Natural Science
Vol.08 No.12(2016), Article ID:72482,30 pages
10.4236/ns.2016.812052

Cantorian-Fractal Kinetic Energy and Potential Energy as the Ordinary and Dark Energy Density of the Cosmos Respectively

Mohamed S. El Naschie

Department of Physics, Faculty of Science, University of Alexandria, Alexandria, Egypt

Copyright © 2016 by author and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Received: November 23, 2016; Accepted: November 29, 2016; Published: December 2, 2016

ABSTRACT

In a one-dimension Mauldin-Williams Random Cantor Set Universe, the Sigalotti topological speed of light is where. It follows then that the corresponding topological acceleration must be a golden mean downscaling of c namely. Since the maximal height in the one-dimensional universe must be where is the unit interval length and note that the topological mass (m) and topological dimension (D) where m = D = 5 are that of the largest unit sphere volume, we can conclude that the potential energy of classical mechanics translates to. Remembering that the kinetic energy is, then by the same logic we see that when m = 5 is replaced by for reasons which are explained in the main body of the present work. Adding both expressions together, we find Einstein’s maximal energy. As a general conclusion, we note that within high energy cosmology, the sharp distinction between potential energy and kinetic energy of classical mechanics is blurred on the cosmic scale. Apart of being an original contribution, the article presents an almost complete bibliography on the Cantorian-fractal spacetime theory.

Keywords:

Potential Dark Energy, Kinetic Ordinary Energy, Motion as Illusion, Zenonparadoxa, E-Infinity Theory, Noncommutative Geometry, Topological Acceleration, Cantorian Universe, Accelerated Cosmic Expansion

1. Introduction

Space, time, matter and energy are concepts far from being trivial or obvious even within Newtonian classical mechanics [1] - [6] . This view was amply confirmed and deeply pondered in the wonderful writing of scientists such as H. Weyl and Max Jammar [1] [3] . Starting more or less from there it became the Author’s lifelong work and even magical fascination to incorporate the basic structure of quantum mechanics into the very topology and geometry of space and time [7] - [428] . To do this, the author followed a path inspired by the work of Richard Feynman and its development by the Canadian Physicist G. Ord and French Astrophysicist L. Nottale [7] [12] [13] .

The crucial turning point for E-infinity was when the Author’s basic work came in touch with the work on non-commutative geometry [14] [74] . In particular the superb analysis which the great French mathematician Alain Connes undertook on Penrose’s Fractal Tiling Universe using Von-Neumann’s pointless geometry [14] [140] is in retrospect the most important central piece in our current understanding of high energy physics and cosmology [7] - [270] . It turned out that the bijection formula which relates the Hausdorff dimension of an n-dimensional Cantor manifold to its topological dimension n [7]

(1)

where is just a compact version of Von-Neumann-Connes’ dimensional function of a Penrose tiling universe [7] [14] [165] .

(2)

In addition this dimensional function is generic and can be used to understand some of the most complex and difficult problems in Physics and Astrophysics [9] - [429] . In particular, it is easily shown using the above that the quantum particle may be described by the zero set as given by the bi-dimension [7] [27]

(3)

while the quantum wave maybe modeled by the empty set given by the bi-dimension [7] [27]

(4)

In other words, the zero set quantum particle is described by a bi-dimension, zero for the topological dimension and for the Hausdorff dimension. On the other hand, the empty set quantum wave is fixed by the bi-dimension minus one for the topological dimension and for the Hausdorff dimension [7] [9] [73] .

From this simple mental and mathematical picture, we were able to show that the volume of the quantum particle zero set in Kaluza-Klein spacetime is simply, while the corresponding volume of the quantum wave is [23] [24] . In other words, the measure of the particle is multiplicative while understandably the surface of this volume is a hyper-surface constituting the additive measure of the quantum wave. Since particle and wave in this picture, which is a ball, have a hyper spherical border and are therefore necessarily inseparable, it follows then that the total volume of the wave particle “quantum” structure is simply the sum. Inserting in Newton’s kinetic energy one finds [137] [138] [139]

(5)

where c is the speed of light. In that way, we were able to show that [48] - [400]

(6)

By contrast in the present work, we will take another route to arrive at the same result by stressing an optional separation between kinetic energy and potential energy in fractal spacetime.

2. Fractal Potential Energy and Fractal Kinetic Energy of Quantum Spacetime

The following is a “post-modern” and quite novel approach to the same fundamental problems connected to the total accepted theoretical energy density of the universe versus that which was measured and which gave rise to the new concepts of dark energy and dark matter. This problem was previously solved using a plethora of mathematical techniques. However and as we anticipated in the previous section, we are making in the present analysis a strict although optional distinction between potential energy and kinetic energy [430] .

For this reason we start from a one-dimensional Cantor set. For this set everything is zero with the exception of one fundamental thing. The bi-dimension indicated already that the topological dimension is zero. The only thing which is not zero is the Hausdorff dimension which is equal to, but what about where is embedded? That means where is the nothingness which is left from removing iteratively but randomly parts of the unit interval? This zero set “nothing” is not really nothing but rather some- thing and is embedded in the complementary empty set. Since the dimension of the unit interval is, then the dimension of this complementary empty set must be a trivial. This agrees perfectly with the bijection formula and the dimensional function for n = −1 which gives [154] [155]

(7)

or equivalently

(8)

In addition the measure i.e. the length of the complementary set is a trivial 1 − 0 = 1. In other words this empty set is a fat Cantor set [7] [154] [155] .

Now let us look at the velocity in D(0). This was established by the work of the notable Italian physicist L. Sigalotti to be which is not surprisingly the only non-zero quantity in the Cantor set. Next we like to determine the acceleration corresponding to V or say the acceleration analogous to Newtonian gravity on earth.

Now in E-Infinity we have a technique similar to non standard analysis were differentiation is equivalent to golden mean down scaling while integration is a golden mean scaling up [7] [9] [21] [28] .

In this case we have to down scale by multiplication with. Therefore the acceleration is simply

(9)

Again, not surprisingly this corresponds in elasticity to a torsional term and is numerically equal to the Hausdorff dimension of the empty set quantum wave [19] [28] [119] .

Our next step is to determine the height of the mass in the gravity field which is endowed with a positive energy i.e. a potential energy. Since the edges of the unit Cantor interval corresponding to the limit of the universe at a nominal infinity, then the maximum length of the unit interval is simply one half (1/2).

Now we can write heuristically a fractal expression for conventional potential energy for

(10)

provided we know what m is. This is easily reasoned if we get access or an insight into the real meaning of mass. This is clearly connected to energy and energy is related to entropy. On the other hand entropy maybe measured via the Hausdorff dimension which is for the empty set. Now a mass in 5-dimensional spacetime becomes a Kaluza-Klein spacetime five dimensional mass. Consequently, our empty set mass cannot be which is nothing but 1. Therefore it must be m = (1) (5). Inserting in to, we find the familiar expression of ordinary cosmic energy density

(11)

exactly as shown previously using various other methods. Let us stress this point again. We have just established the potential energy nature of dark energy and squared it with the energy of the quantum particle via a mathematical tautology. This is because at the end of the day it is completely the same thing to say

(12)

or to say

(13)

Thus could be interpreted as topological empty set mass m = 5 multiplied with the acceleration or as the volume of the 5D quantum wave empty set namely the additive volume. In other words we have a different mental picture leading to the same result [212] [426] .

Returning to the kinetic energy, this is relatively simpler because real energy of real zero set quantum particles is sensibly interpreted as a 3D mass. In this case we have then to the power of 3D which give us as a multiplicative 3D mass i.e. volume. In turn this can be interpreted as the inverse of the spacetime core Hausdorff dimension [7] [9]

(14)

Inserting in Newton’s Kinetic energy, we find the expected result

(15)

In agreement with expectations, the total energy which is the sum of the Kinetic and the potential energy is equal to Einstein’s maximal energy density [426] [427]

(16)

In concluding this part of our analysis we stress the subtlety of various interpretations of E(D) which could be potentially confusing. This is because could be interpreted

in equal measure as the quantum wave kinetic energy or

the spacetime potential energy. In both cases the result is the same but the “pictures” are different. In fact we could go as far as claiming that within quantum cosmology the difference between kinetic energy and potential energy is fuzzy and so is the difference between the state of motion or being at rest which resonates with the old philosophy of Zeno [430] .

3. Conclusion

We have come a long way in a relatively short time to recognize the depth and beauty involved in the discovery of the so-called missing dark energy of the cosmos. Dark energy is simply potential energy latent in the five-dimensional empty set spacetime. However, one could equally say that dark energy is the energy of quantum wave. Since it may be seen as a product of minus one dimensional empty set, it has a different sign to that of the ordinary energy. Consequently, the topological acceleration when multiplied with the Kaluza-Klein topological mass and divided by the “height” 1/2 is the cause behind the accelerated expansion of the cosmos. As such our result reinforces recent exciting work reported in [424] [430] , and [429] [430] . However the mathematics and methodology used here are entirely different from the said references and therefore this agreement lends both theories considerable credibility.

Cite this paper

El Naschie, M.S. (2016) Cantorian-Fractal Kinetic Energy and Potential Energy as the Ordinary and Dark Energy Density of the Cosmos Respectively. Natural Science, 8, 511-540. http://dx.doi.org/10.4236/ns.2016.812052

References

  1. 1. Weyl, H. (1918) Raum, Zeit, Materie. Vol. 7, Springer, Berlin.

  2. 2. Weyl, H. (1922) Space-Time-Matter. 4th Addition, Dover Publication, Dutton.

  3. 3. Jammer, M. (1993) Concepts of Space. Dover Publication, Mineola.

  4. 4. Jammer, M. (1974) Concept of Force. Recherche, 5, 221-230.

  5. 5. Jammer, M. (1961) Concepts of Mass in Classical and Modern Physics. Dover, New York.

  6. 6. Jammer, M. (1966) The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York, 399 p.

  7. 7. El Naschie, M.S. (2004) A Review of E Infinity Theory and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.
    https://doi.org/10.1016/S0960-0779(03)00278-9

  8. 8. El Naschie, M.S. (1995) Quantum Mechanics, Diffusion and Chaotic Fractals. Chaos, Solitons & Fractals, 4, 1235-1247.
    https://doi.org/10.1016/0960-0779(94)90034-5

  9. 9. El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646.
    https://doi.org/10.1016/j.chaos.2008.09.059

  10. 10. El Naschie, M.S. (2006) Elementary Prerequisites for e-Infinity: (Recommended Background Readings in Nonlinear Dynamics, Geometry and Topology). Chaos, Solitons & Fractals, 30, 579-605.
    https://doi.org/10.1016/j.chaos.2006.03.030

  11. 11. El Naschie, M.S. (2006) On an Eleven Dimensional E-Infinity Fractal Spacetime Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 407-409.

  12. 12. El Naschie, M.S. (2007) A Review of Applications and Results of Ε-Infinity Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 11-20.
    https://doi.org/10.1515/ijnsns.2007.8.1.11

  13. 13. El Naschie, M.S. (2005) Einstein’s Dream and Fractal Geometry. Chaos, Solitons & Fractals, 24, 1-5.
    https://doi.org/10.1016/j.chaos.2004.09.001

  14. 14. El Naschie, M.S. (1998) Penrose Universe and Cantorian Spacetime as a Model for Noncommutative Quantum Geometry. Chaos, Solitons & Fractals, 9, 931-933.
    https://doi.org/10.1016/S0960-0779(98)00077-0

  15. 15. El Naschie, M.S. (2006) The Idealized Quantum Two-Slit Gedanken Experiment Revisited—Criticism and Reinterpretation. Chaos, Solitons & Fractals, 27, 843-849.
    https://doi.org/10.1016/j.chaos.2005.06.002

  16. 16. El Naschie, M.S. (1997) A Note on Quantum Gravity and Cantorian Spacetime. Chaos, Solitons & Fractals, 8, 131-133.
    https://doi.org/10.1016/S0960-0779(96)00128-2

  17. 17. El Naschie, M.S. (1994) Is Quantum Space a Random Cantor Set with a Golden Mean Dimension at the Core? Chaos, Solitons & Fractals, 4, 177-179.
    https://doi.org/10.1016/0960-0779(94)90141-4

  18. 18. El Naschie, M.S. (1996) Time Symmetry Breaking, Duality and Cantorian Space-Time. Chaos, Solitons & Fractals, 7, 499-518.
    https://doi.org/10.1016/0960-0779(96)00007-0

  19. 19. El Naschie, M.S. (2014) Pinched Material Einstein Space-Time Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90.
    https://doi.org/10.4236/ijaa.2014.41009

  20. 20. Nottale, L. (1996) Scale Relativity and Fractal Space-Time: Applications to Quantum Physics, Cosmology and Chaotic Systems. Chaos, Solitons & Fractals, 7, 877-938.
    https://doi.org/10.1016/0960-0779(96)00002-1

  21. 21. Marek-Crnjac, L., El Naschie, M.S. and He, J.H. (2013) Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology. International Journal of Modern Nonlinear Theory and Application, 2, 78.
    https://doi.org/10.4236/ijmnta.2013.21A010

