L. N. SRIDHAR

Copyright © 2012 SciRes. JSBS

32

l. 2, No. 8, 1980

pp. 339-344. doi:10.1007/BF00138666

Glucose Concentrations,” Biotechnology Letters, Vol. 1,

No. 10, 1979, pp. 421-426.

[6] K. J. Lee, M. L. Skotnicki, D. E. Tribe and P. L. Rogers,

“Kinetic Studies on a Highly Productive Strain of Zymo-

monas mobilis,” Biotechnology Letters, Vo,

[7] I. M. L. Jobse. C. A. M. Luyben

6, 1986, pp. 868-877.

s, G. T. C. Egbertsa, K

and J. A. Roels, “Fermentation Kinetics of Zymomonas

mobilis at High Ethanol Concentrations; Oscillations in

Continuous Cultures,” Biotechnology and Bioengineering,

Vol. 28, No.

[8] C. Ghommidh, J. Vaija, S. Bolarinwa and J. M. Navarro,

“Oscillatory Behavior of Zymomonas mobilis in Con-

tinuous Cultures: A Simple Stochastic Model,” Biotech-

nology Letters, Vol. 11, No. 9, 1989, pp. 659-664.

[9] L. J. Bruce, D. B. Axford, B. Ciszek and J. A. Daugulis,

“Extractive Fermentation by Zymomonas mobilis and the

Control of Oscillatory Behavior,” Biotechnology Letters,

Vol. 13, No. 4, 1991, pp. 291-296.

doi:10.1007/BF01041487

[10] L. Perego, J. M. Cabral, S. Dias, L. H. Koshimizu, M. R.

De Melo Cruz, W. Borzani and M. L. R. Vairo, “Influ-

ence of Temperature, Dilution Rate and Sugar Concentra-

tion on the Establishment of Steady-State

Ethanol Fermentation of Molasses,” Bio in Continuous

mass, Vol. 6, No.

3, 1985, pp. 247-256. doi:10.1016/0144-4565(85)90044-7

[11] A. Mulchandani and B. Volesky, “Modelling of the Ace-

tone-Butanol Fermentation with Cell Retention,” Cana-

dian Journal of Chemical Engineering, Vol. 64, No. 4,

nchronization of Sac-

wn in Continuous Culture, II.

1986, pp. 625-631.

[12] C. Strassle, B. Sonnleitner and A. A. Fiechter, “A Predic-

tive Model for the Spontaneous Sy

charomyces cerevisiae Gro

Experimental Verification,” Journal of Biotechnol ogy, Vol.

9, No. 3, 1989, pp. 191-208.

doi:10.1016/0168-1656(89)90108-9

[13] H. K. Von Meyenberg, “Stable Synchrony Oscillations in

Continuous Culture of Saccharomyces cerevisiae under

Glucose Limitation,” In: B. Chance, E. K. Pye, A. K. Shosh

and B. Hess, Eds., Biological and Biochemical Oscilla-

tors, Academic Press, New York, 1973, pp. 411-417.

[14] Y. Zhang and M. A. Henson, “Bifurcation Analysis of

Continuous Biochemical Reactor Models,” Biotechnology

Progress, Vol. 17, No. 4, 2001, pp. 647-660.

doi:10.1021/bp010048w

[15] D. J. W. Simpson, D. S. Kompala and J. D. Meiss, “Dis-

continuity Induced Bifurcations in a Model of Saccharo-

myces cerevisiae,” Mathemati

No. 1, 2009, pp. 40-49. cal Biosciences, Vol. 218,

.mbs.2008.12.005doi:10.1016/j

[16] A. Dhooge, W. Govearts and A. Y. Kuznetsov, “MAT-

CONT: A Matlab Package for Numerical Bifurcation

Analysis of ODEs,” ACM Transactions on Mathematical

Software, Vol. 29, No. 2, 2003, pp. 141-164.

doi:10.1145/779359.779362

[17] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, W. Mestrom,

A. M. Riet and CL_MATCONT, “A Continuation Tool-

box in Matlab,” 2004.

[18] S. J. Parulekar, G. B. Se mones, M. J. Rolf, J. C. Lievense

and H. C. Lim, “Introduction and Elimination of Oscil-

lations in Continuous Cultures of Saccharomyces cere-

visiae”, Biotechnology and Bioengineering, Vol. 28, No.

5, 1986, pp. 700-710. doi:10.1002/bit.260280509

Nomenclature

C: Intracellular Carbohydrate Mass Fraction Storage;

D: Dilution Rate;

V: Volume;

E: Ethanol Concentration;

X: Cell Mass Concentration;

O: Oxygen Concentration;

O*: Oxygen Solubility Limit (7.5);

th

Yi: i Pathway Yield Coefficient.