O. O. OLUWOLE ET AL.

806

4. Conclusions

Conduction heat transfer within ordinary (conventional)

and interlocking bricks with hollow cavities was investi-

gated.

In conventional bricks, increasing the number of cavi-

ties played a substantial role in decreasing heat flow into

the building and hence enhanced thermal insulation. Af-

ter the four-hole arrangement, increasing the number of

holes only gave marginal thermal resistance over the

four-hole arrangement.

In the case of interlocking bricks, it was observed that

staggered hole arrangement helped in decreasing heat

flow into the brick wall. Four-staggered-hole arrange-

ment gave the same thermal resistance as an ordered

eight-hole arrangement. The 8-hole brick arrangement

may also tend to compromise the strength of the brick.

REFERENCES

[1] B. Lacarrière, B. Lartigue and F. Monchoux, “Numerical

Study of Heat Transfer in a Wall of Vertically Perforated

Bricks: Influence of Assembly Method,” Energy and

Buildings, Vol. 35, No. 3, 2003, pp. 229-237.

doi:10.1016/S0378-7788(02)00049-X

[2] S. M. Bajorek and J. R. Lloyd, “Experimental Investiga-

tion of Natural Convection in partitioned Enclosures,”

Journal of Heat Transfer, Vol. 104, No. 3, 1982, pp. 527-

531. doi:10.1115/1.3245125

[3] T. Nishimura, M. Shiraishi, F. Nagasawa and Y. Kawa-

mura, “Natural Convection Heat Transfer in Enclosures

with Multiple Vertical Partitions,” International Journal

of Heat and Mass Transfer, Vol. 31, No. 8, 1988, pp.

1679-1686. doi:10.1016/0017-9310(88)90280-3

[4] D. P. Aviram, A. N. Fried and J. J. Roberts, “Thermal

Properties of a Variable Cavity Wall,” Building and En-

vironment, Vol. 36, No. 9, 2001, pp. 1057-1072.

doi:10.1016/S0360-1323(00)00042-1

[5] J. J. del Coz Diaz, P. J. Garcia Nieto, A. Martin Rodri-

guez, A. L. Martinez-Luengas and C. BetegonBiempica,

“Non-Linear Thermal Analysis of Light Concrete Hollow

Brick Walls by the Finite Element Method and Experi-

mental Validation,” Applied Thermal Engineering, Vol.

26, No. 8-9, 2006, pp. 777-786.

doi:10.1016/j.applthermaleng.2005.10.012

[6] J. J. del Coz Díaz, P. J. García Nieto, C. Betegón Biem-

pica and M. P. Prendes Gero, “Analysis and Optimization

of the Heat-Insulating Light Concrete Hollow Brick

Walls Design by the Finite Element Method,” Applied

Thermal Engineering, Vol. 27, No. 8-9, 2007, pp. 1445-

1456doi:10.1016/j.applthermaleng.2006.10.010

[7] S. Kumar, “Fly Ash-Lime-Phosphogypsum Hollow Blocks

for Walls and Partitions,” Building and Environment, Vol.

38, No. 2, 2003, pp. 291-295.

doi:10.1016/S0360-1323(02)00068-9

[8] M. Ciofalo and T. G. Karayiannis, “Natural Convection

Heat Transfer in a Partially—Or Completely—Partitioned

Vertical Rectangular Enclosure,” International Journal of

Heat and Mass Transfer, Vol. 34, No. 1, 1991, pp. 167-

179. doi:10.1016/0017-9310(91)90184-G

[9] H. Manz, “Numerical Simulation of Heat Transfer by

Natural Convection in Cavities of Facade Elements,” En-

ergy and Buildings, Vol. 35, No. 3, 2003, pp. 305-311.

doi:10.1016/S0378-7788(02)00088-9

[10] M. M. Al-Hazmy, “Analysis of Coupled Natural Convec-

tion Conduction Effects on the Heat Transport through

Hollow Building Blocks,” Energy and Buildings, Vol. 38,

No. 5, 2006, pp. 515-521.

doi:10.1016/j.enbuild.2005.08.010

[11] B. J. Lee and S. Pessiki, “Thermal Performance Evalua-

tion of Precast Concrete Three-Wythe Sandwich Wall

Panels,” Energy and Buildings, Vol. 38, No. 8, 2006, pp.

1006-1014. doi:10.1016/j.enbuild.2005.11.014

[12] C. J. Ho and Y. L. Yih, “Conjugate Natural Convection

Heat Transfer in an Air-Fileld Rectangular Cavity,” In-

ternational Communication in Heat and Mass Transfer,

Vol. 14, No. 1, 1987, pp. 91-100.

doi:10.1016/0735-1933(87)90011-X

[13] T. W. Tong and F. M. Gerner, “Natural Convection in

Partitioned Air-Filled Rectangular Enclosures,” Interna-

tional Communication in Heat and Mass Transfer, Vol.

13, No. 1, 1986, pp. 99-108.

doi:10.1016/0735-1933(86)90076-X

[14] A. Kangni, B. Yedder and E. Bilgen, “Natural Convection

and Conduction in Enclosures with Multiple Vertical Par-

titions,” International Journal of Heat and Mass Transfer,

Vol. 34, No. 1, 1991, pp. 2819-2825.

doi:10.1016/0017-9310(91)90242-7

[15] H. Torkoglu and N. Yucel, “Natural Convection Heat

Transfer in Enclosures with Conducting Multiple Parti-

tions and Side Walls,” Heat and Mass Transfer, Vol. 2,

No. 1-2, 1996, pp. 1-8. doi:10.1007/s002310050084

[16] S. Lorente, “Heat Losses through Building Walls with

Closed, Open and Deformable Cavities,” International

Journal of Energy Research, Vol. 26, No. 7, 2002, pp.

611-632. doi:10.1002/er.807

[17] M. A. Antar and L. C. Thomas, “Heat Transfer through a

Composite Wall with Enclosed Spaces: A Practical Two-

Dimensional Analysis Approach,” ASHRAE Transactions,

Vol. 106, 2001, pp. 318-324.

[18] M. A. Antar and L. C. Thomas, “Heat Transfer through a

Composite Wall with an Evacuated Rectangular Gray

Body Radiating Space: A Numerical Solution,” ASHRAE

Transactions, Vol. 110, No. 2, 2004, pp. 36-45.

[19] M. A. Antar, “Multi-Dimensional Effects in Estimating

the Heat Loss across Building Envelopes,” Proceedings

of the 2nd International Conference on Thermal Engi-

neering Theory and Applications, Al-Ain, 3-6 January

2006.

Copyright © 2012 SciRes. JMMCE