  22. 22. El Naschie, M.S. (2005) From Experimental Quantum Optics to Quantum Gravity via a Fuzzy Kähler Manifold. Chaos, Solitons & Fractals, 25, 969-977.
    https://doi.org/10.1016/j.chaos.2005.02.028

  23. 23. El Naschie, M.S. (2013) A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory. Journal of Quantum Information Science, 3, 23.
    https://doi.org/10.4236/jqis.2013.31006

  24. 24. El Naschie, M.S. (2013) What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse. International Journal of Astronomy and Astrophysics, 3, 205.
    https://doi.org/10.4236/ijaa.2013.33024

  25. 25. El Naschie, M.S. (2005) Einstein in a Complex Time-Some Very Personal Thoughts about Ε-Infinity Theory and Modern Physics. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 331-333.
    https://doi.org/10.1515/IJNSNS.2005.6.3.331

  26. 26. El Naschie, M.S. (2013) A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493.
    https://doi.org/10.4236/ijaa.2013.34056

  27. 27. He, J.H. (2005) Space, Time and beyond. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 343-346.
    https://doi.org/10.1515/IJNSNS.2005.6.4.343

  28. 28. El Naschie, M.S. (2013) A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light. International Journal of Modern Nonlinear Theory and Application, 2, 43.
    https://doi.org/10.4236/ijmnta.2013.21005

  29. 29. El Naschie, M.S. (2013) From Yang-Mills Photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126.
    https://doi.org/10.4236/jqis.2013.34016

  30. 30. He, J.H. (2005) In Search of 9 Hidden Particles. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 93-94.
    https://doi.org/10.1515/IJNSNS.2005.6.2.93

  31. 31. El Naschie, M.S. (2004) Gravitational Instanton in Hilbert Space and the Mass of High Energy Elementary Particles. Chaos, Solitons & Fractals, 20, 917-923.
    https://doi.org/10.1016/j.chaos.2003.11.001

  32. 32. El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrödinger Quantum Wave. Journal of Modern Physics, 4, 591.
    https://doi.org/10.4236/jmp.2013.45084

  33. 33. El Naschie, M. (2014) Cosmic Dark Energy Density from Classical Mechanics and Seemingly Redundant Riemannian Finitely Many Tensor Components of Einstein’s General Relativity. World Journal of Mechanics, 4, 153-156.
    https://doi.org/10.4236/wjm.2014.46017

  34. 34. Sigalotti, L.D.G. and Mejias, A. (2006) On El Naschie’s Conjugate Complex. Time, Fractal E (∞) Space-Time and Faster-Than-Light Particles. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 467-472.

  35. 35. El Naschie, M.S. (1995) On the Nature of Complex Time, Diffusion and the Two-Slit Experiment. Chaos, Solitons & Fractals, 5, 1031-1032.
    https://doi.org/10.1016/0960-0779(95)00044-5

  36. 36. El Naschie, M.S. (2006) On Two New Fuzzy Kähler Manifolds, Klein Modular Space and ‘tHooft Holographic Principles. Chaos, Solitons & Fractals, 29, 876-881.
    https://doi.org/10.1016/j.chaos.2005.12.027

  37. 37. El Naschie, M.S. (2014) The Measure Concentration of Convex Geometry in a Quasi Banach Spacetime behind the Supposedly Missing Dark Energy of the Cosmos. American Journal of Astronomy & Astrophysics, 2, 72-77.
    https://doi.org/10.11648/j.ajaa.20140206.13

  38. 38. El Naschie, M.S. (2004) Quantum Gravity from Descriptive Set Theory. Chaos, Solitons & Fractals, 19, 1339-1344.
    https://doi.org/10.1016/j.chaos.2003.08.009

  39. 39. El Naschie, M.S. and Helal, A. (2013) Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3, 318.
    https://doi.org/10.4236/ijaa.2013.33037

  40. 40. Iovane, G. (2005) Self-Similar and Oscillating Solutions of Einstein’s Equation and Other Relevant Consequences of a Stochastic Self-Similar and Fractal Universe via El Naschie’s ε (∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 23, 351-360.
    https://doi.org/10.1016/j.chaos.2004.05.032

  41. 41. El Naschie, M.S. (2014) Compactified Dimensions as Produced by Quantum Entanglement, the Four Dimensionality of Einstein’s Smooth Spacetime and ‘tHooft’s 4-ε Fractal Spacetime. American Journal of Astronomy & Astrophysics, 2, 34-37.
    https://doi.org/10.11648/j.ajaa.20140203.12

  42. 42. El Naschie, M.S. (2007) The Fibonacci Code behind Super Strings and P-Branes. An Answer to M. Kaku’s Fundamental Question. Chaos, Solitons & Fractals, 31, 537-547.
    https://doi.org/10.1016/j.chaos.2006.07.001

  43. 43. El Naschie, M.S. (2006) Is Einstein’s General Field Equation More Fundamental than Quantum Field Theory and Particle Physics? Chaos, Solitons & Fractals, 30, 525-531.
    https://doi.org/10.1016/j.chaos.2005.04.123

  44. 44. El Naschie, M.S. (2013) A Fractal Menger Sponge Space-Time Proposal to Reconcile Measurements and Theoretical Predictions of Cosmic Dark Energy. International Journal of Modern Nonlinear Theory and Application, 2, 107.
    https://doi.org/10.4236/ijmnta.2013.22014

  45. 45. El Naschie, M.S. (2004) How Gravitational Instanton Could Solve the Mass Problem of the Standard Model of High Energy Particle Physics. Chaos, Solitons & Fractals, 21, 249-260.
    https://doi.org/10.1016/j.chaos.2003.12.001

  46. 46. El Naschie, M.S. (2004) Quantum Gravity, Clifford Algebras, Fuzzy Set Theory and the Fundamental Constants of Nature. Chaos, Solitons & Fractals, 20, 437-450.
    https://doi.org/10.1016/j.chaos.2003.09.029

  47. 47. El Naschie, M.S. (2013) Quantum Entanglement: Where Dark Energy and Negative Gravity plus Accelerated Expansion of the Universe Comes from. Journal of Quantum Information Science, 3, Article ID: 32831.
    https://doi.org/10.4236/jqis.2013.32011

  48. 48. El Naschie, M.S. (2015) Dark Energy and Its Cosmic Density from Einstein’s Relativity and Gauge Fields Renormalization Leading to the Possibility of a New ‘tHooft Quasi Particle. The Open Astronomy Journal, 8, 1-17.
    https://doi.org/10.2174/1874381101508010001

  49. 49. El Naschie, M.S. (2006) The Brain and E-Infinity. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 129-132.
    https://doi.org/10.1515/ijnsns.2006.7.2.129

  50. 50. El Naschie, M.S. (2014) On a New Elementary Particle from the Disintegration of the Symplectic ’tHooft-Veltman-Wilson Fractal Spacetime. World Journal of Nuclear Science and Technology, 4, Article ID: 50539.

  51. 51. El Naschie, M.S. (2013) Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method. Journal of Modern Physics, 4, Article ID: 32975.
    https://doi.org/10.4236/jmp.2013.46103

  52. 52. Tang, W., Li, Y., Kong, H.Y. and El Naschie, M.S. (2014) From Nonlocal Elasticity to Nonlocal Spacetime and Nano Science. Bubbfil Nanotechnology, 1, 3-12.

  53. 53. Iovane, G. and Benedetto, E. (2005) El Naschie Ε-Infinity Cantorian Space-Time, Fantappie’s Group and Applications in Cosmology. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 357-370.
    https://doi.org/10.1515/IJNSNS.2005.6.4.357

  54. 54. El Naschie, M.S. (2004) The Symplictic Vacuum, Exotic Quasi Particles and Gravitational Instanton. Chaos, Solitons & Fractals, 22, 1-11.
    https://doi.org/10.1016/j.chaos.2004.01.015

  55. 55. El Naschie, M.S. (2004) The Concepts of E Infinity: An Elementary Introduction to the Cantorian-Fractal Theory of Quantum Physics. Chaos, Solitons & Fractals, 22, 495-511.
    https://doi.org/10.1016/j.chaos.2004.02.028

  56. 56. El Naschie, M.S. (2006) Elementary Number Theory in Superstrings, Loop Quantum Mechanics, Twistors and E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 27, 297-330.
    https://doi.org/10.1016/j.chaos.2005.04.116

  57. 57. Iovane, G. (2005) Mohamed El Naschie’s ∈(∞) Cantorian Space-Time and Its Consequences in Cosmology. Chaos, Solitons & Fractals, 25, 775-779.
    https://doi.org/10.1016/j.chaos.2005.02.024

  58. 58. El Naschie, M.S. and Marek-Crnjac, L. (2012) Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity. International Journal of Modern Nonlinear Theory and Application, 1, 118.
    https://doi.org/10.4236/ijmnta.2012.14018

  59. 59. El Naschie, M.S. (2000) On the Unification of the Fundamental Forces and Complex Time in the E (∞) Space. Chaos, Solitons & Fractals, 11, 1149-1162.
    https://doi.org/10.1016/S0960-0779(99)00185-X

  60. 60. El Naschie, M.S. (2006) Intermediate Prerequisites for E-Infinity Theory (Further Recommended Reading in Nonlinear Dynamics and Mathematical Physics). Chaos, Solitons & Fractals, 30, 622-628.
    https://doi.org/10.1016/j.chaos.2006.04.042

  61. 61. El Naschie, M.S. (2014) Dark Energy via Quantum Field Theory in Curved Spacetime. Journal of Modern Physics and Applications, 2, 1-7.

  62. 62. El Naschie, M.S. (2013) Nash Embedding of Witten’s M-Theory and the Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4, 1417.
    https://doi.org/10.4236/jmp.2013.410170

  63. 63. El Naschie, M.S. (2013) The Hyperbolic Extension of Sigalotti-Hendi-Sharifzadeh’s Golden Triangle of Special Theory of Relativity and the Nature of Dark Energy. Journal of Modern Physics, 4, 354.
    https://doi.org/10.4236/jmp.2013.43049

  64. 64. El Naschie, M.S. (2003) Modular Groups in Cantorian E(∞) High-Energy Physics. Chaos, Solitons & Fractals, 16, 353-366.
    https://doi.org/10.1016/S0960-0779(02)00440-X

  65. 65. El Naschie, M.S. (2014) From E = mc2 to E = mc2/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entanglement Origin. Journal of Quantum Information Science, 4, 284.
    https://doi.org/10.4236/jqis.2014.44023

  66. 66. El Naschie, M.S. (1993) Statistical Mechanics of Multi-Dimensional Cantor Sets, Gödel Theorem and Quantum Spacetime. Journal of the Franklin Institute, 330, 199-211.
    https://doi.org/10.1016/0016-0032(93)90030-X

  67. 67. El Naschie, M.S. (2003) The VAK of Vacuum Fluctuation: Spontaneous Self-Organization and Complexity Theory Interpretation of High Energy Particle Physics and the Mass Spectrum. Chaos, Solitons & Fractals, 18, 401-420.
    https://doi.org/10.1016/S0960-0779(03)00098-5

  68. 68. El-Ahmady, A.E. (2007) The Variation of the Density Functions on Chaotic Spheres in Chaotic Space-Like Minkowskispace Time. Chaos, Solitons & Fractals, 31, 1272-1278.
    https://doi.org/10.1016/j.chaos.2005.10.112

  69. 69. El Naschie, M.S. (2005) On 336 Kissing Spheres in 10 Dimensions, 528 P-Brane States in 11 Dimensions and the 60 Elementary Particles of the Standard Model. Chaos, Solitons & Fractals, 24, 447-457.
    https://doi.org/10.1016/j.chaos.2004.09.071

  70. 70. El Naschie, M.S. (2014) Entanglement of E8E8 Exceptional Lie Symmetry Group Dark Energy, Einstein’s Maximal Total Energy and the Hartle-Hawking No Boundary Proposal as the Explanation for Dark Energy. World Journal of Condensed Matter Physics, 4, 74-77.
    https://doi.org/10.4236/wjcmp.2014.42011

  71. 71. El Naschie, M.S. (2014) To Dark Energy Theory from a Cosserat-Like Model of Spacetime. Problems of Nonlinear Analysis in Engineering Systems, 20, 79-98.

