
Face Representation Using Combined Method of Gabor Filters, Wavelet Transformation and DCV  
and Recognition Using RBF 
272 
face databases for different types of wavelets are shown 
in Figure 7. 
5. Conclusion 
The performance of a face recognition system depends 
not only on the classifier, but also on the face representa-
tion. A face recognition system is devised with effective 
face representation by the combined approach of Gabor 
filter, wavelet transformation and discriminative com-
mon vectors and recognition by radial basis function 
(RBF) neural network. The proposed system reduces the 
number of features, minimizes the computational com-
plexity and yielded the better recofgnition rates for ORL 
database, JAFFE face database and ESSEX database. 
The recognition performance of the classification is im-
proved due to the hybrid technique used in the feature 
extraction stage which provides necessary information 
for classification. 
REFERENCES 
[1] C. J. Liu and H. Wechsler, “Gabor Feature Based Classi- 
fication Using the Enhanced Fisher Linear Discriminant 
Model for Face Recognition,” IEEE Transactions on 
Image Processing, Vol. 11, No. 4, 2002, pp. 467-476.   
[2] M. Turk and A. Pentland, “Eigenfaces for Recognition,” 
Cognitive Neuroscience, Vol. 3, No. 1, 1991, pp. 71-86.   
doi:10.1162/jocn.1991.3.1.71 
[3] P. Belhumeur, J. Hespanha and D. Kriegman, “Eigenfaces 
vs Fisher Faces: Recognition Using Class Specific Linear 
Projection,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 20, No. 7, 1997, pp. 711-720.   
doi:10.1109/34.598228 
[4] M. Bartlett, J. Movellan and T. Sejnowski, “Face Recog- 
nition by Independent Component Analysis,” IEEE 
Transactions on Neural Networks, Vol. 13, No. 6, 2002, 
pp. 1450-1464. doi:10.1109/TNN.2002.804287 
[5] Y.-C. Lee and C.-H. Chen, “Feature Extraction for Face 
Recognition Based on Gabor Filters and Two-Dimen- 
sional Locality Preserving Projections,” Proceedings of 
the 5th IEEE Conference on  Intelligent Information 
Hiding and Multimedia Signal Processing, Kyoto, 12-14 
September 2009, pp. 106-109.   
[6] L. Shen and L. Bai, “Face Recognition Based on Gabor 
Features Using Kernel Methods,” Proceedings of the 6th 
IEEE Conference on Face and Gesture Recognition, Seoul, 
17-19 May 2004, pp. 170-175.  
doi:10.1109/AFGR.2004.1301526 
[7] S. F. Xie, S. G. Shan, X. L. Chen and J. Chen, “Fusing 
Local Patterns of Gabor Magnitude and Phase for Face 
Recognition,” IEEE Transactions on Image Processing, 
Vol. 19, No. 5, 2010, pp. 1349-1361.   
doi:10.1109/TIP.2010.2041397 
[8] X. H. Li, K.-M. Lam, L. S. Shen and J. L. Zhou, “Face 
Detection Using Simplified Gabor Features and Hierar-
chical Regions in a Cascade of Classifiers,” Pattern Rec-
ognition Letters, Vol. 30, No. 8, 2009, pp. 717-728.   
doi:10.1016/j.patrec.2009.03.006 
[9] T. P. Weldon, W. E. Higgins and D. F. Dunn, “Efficient 
Gabor Filter Design for Texture Segmentation,” Pattern 
Recognition, Vol. 29, No. 12, 1996, pp. 2005-2015.   
doi:10.1016/S0031-3203(96)00047-7 
[10] Y. Hamamoto, S. Uchimura, M. Watanabe, T. Yasuda, Y. 
Mitani and S.Tomita, “A Gabor Filter-Based Method for 
Recognizing Handwritten Numerals,” Pattern Recogni-
tion, Vol. 31, No. 4, 1998, pp. 395-400.  
doi:10.1016/S0031-3203(97)00057-5 
[11] C. J. Lee and S. D. Wang, “Fingerprint Feature Extraction 
Using Gabor Filters,” Electronics Letters, Vol. 35, No. 4, 
1999, pp. 288-290. doi:10.1049/el:19990213 
[12] C. J. Liu and H. Wechsler, “Independent Component 
Analysis of Gabor Features for Face Recognition,” IEEE 
Transactions on Neural Networks, Vol. 14, No. 4, 2003, 
pp. 919-928. 
[13] A. Kar, D. Bhattacharjee, D. K. Basu, M. Nasipuri and M. 
Kundu, “High Performance Human Face Recognition 
Using Independent High Intensity Gabor Wavelet Re-
sponses: A Statistical Approach,” International Journal 
of Computer Science & Emerging Technologies, Vol. 2, 
No, 1, 2011, pp. 178-187. 
[14] L. L. Shen, L. Bai and M. Fairhurst, “Gabor Wavelets and 
General Discriminant Analysis for Face Identification and 
Verification,” Image and Vision Computing, Vol. 25, No. 
5, 2007, pp. 553-563. doi:10.1016/j.imavis.2006.05.002 
[15] W.-P. Choi, S.-H. Tse, K.-W. Wong and K.-M. Lam, 
“Simplified Gabor Wavelets for Human Face Recogni-
tion,”  Pattern Recognition, Vol. 41, No. 3, 2008, pp. 
1186-1199. doi:10.1016/j.patcog.2007.07.025 
[16] H. Cevikalp, M. Neamtu, M. Wilkes and A. Barkana, 
“Discriminative Common Vectors for Face Recognition,” 
IEEE Transactions on Pattern Analysis and Machine In-
telligence, Vol. 27, No. 1, 2005, pp. 4-13.   
doi:10.1109/TPAMI.2005.9 
[17] L. Wiskott, J. M. Fellous, N. Kuiger and C. Vonder 
Malsburg, “Face Recognition by Elastic Bunch Graph 
Matching,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 9, No. 7, 1997, pp. 775-779.  
doi:10.1109/34.598235 
[18] S. Lahmiri and M. Boukadoum, “Hybrid Discrete Wave-
let Transform and Gabor Filter Banks Processing for 
Mammogram Features Extraction,” Proceedings of IEEE 
9th International Conference New Circuits and Systems 
Conference (NEWCAS), Bordeaux, 26-29 June 2011.   
[19] T. M. Mitchell, “Machine Learning,” China Machine 
Press, Beijing, 2003. 
[20] X.-Y. Jing, Y.-F. Yao, J.-Y. Yang and D. Zhang “A 
Novel Face Recognition Approach Based on Kernel Dis-
criminative Common Vectors (KDCV) Feature Extraction 
and RBF Neural Network,” Neurocomputing, Vol. 71, No. 
13-15, 2008, pp. 3044-3048.   
doi:10.1016/j.neucom.2007.08.027 
[21] M. Balasubramanian, S. Palanivel and V. Ramalingam, 
Copyright © 2012 SciRes.                                                                                JILSA