for clarity.
investigation carried out was quite interesting by the
zigzag packing of the dimers formed due to the two dif-
ferent orientations (Figures 2(a) and (b)) of the benzoyl
group and the benzofuran ring. The amide was adopting
the S-trans configuration and the packing diagram re-
vealed a rare type of dimeric linkage between the lactone
carbonyl and the amide N—H bond. The compound
characterized can be essential in medicinal and biological
applications. The title structure may be important from a
medicinal point of view as well as their widespread bio-
logical significance. The structure may be useful for fur-
ther investigation on the mechanism, potential activity,
optimal reaction condition etc.
5. Acknowledgements
The authors thank the Sophisticated Analytical Instru-
ment Facility, IIT Madras, Chennai-36, for the data col-
lection.
REFERENCES
[1] V. Z. Rodrigues, B. T. Gowda, V. Vrábel and J. Kožíšek,
“4-Chloro-N-(3,5-Dimethylphenyl)Benzamide,” Acta Cry-
stallographica E, Vol. 68, Part 3, 2012, p. o820.
doi:10.1107/S1600536812007180
[2] V. Maddi, S. N. Mamledesai, D. Satyanarayana and S. Swa-
my, “Synthesis and Antiinflammatory Activity of Substi-
tuted (2-Oxochromen-3-yl)Benzamides,” Indian Journal
of Pharamceutical Sciences, Vol. 69, No. 6, 2007, pp.
847-849. doi:10.4103/0250-474X.39452
[3] L. Muruganandam, S. Rajeswari, D. Tamilvendan, V. Ram-
kumar and G. V. Prabhu, “N-[Morpholino(phenyl)methyl]
benzamide,” Acta Crystallographica E, Vol. 65, Part 3,
2009, p. o578. doi:10.1107/S1600536809005327
[4] Anuradha Gurumoorthy, Vasuki Gopalsamy, K. Rama-
murthi, Poonam Piplani and Ruchi Malik, “N-[4-(2-Mor-
pholinoethoxy)Phenyl] Acetamide Monohydrate,” Acta
Copyright © 2012 SciRes. CSTA
G. ANURADHA ET AL.
Copyright © 2012 SciRes. CSTA
113
Crystllographica E, Vol. 67, Part 2, 2011, p. o262.
doi:10.1107/S1600536810053675
[5] A. Saeed, S. Hussain and M. Bolte, “N-(2-Methoxy-
Phenyl)-2-Nitrobenzamide,” Acta Crystallographica E,
Vol. 64, Part 12, 2008, p. o521.
doi:10.1107/S1600536808002298
[6] A. Saeed, R. A. Khera, N. Abbas, J. Simpson and R. G. Stan-
ley, “N-Butyl-4-Chlorobenzamide,” Acta Crystallographi-
ca E, Vol. 64, Part 12, 2008, pp. o2322-o2323.
doi:10.1107/S1600536808036313
[7] Bruker, “APEX2 and SAINT-Plus,” Bruker AXS Inc.,
Madison, 2004.
[8] G. M. Sheldrick, “SHELXS-97 and SHELXL-97, Program
for Crystal Structure Solution and Refinement,” Univer-
sity of Gottingen, Gottingen, 1997.
[9] G. M. Sheldrick, “A Short History of SHELX,” Acta Cry-
stallographica A, Vol. 64, Part 1, 2008, pp. 112-122.
doi:10.1107/S0108767307043930
[10] L. J. Farrugia, “ORTEP-3 for Windows—A Version of
ORTEP-III with a Graphical User Interface (GUI),” Jour-
nal of Applied Crystallography, Vol. 30, No. 1, 1997, p.
565. doi:10.1107/S0021889897003117
[11] A. L. Spek, “Structure Validation in Chemical Crystallo-
graphy,” Acta Crystallographica D, Vol. 65, Part 2, 2009,
pp. 148-155. doi:10.1107/S090744490804362X
[12] L. J. Farrugia, “WinGX Suite for Small-Molecule Single-
Crystal Crystallography,” Journal of Applied Crystallog-
raphy, Vol. 32, Part 4, 1999, pp. 837-838.
doi:10.1107/S0021889899006020
[13] Neerja Gupta and Ruby Naaz, International Journal of
Pharma and Bio Sciences, Vol. 1, No. 3, 2010, pp. 1-7.
[14] M. D. Ghate, M. V. Kulkarni, R. Shobha and S. Y. Kat-
timani, “Synthesis of Vanillin Ethers from 4-(Bromome-
thyl) Coumarins as Anti-Inflammatory Agents,” Euro-
pean Journal of Medicinal Chemistry, Vol. 38, No. 3,
2003, pp. 297-302. doi:10.1016/S0223-5234(03)00016-3