  72. 72. El Naschie, M.S. (2014) Cosmic Dark Energy from ‘t Hooft’s Dimensional Regularization and Witten’s Topological Quantum Field Pure Gravity. Journal of Quantum Information Science, 4, 83-91.
    https://doi.org/10.4236/jqis.2014.42008

  73. 73. Helal, M.A., Marek-Crnjac, L. and He, J.H. (2013) The Three Page Guide to the Most Important Results of MS El Naschie’s Research in E-Infinity Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141.
    https://doi.org/10.4236/ojm.2013.34020

  74. 74. El Naschie, M.S. (2007) Feigenbaum Scenario for Turbulence and Cantorian E-Infinity Theory of High Energy Particle Physics. Chaos, Solitons & Fractals, 32, 911-915.
    https://doi.org/10.1016/j.chaos.2006.08.014

  75. 75. El Naschie, M.S. (2008) Symmetry Group Prerequisite for E-Infinity in High Energy Physics. Chaos, Solitons & Fractals, 35, 202-211.
    https://doi.org/10.1016/j.chaos.2007.05.006

  76. 76. El Naschie, M.S. (2014) Capillary Surface Energy Elucidation of the Cosmic Dark Energy— Ordinary Energy Duality. Open Journal of Fluid Dynamics, 4, 15-17.
    https://doi.org/10.4236/ojfd.2014.41002

  77. 77. El Naschie, M.S. (2016) Cosserat-Cartan and de Sitter-Witten Spacetime Setting for Dark Energy. Quantum Matter, 5, 1-4.
    https://doi.org/10.1166/qm.2016.1247

  78. 78. El Naschie, M.S. (2015) An Exact Mathematical Picture of Quantum Spacetime. Advances in Pure Mathematics, 5, 560.
    https://doi.org/10.4236/apm.2015.59052

  79. 79. El Naschie, M.S. (2007) Exceptional Lie Groups Hierarchy and the Structure of the Micro Universe. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 445-450.
    https://doi.org/10.1515/IJNSNS.2007.8.3.445

  80. 80. Marek-Crnjac, L. and He, J. (2013) An Invitation to El Naschie’s Theory of Cantorian Space-Time and Dark Energy. International Journal of Astronomy and Astrophysics, 3, 464-471.
    https://doi.org/10.4236/ijaa.2013.34053

  81. 81. El Naschie, M.S. (1997) COBE Satellite Measurement, Cantorian Space and Cosmic Strings. Chaos, Solitons & Fractals, 8, 847-850.
    https://doi.org/10.1016/S0960-0779(97)00084-2

  82. 82. El Naschie, M.S. (2006) Linderhof Room of Mirrors, Thurston Three-Manifolds and the Geometry of Our Universe. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 97-100.
    https://doi.org/10.1515/ijnsns.2006.7.1.97

  83. 83. El Naschie, M.S. (2015) A Resolution of the Black Hole Information Paradox via Transfinite Set Theory. World Journal of Condensed Matter Physics, 5, 249.
    https://doi.org/10.4236/wjcmp.2015.54026

  84. 84. El Naschie, M.S. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, 5, 743-750.
    https://doi.org/10.4236/jmp.2014.59084

  85. 85. El Naschie, M.S. (2005) On a Class of Fuzzy Kähler-Like Manifolds. Chaos, Solitons & Fractals, 26, 257-261.
    https://doi.org/10.1016/j.chaos.2004.12.024

  86. 86. El Naschie, M.S. (2005) Gödel Universe, Dualities and High Energy Particles in E-Infinity. Chaos, Solitons & Fractals, 25, 759-764.
    https://doi.org/10.1016/j.chaos.2004.12.010

  87. 87. El Naschie, M.S. (1998) On the Irreducibility of Spatial Ambiguity in Quantum Physics. Chaos, Solitons & Fractals, 9, 913-919.
    https://doi.org/10.1016/S0960-0779(97)00165-3

  88. 88. El Naschie, M.S. (2013) The Quantum Entanglement behind the Missing Dark Energy. Journal of Modern Physics and Applications, 2, 88-96.

  89. 89. El Naschie, M.S. (2005) Deriving the Essential Features of the Standard Model from the General Theory of Relativity. Chaos, Solitons & Fractals, 24, 941-946.
    https://doi.org/10.1016/j.chaos.2004.10.001

  90. 90. El Naschie, M.S. (2014) Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion. International Journal of Astronomy and Astrophysics, 4, 332.
    https://doi.org/10.4236/ijaa.2014.42027

  91. 91. El Naschie, M.S. (2006) The Unreasonable Effectiveness of the Electron-Volt Units System in High Energy Physics and the Role Played by a0 = 137. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 119-128.
    https://doi.org/10.1515/IJNSNS.2006.7.2.119

  92. 92. El Naschie, M.S. (1998) Superstrings, Knots, and Noncommutative Geometry in E(∞) Space. International Journal of Theoretical Physics, 37, 2935-2951.
    https://doi.org/10.1023/A:1026679628582

  93. 93. El Naschie, M.S. (2013) The Missing Dark Energy of the Cosmos from Light Cone Topological Velocity and Scaling of the Planck Scale. Open Journal of Microphysics, 3, 64-70.
    https://doi.org/10.4236/ojm.2013.33012

  94. 94. El Naschie, M.S. (2008) The Fundamental Algebraic Equations of the Constants of Nature. Chaos, Solitons & Fractals, 35, 320-322.
    https://doi.org/10.1016/j.chaos.2007.06.110

  95. 95. Iovane, G. (2006) El Naschie Ε-Infinity Cantorian Spacetime and Lengths Scales in Cosmology. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 155-162.
    https://doi.org/10.1515/IJNSNS.2006.7.2.155

  96. 96. El Naschie, M.S. (2014) The Meta Energy of Dark Energy. Open Journal of Philosophy, 4, 157-159.
    https://doi.org/10.4236/ojpp.2014.42022

  97. 97. El Naschie, M.S. (2007) From Symmetry to Particles. Chaos, Solitons & Fractals, 32, 427-430.
    https://doi.org/10.1016/j.chaos.2006.09.016

  98. 98. El Naschie, M.S. (2008) Kaluza-Klein Unification-Some Possible Extensions. Chaos, Solitons & Fractals, 37, 16-22.
    https://doi.org/10.1016/j.chaos.2007.09.079

  99. 99. El Naschie, M.S. (2015) On a Non-Perturbative Quantum Relativity Theory Leading to a Casimir-Dark Energy Nanotech Reactor Proposal. Open Journal of Applied Sciences, 5, 313.
    https://doi.org/10.4236/ojapps.2015.57032

  100. 100. He, J.H. (2007) Nonlinear Dynamics and the Nobel Prize in Physics. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 1-4.
    https://doi.org/10.1515/IJNSNS.2007.8.1.1

  101. 101. El Naschie, M.S. (2004) Small World Network, ε (∞) Topology and the Mass Spectrum of High Energy Particles Physics. Chaos, Solitons & Fractals, 19, 689-697.
    https://doi.org/10.1016/S0960-0779(03)00337-0

  102. 102. El Naschie, M.S. (2014) From Chern-Simon, Holography and Scale Relativity to Dark Energy. Journal of Applied Mathematics and Physics, 2, 634-638.
    https://doi.org/10.4236/jamp.2014.27069

  103. 103. El Naschie, M.S. (2005) Experimental and Theoretical Arguments for the Number and the Mass of the Higgs Particles. Chaos, Solitons & Fractals, 23, 1091-1098.
    https://doi.org/10.1016/j.chaos.2004.08.001

  104. 104. He, J.H. (2006) Application of E-Infinity Theory to Biology. Chaos, Solitons & Fractals, 28, 285-289.
    https://doi.org/10.1016/j.chaos.2005.08.001

  105. 105. He, J.H. and Marek-Crnjac, L. (2013) Mohamed El Naschie’s Revision of Albert Einstein’s E = m0c2: A Definite Resolution of the Mystery of the Missing Dark Energy of the Cosmos. International Journal of Modern Nonlinear Theory and Application, 2, 55-59.
    https://doi.org/10.4236/ijmnta.2013.21006

  106. 106. El Naschie, M.S. (1998) Dimensional Symmetry Breaking, Information and Fractal Gravity in Cantorian Space. Biosystems, 46, 41-46.
    https://doi.org/10.1016/S0303-2647(97)00079-8

  107. 107. El Naschie, M.S. (2005) On Einstein’s Super Symmetric Tensor and the Number of Elementary Particles of the Standard Model. Chaos, Solitons & Fractals, 23, 1521-1525.
    https://doi.org/10.1016/j.chaos.2004.09.003

  108. 108. El Naschie, M.S. (2001) A General Theory for the Topology of Transfinite Heterotic Strings and Quantum Gravity. Chaos, Solitons & Fractals, 12, 969-988.
    https://doi.org/10.1016/S0960-0779(00)00263-0

  109. 109. El Naschie, M.S. (2006) Fuzzy Dodecahedron Topology and E-Infinity Spacetime as a Model for Quantum Physics. Chaos, Solitons & Fractals, 30, 1025-1033.
    https://doi.org/10.1016/j.chaos.2006.05.088

  110. 110. El Naschie, M.S. (2013) Determining the Missing Dark Energy Density of the Cosmos from a Light Cone Exact Relativistic Analysis. Journal of Physics, 2, 18-23.

  111. 111. El Naschie, M.S., Marek-Crnjac, L., Helal, M.A. and He, J.H. (2014) A Topological Magueijo-Smolin Varying Speed of Light Theory, the Accelerated Cosmic Expansion and the Dark Energy of Pure Gravity. Applied Mathematics, 5, 1780-1790.
    https://doi.org/10.4236/am.2014.512171

  112. 112. Sigalotti, L.D.G. and Mejias, A. (2006) The Golden Ratio in Special Relativity. Chaos, Solitons & Fractals, 30, 521-524.
    https://doi.org/10.1016/j.chaos.2006.03.005

  113. 113. Castro, C., El-Naschie, M.S. and Granik, A. (2000) Why We Live in 3 + 1 Dimensions. CERN Document Server. (No. hep-th/0004152).

  114. 114. Marek Crnjac, L. and El Naschie, M.S. (2013) Quantum Gravity and Dark Energy Using Fractal Planck Scaling. Journal of Modern Physics, 4, 31-38.
    https://doi.org/10.4236/jmp.2013.411A1005

  115. 115. El Naschie, M.S. (2016) Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent. Journal of Quantum Information Science, 6, 1-9.
    https://doi.org/10.4236/jqis.2016.61001

  116. 116. El Naschie, M.S. (1993) On Certain Infinite Dimensional Cantor Sets and the Schrödinger Wave. Chaos, Solitons & Fractals, 3, 89-98.
    https://doi.org/10.1016/0960-0779(93)90042-Y

  117. 117. El Naschie, M.S. (1995) Statistical Geometry of a Cantor Discretum and Semiconductors. Computers & Mathematics with Applications, 29, 103-110.
    https://doi.org/10.1016/0898-1221(95)00062-4

  118. 118. El Naschie, M.S. (2003) Kleinian Groups in E(∞) and Their Connection to Particle Physics and Cosmology. Chaos, Solitons & Fractals, 16, 637-649.
    https://doi.org/10.1016/S0960-0779(02)00489-7

  119. 119. El Naschie, M.S. (2014) Electromagnetic—Pure Gravity Connection via Hardy’s Quantum Entanglement. Journal of Electromagnetic Analysis and Applications, 6, 233.
    https://doi.org/10.4236/jemaa.2014.69023

  120. 120. El Naschie, M.S. (2013) Experimentally Based Theoretical Arguments That Unruh’s Temperature, Hawking’s Vacuum Fluctuation and Rindler’s Wedge Are Physically Real. American Journal of Modern Physics, 2, 357-361.
    https://doi.org/10.11648/j.ajmp.20130206.23

  121. 121. El Naschie, M.S. (2015) Kerr Black Hole Geometry Leading to Dark Matter and Dark Energy via E-Infinity Theory and the Possibility of a Nano Spacetime Singularities Reactor. Natural Science, 7, 210.
    https://doi.org/10.4236/ns.2015.74024

  122. 122. Castro, C. (2000) Is Quantum Space-Time Infinite Dimensional. Chaos, Solitons & Fractals, 11, 1663-1670.
    https://doi.org/10.1016/S0960-0779(00)00018-7

  123. 123. El Naschie, M.S. (2014) Calculating the Exact Experimental Density of the Dark Energy in the Cosmos Assuming a Fractal Speed of Light. International Journal of Modern Nonlinear Theory and Application, 3, 1-5.
    https://doi.org/10.4236/ijmnta.2014.31001

  124. 124. El Naschie, M.S. (2004) Topological Defects in the Symplictic Vacuum, Anomalous Positron Production and the Gravitational Instanton. International Journal of Modern Physics E, 13, 835-849.
    https://doi.org/10.1142/S0218301304002429

  125. 125. El Naschie, M.S. (2000) Towards a Geometrical Theory for the Unification of All Fundamental Forces. Chaos, Solitons & Fractals, 11, 1459-1469.
    https://doi.org/10.1016/S0960-0779(99)00194-0

  126. 126. El Naschie, M.S. (2014) From Modified Newtonian Gravity to Dark Energy via Quantum Entanglement. Journal of Applied Mathematics and Physics, 2, 803.
    https://doi.org/10.4236/jamp.2014.28088

  127. 127. El Naschie, M.S. (2001) On a Heterotic String-Based Algorithm for the Determination of the Fine Structure Constant. Chaos, Solitons & Fractals, 12, 539-549.
    https://doi.org/10.1016/S0960-0779(00)00187-9

  128. 128. El Naschie, M.S. (2005) Determining the Number of Higgs Particles Starting from General Relativity and Various Other Field Theories. Chaos, Solitons & Fractals, 23, 711-726.
    https://doi.org/10.1016/j.chaos.2004.06.048

  129. 129. El Naschie, M.S. (2015) Quantum Fractals and the Casimir-Dark Energy Duality—The Road to a Clean Quantum Energy Nano Reactor. Journal of Modern Physics, 6, 1321.
    https://doi.org/10.4236/jmp.2015.69137

  130. 130. Iovane, G. and Giordano, P. (2007) Wavelets and Multiresolution Analysis: Nature of ε (∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 32, 896-910.
    https://doi.org/10.1016/j.chaos.2005.11.097

  131. 131. He, J.H., Liu, Y., Xu, L. and Yu, J.Y. (2007) Micro Sphere with Nanoporosity by Electrospinning. Chaos, Solitons & Fractals, 32, 1096-1100.
    https://doi.org/10.1016/j.chaos.2006.07.045

  132. 132. Chen, W. (2006) Time-Space Fabric Underlying Anomalous Diffusion. Chaos, Solitons & Fractals, 28, 923-929.
    https://doi.org/10.1016/j.chaos.2005.08.199

  133. 133. El Naschie, M.S. (2006) Is Gravity Less Fundamental than Elementary Particles Theory? Critical Remarks on Holography and E-Infinity Theory. Chaos, Solitons & Fractals, 29, 803-807.
    https://doi.org/10.1016/j.chaos.2006.01.012

  134. 134. El Naschie, M.S. (2008) Average Exceptional Lie and Coxeter Group Hierarchies with Special Reference to the Standard Model of High Energy Particle Physics. Chaos, Solitons & Fractals, 37, 662-668.
    https://doi.org/10.1016/j.chaos.2008.01.018

  135. 135. El Naschie, M.S. (2015) Hubble Scale Dark Energy Meets Nano Scale Casimir Energy and the Rational of Their T-Duality and Mirror Symmetry Equivalence. World Journal of Nano Science and Engineering, 5, 57.
    https://doi.org/10.4236/wjnse.2015.53008

  136. 136. El Naschie, M.S. (2005) Determining the Mass of the Higgs and the Electroweak Bosons. Chaos, Solitons & Fractals, 24, 899-905.
    https://doi.org/10.1016/j.chaos.2004.11.003

  137. 137. El Naschie, M.S. (2015) From Kantian-Reinen Fernunft to the Real Dark Energy Density of the Cosmos via the Measure Concentration of Convex Geometry in Quasi Banach Spacetime. Open Journal of Philosophy, 5, 123.
    https://doi.org/10.4236/ojpp.2015.51014

  138. 138. El Naschie, M.S. (2014) Rindler Space Derivation of Dark Energy. Journal of Modern Physics and Applications, 6, 1-10.

  139. 139. Marek-Crnjac, L. and El Naschie, M.S. (2013) Chaotic Fractal Tiling for the Missing Dark Energy and Veneziano Model. Applied Mathematics, 4, 22.
    https://doi.org/10.4236/am.2013.411A2005

  140. 140. Nottale, L. (1999) The Scale-Relativity Program. Chaos, Solitons & Fractals, 10, 459-468.
    https://doi.org/10.1016/S0960-0779(98)00195-7

  141. 141. El Naschie, M.S. (2013) The Hydrogen Atom Fractal Spectra, the Missing Dark Energy of the Cosmos and Their Hardy Quantum Entanglement. International Journal of Modern Nonlinear Theory and Application, 2, 167.
    https://doi.org/10.4236/ijmnta.2013.23023

  142. 142. El Naschie, M.S. (2005) A New Solution for the Two-Slit Experiment. Chaos, Solitons & Fractals, 25, 935-939.
    https://doi.org/10.1016/j.chaos.2005.02.029

  143. 143. He, J.H. (2007) On the Number of Elementary Particles in a Resolution Dependent Fractal Spacetime. Chaos, Solitons & Fractals, 32, 1645-1648.
    https://doi.org/10.1016/j.chaos.2006.08.015

  144. 144. Gottlieb, I., Agop, M., Ciobanu, G. and Stroe, A. (2006) El Naschie’s ε (∞) Space-Time and New Results in Scale Relativity Theories. Chaos, Solitons & Fractals, 30, 380-398.
    https://doi.org/10.1016/j.chaos.2005.11.018

  145. 145. El Naschie, M.S. (2015) The Cantorian Monadic Plasma behind the Zero Point Vacuum Spacetime Energy. American Journal of Nano Research and Application, 3, 66-70.

  146. 146. Gottlieb, I., Agop, M. and Jarcau, M. (2004) El Naschie’s Cantorian Space-Time and General Relativity by Means of Barbilian’s Group: A Cantorian Fractal Axiomatic Model of Space-Time. Chaos, Solitons & Fractals, 19, 705-730.
    https://doi.org/10.1016/S0960-0779(03)00244-3

  147. 147. El Naschie, M.S. (2009) On Zero-Dimensional Points Curvature in the Dynamics of Cantorian-Fractal Spacetime Setting and High Energy Particle Physics. Chaos, Solitons & Fractals, 41, 2725-2732.
    https://doi.org/10.1016/j.chaos.2008.10.001

  148. 148. El Naschie, M.S. (2008) High Energy Physics and the Standard Model from the Exceptional Lie Groups. Chaos, Solitons & Fractals, 36, 1-17.
    https://doi.org/10.1016/j.chaos.2007.08.058

  149. 149. El Naschie, M.S. (2001) On Twistors in Cantorian E (∞) Space. Chaos, Solitons & Fractals, 12, 741-746.
    https://doi.org/10.1016/S0960-0779(00)00193-4

  150. 150. El Naschie, M.S. (2005) Non-Euclidean Spacetime Structure and the Two-Slit Experiment. Chaos, Solitons & Fractals, 26, 1-6.
    https://doi.org/10.1016/j.chaos.2005.02.031

  151. 151. El Naschie, M.S. and Rossler, O.E. (1994) Quantum Mechanics and Chaotic Fractals. Chaos, Solitons & Fractals, 4, 307-309.
    https://doi.org/10.1016/0960-0779(94)90049-3

  152. 152. Nottale, L. (1995) Scale Relativity: From Quantum Mechanics to Chaotic Dynamics. Chaos, Solitons & Fractals, 6, 399-410.
    https://doi.org/10.1016/0960-0779(95)80047-K

  153. 153. Marek-Crnjac, L. (2009) A Short History of Fractal-Cantorian Space-Time. Chaos, Solitons & Fractals, 41, 2697-2705.
    https://doi.org/10.1016/j.chaos.2008.10.007

  154. 154. Marek-Crnjac, L. (2015) On El Naschie’s Fractal-Cantorian Space-Time and Dark Energy— A Tutorial Review. Natural Science, 7, 581.
    https://doi.org/10.4236/ns.2015.713058

  155. 155. He, J.H. (2014) A Tutorial Review on Fractal Spacetime and Fractional Calculus. International Journal of Theoretical Physics, 53, 3698-3718.
    https://doi.org/10.1007/s10773-014-2123-8

  156. 156. El Naschie, M.S. (2005) Kähler-Like Manifolds, Weyl Spinor Particles and E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 26, 665-670.
    https://doi.org/10.1016/j.chaos.2005.01.018

  157. 157. El Naschie, M.S. (2005) A P-Brane Vindication of the Two Higgs-Doublet Minimally Super-Symmetric Standard Model and Related Issues. Chaos, Solitons & Fractals, 23, 1511-1514.
    https://doi.org/10.1016/j.chaos.2004.08.008

  158. 158. Agop, M., Griga, V., Ciobanu, B., Ciubotariu, C., Buzea, C.G., Stan, C. and Buzea, C. (1998) Gravity and Cantorian Space-Time. Chaos, Solitons & Fractals, 9, 1143-1181.
    https://doi.org/10.1016/S0960-0779(98)80005-2

  159. 159. Giordano, P., Iovane, G. and Laserra, E. (2007) El Naschie ∈(∞) Cantorian Structures with Spatial Pseudo-Spherical Symmetry: A Possible Description of the Actual Segregated Universe. Chaos, Solitons & Fractals, 31, 1108-1117.
    https://doi.org/10.1016/j.chaos.2006.03.114

  160. 160. El Naschie, M.S. (2005) The Supersymmetric Components of the Riemann-Einstein Tensor as Nine Dimensional Spheres in Ten Dimensional Space. Chaos, Solitons & Fractals, 24, 29-32.
    https://doi.org/10.1016/j.chaos.2004.09.002

  161. 161. He, J.H. (2007) E-Infinity Theory and the Higgs Field. Chaos, Solitons & Fractals, 31, 782-786.
    https://doi.org/10.1016/j.chaos.2006.04.041

  162. 162. Iovane, G., Giordano, P. and Salerno, S. (2005) Dynamical Systems on El Naschie’s ε (∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 24, 423-441.
    https://doi.org/10.1016/j.chaos.2004.09.068

  163. 163. El Naschie, M.S. (2003) On John Nash’s Crumpled Surface. Chaos, Solitons & Fractals, 18, 635-641.
    https://doi.org/10.1016/S0960-0779(03)00007-9

  164. 164. El Naschie, M.S. (2016) On a Fractal Version of Witten’s M-Theory. International Journal of Astronomy and Astrophysics, 6, 135.
    https://doi.org/10.4236/ijaa.2016.62011

  165. 165. El Naschie, M.S. (2008) The Exceptional Lie Symmetry Groups Hierarchy and the Expected Number of Higgs Bosons. Chaos, Solitons & Fractals, 35, 268-273.
    https://doi.org/10.1016/j.chaos.2007.07.036

  166. 166. El Naschie, M.S. (2015) The Casimir Topological Effect and a Proposal for a Casimir-Dark Energy Nano Reactor. World Journal of Nano Science and Engineering, 5, 26.
    https://doi.org/10.4236/wjnse.2015.51004

  167. 167. El Naschie, M.S. (2008) Exact Non-Perturbative Derivation of Gravity’s Fine Structure Constant, the Mass of the Higgs and Elementary Black Holes. Chaos, Solitons & Fractals, 37, 346-359.
    https://doi.org/10.1016/j.chaos.2007.10.021

  168. 168. El Naschie, M.S. (2015) From Fusion Algebra to Cold Fusion or from Pure Reason to Pragmatism. Open Journal of Philosophy, 5, 319.
    https://doi.org/10.4236/ojpp.2015.56040

  169. 169. El Naschie, M.S. (2015) If Quantum “Wave” of the Universe Then Quantum “Particle” of the Universe: A Resolution of the Dark Energy Question and the Black Hole Information Paradox. International Journal of Astronomy and Astrophysics, 5, 243.
    https://doi.org/10.4236/ijaa.2015.54027

  170. 170. Rössler, O.E. (1996) Relative-State Theory: Four New Aspects. Chaos, Solitons & Fractals, 7, 845-852.
    https://doi.org/10.1016/0960-0779(95)00117-4

  171. 171. Nottale, L. (1998) Scale Relativity and Schrödinger’s Equation. Chaos, Solitons & Fractals, 9, 1051-1061.
    https://doi.org/10.1016/S0960-0779(97)00190-2

  172. 172. El Naschie, M.S. (2005) On Penrose View of Transfinite Sets and Computability and the Fractal Character of E-Infinity Spacetime. Chaos, Solitons & Fractals, 25, 531-533.
    https://doi.org/10.1016/j.chaos.2005.01.001

  173. 173. Iovane, G. (2006) Cantorian Space-Time and Hilbert Space: Part II—Relevant Consequences. Chaos, Solitons & Fractals, 29, 1-22.
    https://doi.org/10.1016/j.chaos.2005.10.045

  174. 174. Czajko, J. (2000) On Conjugate Complex Time—I: Complex Time Implies Existence of Tangential Potential That Can Cause Some Equipotential Effects of Gravity. Chaos, Solitons & Fractals, 11, 1983-1992.
    https://doi.org/10.1016/S0960-0779(99)00091-0

  175. 175. El Naschie, M.S. (2005) Dead or Alive: Desperately Seeking Schrödinger’s Cat. Chaos, Solitons & Fractals, 26, 673-676.
    https://doi.org/10.1016/j.chaos.2005.02.030

  176. 176. Nottale, L. (1994) Scale Relativity, Fractal Space-Time and Quantum Mechanics. Chaos, Solitons & Fractals, 4, 361-388.
    https://doi.org/10.1016/0960-0779(94)90051-5

  177. 177. El Naschie, M.S. (2015) Application of Dvoretzky’s Theorem of Measure Concentration in Physics and Cosmology. Open Journal of Microphysics, 5, 11.
    https://doi.org/10.4236/ojm.2015.52002

  178. 178. El Naschie, M.S. (2004) Quantum Collapse of Wave Interference Pattern in the Two-Slit Experiment: A Set Theoretical Resolution. Nonlinear Science Letter A, 2, 1-9.

  179. 179. Iovane, G. (2006) Cantorian Spacetime and Hilbert Space: Part I—Foundations. Chaos, Solitons & Fractals, 28, 857-878.
    https://doi.org/10.1016/j.chaos.2005.08.074

  180. 180. El Naschie, M.S. (1992) On the Uncertainty of Information in Quantum Space-Time. Chaos, Solitons & Fractals, 2, 91-94.
    https://doi.org/10.1016/0960-0779(92)90050-W

  181. 181. Iovane, G., Gargiulo, G. and Zappale, E. (2006) A Cantorian Potential Theory for Describing Dynamical Systems on El Naschie’s Space-Time. Chaos, Solitons & Fractals, 27, 588-598.
    https://doi.org/10.1016/j.chaos.2005.05.015

  182. 182. El Naschie, M.S. (1998) COBE Satellite Measurement, Hyperspheres, Superstrings and the Dimension of Spacetime. Chaos, Solitons & Fractals, 9, 1445-1471.
    https://doi.org/10.1016/S0960-0779(98)00120-9

  183. 183. El Naschie, M.S. (2006) On the Vital Role Played by the Electron-Volt Units System in High Energy Physics and Mach’s Principle of “Denkökonomie”. Chaos, Solitons & Fractals, 28, 1366-1371.
    https://doi.org/10.1016/j.chaos.2005.11.001

  184. 184. El Naschie, M.S. (2015) Computing Dark Energy and Ordinary Energy of the Cosmos as a Double Eigenvalue Problem. Journal of Modern Physics, 6, 384.
    https://doi.org/10.4236/jmp.2015.64042

  185. 185. Elnaschie, M.S. (2005) The Feynman Path Integral and Ε-Infinity from the Two-Slit Gedanken Experiment. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 335-342.
    https://doi.org/10.1515/IJNSNS.2005.6.4.335

  186. 186. Iovane, G., Chinnici, M. and Tortoriello, F.S. (2008) Multifractals and El Naschie E-Infinity Cantorian Space-Time. Chaos, Solitons & Fractals, 35, 645-658.
    https://doi.org/10.1016/j.chaos.2007.07.051

  187. 187. El Naschie, M.S. (2015) A Cold Fusion-Casimir Energy Nano Reactor Proposal. World Journal of Nano Science and Engineering, 5, 49.
    https://doi.org/10.4236/wjnse.2015.52007

  188. 188. El Naschie, M.S. (2014) From Highly Structured E-Infinity Rings and Transfinite Maximally Symmetric Manifolds to the Dark Energy Density of the Cosmos. Advances in Pure Mathematics, 4, 641.
    https://doi.org/10.4236/apm.2014.412073

  189. 189. Selvam, A.M. and Fadnavis, S. (1999) Superstrings, Cantorian-Fractal Spacetime and Quantum-Like Chaos in Atmospheric Flows. Chaos, Solitons & Fractals, 10, 1321-1334.
    https://doi.org/10.1016/S0960-0779(98)00150-7

  190. 190. El Naschie, M.S. (2006) Advanced Prerequisite for E-Infinity Theory. Chaos, Solitons & Fractals, 30, 636-641.
    https://doi.org/10.1016/j.chaos.2006.04.044

  191. 191. He, J.H. (2006) Application of E-Infinity Theory to Turbulence. Chaos, Solitons & Fractals, 30, 506-511.
    https://doi.org/10.1016/j.chaos.2005.11.033

  192. 192. Marek-Crnjac, L. (2013) Modification of Einstein’s E = mc2 to E = (1/22)mc2. American Journal of Modern Physics, 2, 255-263.
    https://doi.org/10.11648/j.ajmp.20130205.14

  193. 193. El-Ahmady, A.E. and Rafat, H. (2006) A Calculation of Geodesics in Chaotic Flat Space and Its Folding. Chaos, Solitons & Fractals, 30, 836-844.
    https://doi.org/10.1016/j.chaos.2005.05.033

  194. 194. El Naschie, M.S. (2016) Quantum Dark Energy from the Hyperbolic Transfinite Cantorian Geometry of the Cosmos. Natural Science, 8, 152.
    https://doi.org/10.4236/ns.2016.83018

  195. 195. Selvam, A.M. and Fadnavis, S. (1999) Cantorian Fractal Spacetime, Quantum-Like Chaos and Scale Relativity in Atmospheric Flows. Chaos, Solitons & Fractals, 10, 1577-1582.
    https://doi.org/10.1016/S0960-0779(98)00209-4

  196. 196. He, J.H. and Marek-Crnjac, L. (2013) The Quintessence of El Naschie’s Theory of Fractal Relativity and Dark Energy. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 130-137.

  197. 197. El Naschie, M.S. (2008) Noether’s Theorem, Exceptional Lie Groups Hierarchy and Determining 1/α ≌ 137 of Electromagnetism. Chaos, Solitons & Fractals, 35, 99-103.
    https://doi.org/10.1016/j.chaos.2007.05.005

  198. 198. El Naschie, M.S. (2007) Quantum Probability without a Phase and a Topological Resolution of the Two-Slit Experiment. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 195-198.
    https://doi.org/10.1515/IJNSNS.2007.8.2.195

  199. 199. El Naschie, M.S. (2009) Higgs Mechanism, Quarks Confinement and Black Holes as a Cantorian Spacetime Phase Transition Scenario. Chaos, Solitons & Fractals, 41, 869-874.
    https://doi.org/10.1016/j.chaos.2008.04.013

  200. 200. El Naschie, M.S. (1994) Quantum Measurement, Diffusion and Cantorian Geodesics. Chaos, Solitons & Fractals, 4, 1235-1247.
    https://doi.org/10.1016/0960-0779(94)90034-5

  201. 201. Özgür, C. (2008) N (k)-Quasi Einstein Manifolds Satisfying Certain Conditions. Chaos, Solitons & Fractals, 38, 1373-1377.
    https://doi.org/10.1016/j.chaos.2008.03.016

  202. 202. He, J.H. (2007) Shrinkage of Body Size of Small Insects: A Possible Link to Global Warming? Chaos, Solitons & Fractals, 34, 727-729.
    https://doi.org/10.1016/j.chaos.2006.04.052

  203. 203. Castro, C. (2001) Noncommutative Geometry, Negative Probabilities and Cantorian-Fractal Spacetime. Chaos, Solitons & Fractals, 12, 101-104.
    https://doi.org/10.1016/S0960-0779(00)00196-X

  204. 204. Rami, E.N.A. (2009) On the Fractional Minimal Length Heisenberg-Weyl Uncertainty Relation from Fractional Riccati Generalized Momentum Operator. Chaos, Solitons & Fractals, 42, 84-88.
    https://doi.org/10.1016/j.chaos.2008.10.031

  205. 205. Babchin, A.J. and El Naschie, M.S. (2015) On the Real Einstein Beauty E = kmc2. World Journal of Condensed Matter Physics, 6, 1.
    https://doi.org/10.4236/wjcmp.2016.61001

  206. 206. He, J.H. (2008) String Theory in a Scale Dependent Discontinuous Space-Time. Chaos, Solitons & Fractals, 36, 542-545.
    https://doi.org/10.1016/j.chaos.2007.07.093

  207. 207. Nagasawa, M. (1996) Quantum Theory, Theory of Brownian Motions, and Relativity Theory. Chaos, Solitons & Fractals, 7, 631-643.
    https://doi.org/10.1016/0960-0779(95)00115-8

  208. 208. Iovane, G., Giordano, P. and Laserra, E. (2004) Fantappiè’s Group as an Extension of Special Relativity on ε (∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 22, 975-983.
    https://doi.org/10.1016/j.chaos.2004.04.019

  209. 209. El Naschie, M.S. (2015) A Casimir-Dark Energy Nano Reactor Design—Phase One. Natural Science, 7, 287.
    https://doi.org/10.4236/ns.2015.76032

  210. 210. Ord, G.N. (1997) Classical Particles and the Dirac Equation with an Electromagnetic Field. Chaos, Solitons & Fractals, 8, 727-741.
    https://doi.org/10.1016/S0960-0779(96)00059-8

  211. 211. Agop, M., Paun, V. and Harabagiu, A. (2008) El Naschie’s ε (∞) Theory and Effects of Nanoparticle Clustering on the Heat Transport in Nanofluids. Chaos, Solitons & Fractals, 37, 1269-1278.
    https://doi.org/10.1016/j.chaos.2008.01.006

  212. 212. El Naschie, M.S., Marek-Crnjac, L., He, J.H. and Helal, M.A. (2013) Computing the Missing Dark Energy of a Clopen Universe Which Is Its Own Multiverse in Addition to Being Both Flat and Curved. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 3-10.

  213. 213. El Naschie, M.S. (2005) A Tale of Two Kleins Unified in Strings and E-Infinity Theory. Chaos, Solitons & Fractals, 26, 247-254.
    https://doi.org/10.1016/j.chaos.2005.01.016

  214. 214. Nottale, L. (2005) On the Transition from the Classical to the Quantum Regime in Fractal Space-Time Theory. Chaos, Solitons & Fractals, 25, 797-803.
    https://doi.org/10.1016/j.chaos.2004.11.071

  215. 215. El Naschie, M.S. (2007) Rigorous Derivation of the Inverse Electromagnetic Fine Structure Constant Using Super String Theory and the Holographic Boundary of E-Infinity. Chaos, Solitons & Fractals, 32, 893-895.
    https://doi.org/10.1016/j.chaos.2006.09.055

  216. 216. Saniga, M. (2001) Cremona Transformations and the Conundrum of Dimensionality and Signature of Macro-Spacetime. Chaos, Solitons & Fractals, 12, 2127-2142.
    https://doi.org/10.1016/S0960-0779(00)00183-1

  217. 217. El Naschie, M.S. (1995) Quantum Measurement, Information, Diffusion and Cantorian Geodesies. Quantum Mechanics, Diffusion and Chaotic Fractals, Pergamon Press, Oxford.

  218. 218. Mejias, A., Sigalotti, L.D.G., Sira, E. and De Felice, F. (2004) On El Naschie’s Complex Time, Hawking’s Imaginary Time and Special Relativity. Chaos, Solitons & Fractals, 19, 773-777.
    https://doi.org/10.1016/S0960-0779(03)00273-X

  219. 219. Munceleanu, G.V., Paun, V.P., Casian-Botez, I. and Agop, M. (2011) The Microscopic-Macroscopic Scale Transformation through a Chaos Scenario in the Fractal Space-Time Theory. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 21, 603.
    https://doi.org/10.1142/S021812741102888X

  220. 220. Ho, M.E.N. and Giuseppe Vitiello, M.W. (2015) Is Spacetime Fractal and Quantum Coherent in the Golden Mean? Global Journal of Science Frontier Research, 15.

  221. 221. El Naschie, M.S. (2003) The Cantorian Interpretation of High Energy Physics and the Mass Spectrum of Elementary Particles. Chaos, Solitons & Fractals, 17, 989-1001.
    https://doi.org/10.1016/S0960-0779(03)00006-7

  222. 222. El Naschie, M.S. (2006) Thomas Mann and Heinrich Mann, Dual Brothers and Complimentary Genius Embraced by Complex Reality. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 1-6.
    https://doi.org/10.1515/IJNSNS.2006.7.1.1

  223. 223. Castro, C., Granik, A. and El Naschie, M.S. (2000) Why We Live in 3 Dimensions. arXiv Preprint hep-th/0004152.

  224. 224. Selvam, A.M. (2005) A General Systems Theory for Chaos, Quantum Mechanics and Gravity for Dynamical Systems of All Space-Time Scales. arXiv Preprint Physics/0503028.

  225. 225. Iovane, G. and Benedetto, E. (2006) A Projective Approach to Dynamical Systems, Applications in Cosmology and Connections with El Naschie ∈(∞) Cantorian Space-Time. Chaos, Solitons & Fractals, 30, 269-277.
    https://doi.org/10.1016/j.chaos.2005.11.005

  226. 226. Goldfain, E. (2005) Local Scale Invariance, Cantorian Space-Time and Unified Field Theory. Chaos, Solitons & Fractals, 23, 701-710.
    https://doi.org/10.1016/j.chaos.2004.05.020

  227. 227. El Naschie, M.S. (2016) On a Quantum Gravity Fractal Spacetime Equation: QRG ~ HD + FG and Its Application to Dark Energy—Accelerated Cosmic Expansion. Journal of Modern Physics, 7, 729.
    https://doi.org/10.4236/jmp.2016.78069

  228. 228. El Naschie, Μ.S. (2007) Deterministic Quantum Mechanics versus Classical Mechanical Indeterminism. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 5-10.
    https://doi.org/10.1515/IJNSNS.2007.8.1.5

  229. 229. El Naschie, M.S. (2009) Arguments for the Compactness and Multiple Connectivity of Our Cosmic Spacetime. Chaos, Solitons & Fractals, 41, 2787-2789.
    https://doi.org/10.1016/j.chaos.2008.10.011

  230. 230. El Naschie, M.S. (2016) Negative Norms in Quantized Strings as Dark Energy Density of the Cosmos. World Journal of Condensed Matter Physics, 6, 63.
    https://doi.org/10.4236/wjcmp.2016.62009

  231. 231. El Naschie, M.S. (2015) The Casimir Effect as a Pure Topological Phenomenon and the Possibility of a Casimir Nano Reactor—A Preliminary Conceptual Design. American Journal of Nano Research and Applications, 3, 33-40.

  232. 232. El Naschie, M.S. (2000) Scale Relativity in Cantorian E (∞) Space-Time. Chaos, Solitons & Fractals, 11, 2391-2395.
    https://doi.org/10.1016/S0960-0779(99)00209-X

  233. 233. Stakhov, A. and Rozin, B. (2005) The Golden Shofar. Chaos, Solitons & Fractals, 26, 677-684.
    https://doi.org/10.1016/j.chaos.2005.01.057

  234. 234. He, J.H. (2009) Hilbert Cube Model for Fractal Spacetime. Chaos, Solitons & Fractals, 42, 2754-2759.
    https://doi.org/10.1016/j.chaos.2009.03.182

  235. 235. El Naschie, M.S. (2016) Einstein’s Dark Energy via Similarity Equivalence, ’tHooft Dimensional Regularization and Lie Symmetry Groups. International Journal of Astronomy and Astrophysics, 6, 56.
    https://doi.org/10.4236/ijaa.2016.61005

  236. 236. El Naschie, M.S. (2005) A Few Hints and Some Theorems about Witten’s M Theory and T-Duality. Chaos, Solitons & Fractals, 25, 545-548.
    https://doi.org/10.1016/j.chaos.2005.01.009

  237. 237. Sidharth, B.G. (2003) The New Cosmos. Chaos, Solitons & Fractals, 18, 197-201.
    https://doi.org/10.1016/S0960-0779(02)00632-X

  238. 238. El Naschie, M.S. (2004) The Higgs—Physical and Number Theoretical Arguments for the Necessity of a Triple Elementary Particle in Super Symmetric Spacetime. Chaos, Solitons & Fractals, 22, 1199-1209.
    https://doi.org/10.1016/j.chaos.2004.04.026

  239. 239. El Naschie, M.S. (1999) From Implosion to Fractal Spheres: A Brief Account of the Historical Development of Scientific Ideas Leading to the Trinity Test and beyond. Chaos, Solitons & Fractals, 10, 1955-1965.
    https://doi.org/10.1016/S0960-0779(99)00030-2

  240. 240. Dariescu, M.A., Dariescu, C. and Pîrghie, A.C. (2009) Mass Spectrum in 5D Warped Einstein Universe and El Naschie’s Quantum Golden Field Theory. Chaos, Solitons & Fractals, 42, 247-252.
    https://doi.org/10.1016/j.chaos.2008.11.021

  241. 241. Maker, D. (1999) Quantum Physics and Fractal Space Time. Chaos, Solitons & Fractals, 10, 31-42.
    https://doi.org/10.1016/S0960-0779(98)00108-8

  242. 242. El Naschie, M.S. (2008) Using Witten’s Five Brane Theory and the Holographic Principle to Derive the Value of the Electromagnetic Fine Structure Constant. Chaos, Solitons & Fractals, 38, 1051-1053.
    https://doi.org/10.1016/j.chaos.2008.06.001

  243. 243. Iovane, G., Laserra, E. and Giordano, P. (2004) Fractal Cantorian Structures with Spatial Pseudo-Spherical Symmetry for a Possible Description of the Actual Segregated Universe as a Consequence of Its Primordial Fluctuations. Chaos, Solitons & Fractals, 22, 521-528.
    https://doi.org/10.1016/j.chaos.2004.02.026

  244. 244. He, J.H. and Xu, L. (2009) Number of Elementary Particles Using Exceptional Lie Symmetry Groups Hierarchy. Chaos, Solitons & Fractals, 39, 2119-2124.
    https://doi.org/10.1016/j.chaos.2007.06.088

  245. 245. Naschie, M.E. (2006) The “Discreet” Charm of Certain Eleven Dimensional Spacetime Theories. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 477-482.
    https://doi.org/10.1515/IJNSNS.2006.7.4.477

  246. 246. Auffray, J.P. (2014) E-Infinity Dualities, Discontinuous Spacetimes, Xonic Quantum Physics and the Decisive Experiment. Journal of Modern Physics, 5, 1427.
    https://doi.org/10.4236/jmp.2014.515144

  247. 247. El Naschie, M.S. (2015) A Fractal Rindler-Regge Triangulation in the Hyperbolic Plane and Cosmic de Sitter Accelerated Expansion. Journal of Quantum Information Science, 5, 24.
    https://doi.org/10.4236/jqis.2015.51004

  248. 248. El Naschie, M.S. (2006) Holographic Correspondence and Quantum Gravity in E-Infinity Spacetime. Chaos, Solitons & Fractals, 29, 871-875.
    https://doi.org/10.1016/j.chaos.2006.01.005

  249. 249. Greene, B. (2004) The Fabric of the Cosmos. Penguin Books, London.

  250. 250. El Naschie, M.S. (2016) From Witten’s 462 Supercharges of 5-D Branes in Eleven Dimensions to the 95.5 Percent Cosmic Dark Energy Density behind the Accelerated Expansion of the Universe. Journal of Quantum Information Science, 6, 57.
    https://doi.org/10.4236/jqis.2016.62007

  251. 251. El-Ahmady, A.E. and Al-Hesiny, E. (2011) The Topological Folding of the Hyperbola in Minkowski 3-Space. The International Journal of Nonlinear Science, 11, 451-458.

  252. 252. Iovane, G. (2004) Varying G, Accelerating Universe, and Other Relevant Consequences of a Stochastic Self-Similar and Fractal Universe. Chaos, Solitons & Fractals, 20, 657-667.
    https://doi.org/10.1016/j.chaos.2003.09.036

  253. 253. El Naschie, M.S. (2005) Spinorial Content of the Standard Model, a Different Look at Super-Symmetry and Fuzzy E-Infinity Hyper Kähler. Chaos, Solitons & Fractals, 26, 303-311.
    https://doi.org/10.1016/j.chaos.2005.03.004

  254. 254. El Naschie, M.S. (2015) The Counterintuitive Increase of Information Due to Extra Spacetime Dimensions of a Black Hole and Dvoretzky’s Theorem. Natural Science, 7, 483.
    https://doi.org/10.4236/ns.2015.710049

  255. 255. Marek-Crnjac, L. (2003) The Mass Spectrum of High Energy Elementary Particles via El Naschie’s E (∞) Golden Mean Nested Oscillators, the Dunkerly-Southwell Eigenvalue Theorems and KAM. Chaos, Solitons & Fractals, 18, 125-133.
    https://doi.org/10.1016/S0960-0779(02)00587-8

  256. 256. Marek-Crnjac, L. (2009) Partially Ordered Sets, Transfinite Topology and the Dimension of Cantorian-Fractal Spacetime. Chaos, Solitons & Fractals, 42, 1796-1799.
    https://doi.org/10.1016/j.chaos.2009.03.094

  257. 257. Özgür, C. (2009) On Some Classes of Super Quasi-Einstein Manifolds. Chaos, Solitons & Fractals, 40, 1156-1161.
    https://doi.org/10.1016/j.chaos.2007.08.070

  258. 258. Sidharth, B.G. (2002) Quantum Superstrings and Quantized Fractal Space-Time. Chaos, Solitons & Fractals, 13, 189-193.
    https://doi.org/10.1016/S0960-0779(00)00269-1

  259. 259. Iovane, G. (2006) Cantorian Space-Time, Fantappie’s Final Group, Accelerated Universe and Other Consequences. Chaos, Solitons & Fractals, 27, 618-629.
    https://doi.org/10.1016/j.chaos.2005.04.093

  260. 260. El Naschie, M.S. (2008) The Exceptional Eightfold Way to a Possible Higgs Field. Chaos, Solitons & Fractals, 35, 664-667.
    https://doi.org/10.1016/j.chaos.2007.07.082

  261. 261. Tanaka, Y., Mizuno, Y. and Kado, T. (2005) Chaotic Dynamics in the Friedmann Equation. Chaos, Solitons & Fractals, 24, 407-422.
    https://doi.org/10.1016/j.chaos.2004.09.034

  262. 262. Auffray, J.P. (2015) E Infinity, the Zero Set, Absolute Space and the Photon Spin. Journal of Modern Physics, 6, 536.
    https://doi.org/10.4236/jmp.2015.65058

  263. 263. Martienssen, W. (2005) Mohamed El Naschie and the Geometrical Interpretation of Quantum Physics. Chaos, Solitons & Fractals, 25, 805-806.
    https://doi.org/10.1016/j.chaos.2005.02.001

  264. 264. Agop, M. and Vasilica, M. (2006) El Naschie’s Supergravity by Means of the Gravitational Instantons Synchronization. Chaos, Solitons & Fractals, 30, 318-323.
    https://doi.org/10.1016/j.chaos.2006.01.105

  265. 265. Chen, Q. and Shi, Z. (2008) Biorthogonal Multiple Vector-Valued Multivariate Wavelet Packets Associated with a Dilation Matrix. Chaos, Solitons & Fractals, 35, 323-332.
    https://doi.org/10.1016/j.chaos.2007.06.065

  266. 266. Qiu, H. and Su, W. (2007) 3-Adic Cantor Function on Local Fields and Its p-Adic Derivative. Chaos, Solitons & Fractals, 33, 1625-1634.
    https://doi.org/10.1016/j.chaos.2006.03.024

  267. 267. Nottale, L. (2001) Relativitéd’ échelle structure de la théorie. Revue de Synthèse, 122, 11-25.
    https://doi.org/10.1007/BF02990499

  268. 268. El Naschie, M.S. (2003) Complex Vacuum Fluctuation as a Chaotic “Limit” Set of Any Kleinian Group Transformation and the Mass Spectrum of High Energy Particle Physics via Spontaneous Self-Organization. Chaos, Solitons & Fractals, 17, 631-638.
    https://doi.org/10.1016/S0960-0779(02)00630-6

  269. 269. Vrobel, S. (2011) Why a Watched Kettle Never Boils.

  270. 270. Gottlieb, I., Ciobanu, G. and Buzea, C.G. (2003) El Naschie’s Cantorian Space Time, Toda Lattices and Cooper-Agop Pairs. Chaos, Solitons & Fractals, 17, 789-796.
    https://doi.org/10.1016/S0960-0779(02)00484-8

  271. 271. He, J.H. (2009) Nonlinear Science as a Fluctuating Research Frontier. Chaos, Solitons & Fractals, 41, 2533-2537.
    https://doi.org/10.1016/j.chaos.2008.09.027

  272. 272. Argyris, J., Ciubotariu, C.I. and Weingaertner, W.E. (2000) Fractal Space Signatures in Quantum Physics and Cosmology—I. Space, Time, Matter, Fields and Gravitation. Chaos, Solitons & Fractals, 11, 1671-1719.
    https://doi.org/10.1016/S0960-0779(99)00065-X

  273. 273. El Naschie, M.S. (2007) From Pointillism to E-Infinity Electromagnetism. Chaos, Solitons & Fractals, 34, 1377-1381.
    https://doi.org/10.1016/j.chaos.2007.02.016

  274. 274. Agop, M. and Craciun, P. (2006) El Naschie’s Cantorian Gravity and Einstein’s Quantum Gravity. Chaos, Solitons & Fractals, 30, 30-40.
    https://doi.org/10.1016/j.chaos.2006.01.006

  275. 275. Agop, M., Ioannou, P.D. and Buzea, C.G. (2002) Cantorian E (∞) Space-Time, Gravitation and Superconductivity. Chaos, Solitons & Fractals, 13, 1137-1165.
    https://doi.org/10.1016/S0960-0779(01)00123-0

  276. 276. Sidharth, B.G. (2001) A Reconciliation of Electromagnetism and Gravitation. arXiv Preprint Physics/0110040.

  277. 277. El-Nabulsi, A.R. (2009) Fractional Nottale’s Scale Relativity and Emergence of Complexified Gravity. Chaos, Solitons & Fractals, 42, 2924-2933.
    https://doi.org/10.1016/j.chaos.2009.04.004

  278. 278. Weiss, H. and Weiss, V. (2003) The Golden Mean as Clock Cycle of Brain Waves. Chaos, Solitons & Fractals, 18, 643-652.
    https://doi.org/10.1016/S0960-0779(03)00026-2

  279. 279. Wu, G.C. and He, J.H. (2009) On the Menger-Urysohn Theory of Cantorian Manifolds and Transfinite Dimensions in Physics. Chaos, Solitons & Fractals, 42, 781-783.
    https://doi.org/10.1016/j.chaos.2009.02.007

  280. 280. Czajko, J. (2004) On Cantorian Spacetime over Number Systems with Division by Zero. Chaos, Solitons & Fractals, 21, 261-271.
    https://doi.org/10.1016/j.chaos.2003.12.046

  281. 281. Sidharth, B.G. (2002) Consequences of a Quantized Space-Time Model. Chaos, Solitons & Fractals, 13, 617-620.
    https://doi.org/10.1016/S0960-0779(01)00017-0

  282. 282. De, A., De, U.C. and Gazi, A.K. (2011) On a Class of N(κ)-Quasi Einstein Manifolds. Communications of the Korean Mathematical Society, 26, 623-634.
    https://doi.org/10.4134/CKMS.2011.26.4.623

  283. 283. El Naschie, M.S. (2008) Asymptotic Freedom and Unification in a Golden Quantum Field Theory. Chaos, Solitons & Fractals, 36, 521-525.
    https://doi.org/10.1016/j.chaos.2007.09.004

  284. 284. Sidharth, B.G. (2000) Quantized Space-Time and Time’s Arrow. Chaos, Solitons & Fractals, 11, 1045-1046.
    https://doi.org/10.1016/S0960-0779(98)00331-2

  285. 285. El Naschie, M.S. (2001) The Exact Value of the Smallest Quantum Gravity Coupling Constant is 1/α g = 42.36067977. Chaos, Solitons & Fractals, 12, 1361-1368.
    https://doi.org/10.1016/S0960-0779(01)00008-X

  286. 286. Iovane, G., Laserra, E. and Tortoriello, F.S. (2004) Stochastic Self-Similar and Fractal Universe. Chaos, Solitons & Fractals, 20, 415-426.
    https://doi.org/10.1016/j.chaos.2003.08.004

  287. 287. Saniga, M. (2002) Onspatially Anisotropic’ Pencil-Space-Times Associated with a Quadro-Cubic Cremona Transformation. Chaos, Solitons & Fractals, 13, 807-814.
    https://doi.org/10.1016/S0960-0779(01)00056-X

  288. 288. Nottale, L. (2001) Scale Relativity and Gauge Invariance. Chaos, Solitons & Fractals, 12, 1577-1583.
    https://doi.org/10.1016/S0960-0779(01)00015-7

  289. 289. El Naschie, M.S. (2008) Quarks Confinement. Chaos, Solitons & Fractals, 37, 6-8.
    https://doi.org/10.1016/j.chaos.2007.09.057

  290. 290. El Naschie, M.S., Olsen, S. and He, J.H. (2013) Dark Energy of the Quantum Hawking-Hartle Wave of the Cosmos from the Holographic Boundary and Lie Symmetry Groups-Exact Computation and Physical Interpretation. Fractal Spacetime and Noncommutative Geometry, 3, 11-20.

  291. 291. El Naschie, M.S. (1997) Introduction to Nonlinear Dynamics, General Relativity and the Quantum: The Uneven Flow of Fractal Time. Chaos, Solitons & Fractals, 8, vii-x.
    https://doi.org/10.1016/S0960-0779(97)83767-8

  292. 292. El Naschie, M.S. (2004) On the Possibility of Two New “Elementary” Particles with Mass Equal to m(k) = 1.80339 MeV and m(ags) = 26.180339 MeV. Chaos, Solitons & Fractals, 20, 649-654.
    https://doi.org/10.1016/j.chaos.2003.10.010

  293. 293. Xu, L. and Zhong, T. (2011) Golden Ratio in Quantum Mechanics. Nonlinear Science Letters B, 1, 10-11.

  294. 294. Giordano, P. (2006) Numerical Analysis of Hypersingular Integral Equations in the Ε-Infinite Cantorian Spacetime. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 451-460.

  295. 295. Nozari, K. and Mehdipour, S.H. (2009) Failure of Standard Thermodynamics in Planck Scale Black Hole System. Chaos, Solitons & Fractals, 39, 956-970.
    https://doi.org/10.1016/j.chaos.2007.02.018

  296. 296. Benedetto, E. (2009) Fantappié-Arcidiacono Spacetime and Its Consequences in Quantum Cosmology. International Journal of Theoretical Physics, 48, 1603-1621.
    https://doi.org/10.1007/s10773-009-9933-0

  297. 297. El Naschie, M.S. (2007) A Derivation of the Electromagnetic Coupling α0 ≈ 137.036. Chaos, Solitons & Fractals, 31, 521-526.
    https://doi.org/10.1016/j.chaos.2006.06.028

  298. 298. Zmeskal, O., Nezadal, M. and Buchnicek, M. (2003) Fractal-Cantorian Geometry, Hausdorff Dimension and the Fundamental Laws of Physics. Chaos, Solitons & Fractals, 17, 113-119.
    https://doi.org/10.1016/S0960-0779(02)00412-5

  299. 299. Castro, C. (2000) On the Four Dimensional Conformal Anomaly, Fractal Spacetime and the Fine Structure Constant. arXiv Preprint Physics/0010072.

  300. 300. Marek-Crnjac, L. (2008) From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and Superstrings to Cantorian Space-Time. Chaos, Solitons & Fractals, 37, 1279-1288.
    https://doi.org/10.1016/j.chaos.2008.01.021

  301. 301. Özgür, C. (2009) Hypersurfaces Satisfying Some Curvature Conditions in the Semi-Euclidean Space. Chaos, Solitons & Fractals, 39, 2457-2464.
    https://doi.org/10.1016/j.chaos.2007.07.018

  302. 302. Sidharth, B.G. (2001) The Unification of Electromagnetism and Gravitation in the Context of Quantized Fractal Space-Time. Chaos, Solitons & Fractals, 12, 2143-2147.
    https://doi.org/10.1016/S0960-0779(00)00181-8

  303. 303. Fred, Y.Y. (2009) From Chaos to Unification: U Theory vs. M Theory. Chaos, Solitons & Fractals, 42, 89-93.
    https://doi.org/10.1016/j.chaos.2008.10.030

  304. 304. Colotin, M., Pompilian, G.O., Nica, P., Gurlui, S., Paun, V. and Agop, M. (2009) Fractal Transport Phenomena through the Scale Relativity Model. Acta Physica Polonica, Series A General Physics, 116, 157.
    https://doi.org/10.12693/APhysPolA.116.157

  305. 305. Rossler, O.E., Fröhlich, D., Movassagh, R. and Moore, A. (2007) Hubble Expansion in Static Spacetime. Chaos, Solitons & Fractals, 33, 770-775.
    https://doi.org/10.1016/j.chaos.2006.06.046

  306. 306. El Naschie, M.S. (2004) Anomalous Positron Peaks and Experimental Verification of ε (∞) Super Symmetric Grand Unification. Chaos, Solitons & Fractals, 20, 455-458.
    https://doi.org/10.1016/j.chaos.2003.10.008

  307. 307. Agop, M., Ioannou, P.D., Nica, P., Buzea, C.G. and Jarcau, M. (2003) ε (∞) Cantorian Space-Time, Polarization Gravitational Field and van der Waals-Type Forces. Chaos, Solitons & Fractals, 18, 1-16.
    https://doi.org/10.1016/S0960-0779(02)00633-1

  308. 308. Agop, M., Ciobanu, G. and Zaharia, L. (2003) Cantorian E (∞) Space-Time, Frames and Unitary Theories. Chaos, Solitons & Fractals, 15, 445-453.
    https://doi.org/10.1016/S0960-0779(02)00139-X

  309. 309. Rami, E.N.A. (2009) Fractional Dynamics, Fractional Weak Bosons Masses and Physics beyond the Standard Model. Chaos, Solitons & Fractals, 41, 2262-2270.
    https://doi.org/10.1016/j.chaos.2008.08.033

  310. 310. Zmeskal, O., Vala, M., Weiter, M. and Stefkova, P. (2009) Fractal-Cantorian Geometry of Space-Time. Chaos, Solitons & Fractals, 42, 1878-1892.
    https://doi.org/10.1016/j.chaos.2009.03.106

  311. 311. Iovane, G., Bellucci, S. and Benedetto, E. (2008) Projected Space-Time and Varying Speed of Light. Chaos, Solitons & Fractals, 37, 49-59.
    https://doi.org/10.1016/j.chaos.2007.09.022

  312. 312. Goldfain, E. (2005) Higgs-Free Derivation of Gauge Boson Masses Using Complex Dynamics of Levy Flows. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 351-356.
    https://doi.org/10.1515/IJNSNS.2005.6.4.351

  313. 313. deFelice, F., Sigalotti, L.D.G. and Mejias, A. (2004) Lorentz Transformations and Complex Space-Time Functions. Chaos, Solitons & Fractals, 21, 573-578.
    https://doi.org/10.1016/j.chaos.2003.12.091

  314. 314. El Naschie, M.S. (2005) Supergravity and the Number of Fundamental Particles in the Standard Model. Chaos, Solitons & Fractals, 23, 1941-1943.
    https://doi.org/10.1016/j.chaos.2004.08.005

  315. 315. Elokaby, A. (2009) Knot Wormholes and the Dimensional Invariant of Exceptional Lie Groups and Stein Space Hierarchies. Chaos, Solitons & Fractals, 41, 1616-1618.
    https://doi.org/10.1016/j.chaos.2008.07.003

  316. 316. Nottale, L. (2000) Scale Relativity, Fractal Space-Time and Morphogenesis of Structures. Sciences of the Interface, Sciences of the Interface. Proceedings of International Symposium in Honor of O. Rössler, ZKM Karlruhe, Genista, Tübingen, 38.

  317. 317. Agop, M., Ioannou, P.D., Buzea, C. and Nica, P. (2003) Cantorian ε (∞) Space-Time, a Hydrodynamical Model and Unified Superconductivity. Chaos, Solitons & Fractals, 16, 321-338.
    https://doi.org/10.1016/S0960-0779(02)00413-7

  318. 318. Rami, E.N.A. (2009) Fractional Illusion Theory of Space: Fractional Gravitational Field with Fractional Extra-Dimensions. Chaos, Solitons & Fractals, 42, 377-384.
    https://doi.org/10.1016/j.chaos.2008.12.008

  319. 319. El Naschie, M.S. (2000) On the Unification of Heterotic Strings, M Theory and E (∞) Theory. Chaos, Solitons & Fractals, 11, 2397-2408.
    https://doi.org/10.1016/S0960-0779(00)00108-9

  320. 320. El Naschie, M.S. and He, J.H. (2013) Quantum Gravity and Dark Energy via a New Planck Scale. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 106-119.

  321. 321. Dickau, J.J. (2009) Fractal Cosmology. Chaos, Solitons & Fractals, 41, 2103-2105.
    https://doi.org/10.1016/j.chaos.2008.07.056

  322. 322. El Naschie, M.S. (2008) Roots Lattice Hierarchies of Exceptional Lie Symmetry Groups and the Elementary Particles Content of the Standard Model. Chaos, Solitons & Fractals, 35, 684-687.
    https://doi.org/10.1016/j.chaos.2007.07.084

  323. 323. Tomaschitz, R. (1997) Chaos and Topological Evolution in Cosmology. International Journal of Bifurcation and Chaos, 7, 1847-1853.
    https://doi.org/10.1142/S0218127497001412

  324. 324. Ho, M.W. (2014) E-Infinity Spacetime, Quantum Paradoxes and Quantum Gravity. Journal of the Institute of Science in Society, 62, 40-43.

  325. 325. Sidharth, B.G. (2003) A Note on the Modified Uncertainity Principle. Chaos, Solitons & Fractals, 15, 593-595.
    https://doi.org/10.1016/S0960-0779(02)00159-5

  326. 326. Ciric, L.B., Jesic, S.N. and Ume, J.S. (2008) The Existence Theorems for Fixed and Periodic Points of Nonexpansive Mappings in Intuitionistic Fuzzy Metric Spaces. Chaos, Solitons & Fractals, 37, 781-791.
    https://doi.org/10.1016/j.chaos.2006.09.093

  327. 327. El Naschie, M.S. (2005) Tadpoles, Anomaly Cancellation and the Expectation Value of the Number of the Higgs Particles in the Standard Model. Chaos, Solitons & Fractals, 24, 659-663.
    https://doi.org/10.1016/j.chaos.2004.11.002

  328. 328. Yildiz, A., De, U.C. and Cetinkaya, A. (2011) N (k)-Quasi Einstein Manifolds Satisfying Certain Curvature Conditions. Dumlupinar University Research Found (No: 2011-25).

  329. 329. Sidharth, B.G. (2002) A Note on Duality and Scale. Chaos, Solitons & Fractals, 13, 1369-1370.
    https://doi.org/10.1016/S0960-0779(01)00114-X

  330. 330. Tanaka, Y. (2005) Relativistic Field Theory and Chaotic Dynamics. Chaos, Solitons & Fractals, 23, 33-41.
    https://doi.org/10.1016/j.chaos.2004.03.031

  331. 331. Nagasawa, M. (1997) On the Locality of Hidden-Variable Theories in Quantum Physics. Chaos, Solitons & Fractals, 8, 1773-1792.
    https://doi.org/10.1016/S0960-0779(97)00036-2

  332. 332. El Naschie, M.S. (2008) String Theory, Exceptional Lie Groups Hierarchy and the Structural Constant of the Universe. Chaos, Solitons & Fractals, 35, 7-12.
    https://doi.org/10.1016/j.chaos.2007.06.023

  333. 333. El Naschie, M.S. (2008) On Quarks Confinement and Asymptotic Freedom. Chaos, Solitons & Fractals, 37, 1289-1291.
    https://doi.org/10.1016/j.chaos.2008.02.002

  334. 334. El Naschie, M.S. (2009) E-Eight Exceptional Lie Groups, Fibonacci Lattices and the Standard Model. Chaos, Solitons & Fractals, 41, 1340-1343.
    https://doi.org/10.1016/j.chaos.2008.05.015

  335. 335. Iovane, G. and Salerno, S. (2005) Dynamical Systems on Cantorian Spacetime and Applications. WSEAS Transactions on Mathematics, 4, 184.

  336. 336. Liu, S.D., Liu, S.K., Fu, Z.T., Ren, K. and Guo, Y. (2003) The Most Intensive Fluctuation in Chaotic Time Series and Relativity Principle. Chaos, Solitons & Fractals, 15, 627-630.
    https://doi.org/10.1016/S0960-0779(02)00138-8

  337. 337. Yang, C.D. (2008) On the Existence of Complex Spacetime in Relativistic Quantum Mechanics. Chaos, Solitons & Fractals, 38, 316-331.
    https://doi.org/10.1016/j.chaos.2008.01.019

  338. 338. El Naschie, M.S., Olsen, S., He, J.H., Nada, S., Marek-Crnjac, L. and Helal, A. (2012) On the Need for Fractal Logic in High Energy Quantum Physics. International Journal of Modern Nonlinear Theory and Application, 1, Article ID: 23087.
    https://doi.org/10.4236/ijmnta.2012.13012

  339. 339. Marek-Crnjac, L. (2006) Different Higgs Models and the Number of Higgs Particles. Chaos, Solitons & Fractals, 27, 575-579.
    https://doi.org/10.1016/j.chaos.2005.04.099

  340. 340. Pavlos, G.P., Iliopoulos, A.C., Karakatsanis, L.P., Tsoutsouras, V.G. and Pavlos, E.G. (2011) Complexity Theory and Physical Unification: From Microscopic to Macroscopic Level. Chaos Theory: Modeling, Simulation and Applications. World Scientific Publishing, 297-308.
    https://doi.org/10.1142/9789814350341_0035

  341. 341. El Naschie, M.S. (1993) Semiconductors, Fermi Statistics and Multi-Dimensional Cantor Sets. Chaos, Solitons & Fractals, 3, 481-488.
    https://doi.org/10.1016/0960-0779(93)90032-V

  342. 342. Gottlieb, I. and Agop, M. (2007) El Naschie’s ε (∞) Theory and an Alternative to Gauged Spacetime Scale Relativity Theory. Chaos, Solitons & Fractals, 34, 1025-1029.
    https://doi.org/10.1016/j.chaos.2006.03.108

  343. 343. El Naschie, M.S. (2013) Electromagnetic and Gravitational Origin of Dark Energy in Kaluza-Klein D = 5 Spacetime. PIERS Proceeding, Stockholm, Sweden, 91-97.

  344. 344. Sigalotti, L.D.G. and Rendón, O. (2007) Quantum Decoherence and El Naschie’s Complex Temporality. Chaos, Solitons & Fractals, 32, 1611-1614.
    https://doi.org/10.1016/j.chaos.2006.08.034

  345. 345. Ord, G.N. (1996) The Schrödinger and Diffusion Propagators Coexisting on a Lattice. Journal of Physics A: Mathematical and General, 29, L123.
    https://doi.org/10.1088/0305-4470/29/5/007

  346. 346. Saniga, M. (2005) Cremonian Space-Time (s) as an Emergent Phenomenon. Chaos, Solitons & Fractals, 23, 645-650.
    https://doi.org/10.1016/j.chaos.2004.05.018

  347. 347. El Naschie, M.S. (2016) High Energy Physics and Cosmology as Computation. American Journal of Computational Mathematics, 6, 185.
    https://doi.org/10.4236/ajcm.2016.63020

  348. 348. El Naschie, M.S. (1996) Wick Rotation, Cantorian Spaces and the Complex Arrow of Time in Quantum Physics. Chaos, Solitons & Fractals, 7, 1501-1506.
    https://doi.org/10.1016/0960-0779(96)80001-B

  349. 349. Rossler, O.E. and Kuypers, H. (2005) The Scale Change of Einstein’s Equivalence Principle. Chaos, Solitons & Fractals, 25, 897-899.
    https://doi.org/10.1016/j.chaos.2004.11.097

  350. 350. El Naschie, M.S. (2016) The Emergence of Spacetime from the Quantum in Three Steps. Advances in Pure Mathematics, 6, 446.
    https://doi.org/10.4236/apm.2016.66032

  351. 351. El Naschie, M.S. (2013) Using Varying Speed of Light Theory to Elucidate and Calculate the Exact Experimental Percentage of the Dark Energy in the Cosmos. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 35-38.

  352. 352. El Naschie, M.S. (2008) The Standard Model Physical Degrees of Freedom Interpretation of the Electromagnetic Fine Structure Coupling. Chaos, Solitons & Fractals, 38, 609-611.
    https://doi.org/10.1016/j.chaos.2008.04.015

  353. 353. He, J.H., Zhong, T., Xu, L., Marek-Crnjac, L., Nada, S.I. and Helal, M.A. (2011) The Importance of the Empty Set and Noncommutative Geometry in Underpinning the Foundations of Quantum Physics. Nonlinear Science Letters B, 1, 15-24.

  354. 354. El Naschie, M.S. (2008) Derivation of Newton’s Gravitational Fine Structure Constant from the Spectrum of Heterotic Superstring Theory. Chaos, Solitons & Fractals, 35, 303-307.
    https://doi.org/10.1016/j.chaos.2007.07.025

  355. 355. Agop, M. and Enache, V. (2007) Gauge Theories on El Naschie’s ε (∞) Space-Time Topology. Chaos, Solitons & Fractals, 32, 296-301.
    https://doi.org/10.1016/j.chaos.2006.04.068

  356. 356. Ho, M.W. (2014) Golden Geometry of E-Infinity Fractal Spacetime. The Story of Phi Part 5.

  357. 357. Agop, M. and Craciun, P. (2006) El Naschie’s ε (∞) Space-Time and the Two Slit Experiment in the Weyl-Dirac Theory. Chaos, Solitons & Fractals, 30, 441-452.
    https://doi.org/10.1016/j.chaos.2005.12.048

  358. 358. El Naschie, M.S. (2008) On a Canonical Equation for All Fundamental Interactions. Chaos, Solitons & Fractals, 36, 1200-1204.
    https://doi.org/10.1016/j.chaos.2007.09.039

  359. 359. Marek-Crnjac, L. (2012) Quantum Gravity in Cantorian Space-Time. INTECH Open Access Publisher.
    https://doi.org/10.5772/37232

  360. 360. El Naschie, M.S. (2003) VAK, Vacuum Fluctuation and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 17, 797-807.
    https://doi.org/10.1016/S0960-0779(02)00684-7

  361. 361. El Naschie, M.S. (2014) The Gap Labelling Integrated Density of States for a Quasi Crystal Universe Is Identical to the Observed 4.5 Percent Ordinary Energy Density of the Cosmos. Natural Science, 6, 1259.
    https://doi.org/10.4236/ns.2014.616115

  362. 362. Agop, M. and Gottlieb, I. (2006) Gravitation Theory in a Fractal Space-Time. Journal of Mathematical Physics, 47, 53503-53503.
    https://doi.org/10.1063/1.2196747

  363. 363. Giné, J. (2008) On the Origin of the Deflection of Light. Chaos, Solitons & Fractals, 35, 1-6.
    https://doi.org/10.1016/j.chaos.2007.06.097

  364. 364. Auffray, J.P. (2015) On an Intriguing Invention Albert Einstein Made Which Has Gone Unnoticed Hitherto. Journal of Modern Physics, 6, 1478.
    https://doi.org/10.4236/jmp.2015.611152

  365. 365. Agop, M., Ioannou, P.D., Nica, P., Galusca, G. and Stefan, M. (2005) El Naschie’s Coherence on the Subquantum Medium. Chaos, Solitons & Fractals, 23, 1497-1509.
    https://doi.org/10.1016/S0960-0779(04)00439-4

  366. 366. He, J.H. and Huang, Z. (2006) A Novel Model for Allometric Scaling Laws for Different Organs. Chaos, Solitons & Fractals, 27, 1108-1114.
    https://doi.org/10.1016/j.chaos.2005.04.082

  367. 367. Iovane, G. (2007) Hypersingular Integral Equations, Kähler Manifolds and Thurston Mirroring Effect in ∈(∞) Cantorian Spacetime. Chaos, Solitons & Fractals, 31, 1041-1053.
    https://doi.org/10.1016/j.chaos.2006.03.109

  368. 368. Argyris, J., Ciubotariu, C. and Andreadis, I. (1998) Complexity in Spacetime and Gravitation I. FromChaos to Superchaos. Chaos, Solitons & Fractals, 9, 1651-1701.
    https://doi.org/10.1016/S0960-0779(97)00193-8

  369. 369. Agop, M., Ioannou, P.D., Luchian, D., Nica, P., Radu, C. and Condurache, D. (2004) El Naschie’s Cantorian Strings and Dendritic Morphogenesis. Chaos, Solitons & Fractals, 21, 515-536.
    https://doi.org/10.1016/j.chaos.2003.12.053

  370. 370. Rossler, O.E., Fröhlich, D., Kleiner, N., Pfaff, M. and Argyris, J. (2004) On the Possibility of a New Relativistic Contraction Law. Chaos, Solitons & Fractals, 20, 205-208.
    https://doi.org/10.1016/S0960-0779(03)00358-8

  371. 371. Agop, M., Ioannou, P.D., Coman, P., Ciobanu, B. and Nica, P. (2001) Cantorian E (∞) Space-Time and Generalized Superconductivity. Chaos, Solitons & Fractals, 12, 1947-1982.
    https://doi.org/10.1016/S0960-0779(00)00161-2

  372. 372. Mukhamedov, A.M. (2007) E-Infinity as a Fiber Bundle and Its Thermodynamics. Chaos, Solitons & Fractals, 33, 717-724.
    https://doi.org/10.1016/j.chaos.2006.11.016

  373. 373. Harabagiu, A., Niculescu, O., Colotin, M., Bibire, T.D., Gottlieb, I. and Agop, M. (2009) Particle in a Box by Means of a Fractal Hydrodynamic Model. Romanian Reports in Physics, 61, 395-400.

  374. 374. Ord, G.N. (1999) Gravity and the Spiral Model. Chaos, Solitons & Fractals, 10, 499-512.
    https://doi.org/10.1016/S0960-0779(98)00255-0

  375. 375. Castro, C. and Granik, A. (2000) How the New Scale Relativity Theory Resolves Some Quantum Paradoxes. Chaos, Solitons & Fractals, 11, 2167-2178.
    https://doi.org/10.1016/S0960-0779(00)00027-8

  376. 376. Castro, C. (2002) On the Four-Dimensional Conformal Anomaly, Fractal Cantorian Space-Time and the Fine Structure Constant. Chaos, Solitons & Fractals, 13, 203-207.
    https://doi.org/10.1016/S0960-0779(00)00268-X

  377. 377. Ahmed, N. (2004) Cantorian Small World, Mach’s Principle, and the Universal Mass Network. Chaos, Solitons & Fractals, 21, 773-781.
    https://doi.org/10.1016/j.chaos.2004.01.013

  378. 378. Sidharth, B.G. (2001) The Substructure of Space-Time and Some Related Issues. Chaos, Solitons & Fractals, 12, 2357-2361.
    https://doi.org/10.1016/S0960-0779(00)00182-X

  379. 379. El Naschie, M.S. (2008) A Derivation of the Fine Structure Constant from the Exceptional Lie Group Hierarchy of the Micro Cosmos. Chaos, Solitons & Fractals, 36, 819-822.
    https://doi.org/10.1016/j.chaos.2007.09.020

  380. 380. Mills, R. (1984) Space, Time and Quanta. W. H. Freeman, New York, USA.

  381. 381. El Naschie, M.S. (2008) Freudental Magic Square and Its Dimensional Implication for and High Energy Physics. Chaos, Solitons & Fractals, 36, 546-549.
    https://doi.org/10.1016/j.chaos.2007.09.017

  382. 382. Fred, Y.Y. (2009) A Clifford-Finslerian Physical Unification and Fractal Dynamics. Chaos, Solitons & Fractals, 41, 2301-2305.
    https://doi.org/10.1016/j.chaos.2008.09.004

  383. 383. El-Okaby, A.A. (2008) Exceptional Lie Groups, E-Infinity Theory and Higgs Boson. Chaos, Solitons & Fractals, 38, 1305-1317.
    https://doi.org/10.1016/j.chaos.2008.02.034

  384. 384. Sidharth, B. and Altaisky, M.V. (Eds.) (2012) Frontiers of Fundamental Physics 4. Springer Science & Business Media.

  385. 385. Buzea, C.G., Agop, M., Galusca, G., Vizureanu, P. and Ionita, I. (2007) El Naschie’s Superconductivity in the Time Dependent Ginzburg-Landau Model. Chaos, Solitons & Fractals, 34, 1060-1074.
    https://doi.org/10.1016/j.chaos.2006.03.122

  386. 386. El Naschie, M.S. (2005) A Note on Various Supersymmetric Extensions of the Standard Model of High-Energy Particles and E-Infinity Theory. Chaos, Solitons & Fractals, 23, 683-688.
    https://doi.org/10.1016/j.chaos.2004.06.032

  387. 387. Taylor, J.C. (2001) Hidden Unity in Nature’s Laws. Cambridge University Press, Cambridge, UK.

  388. 388. Ahmed, E. and Hegazi, A.S. (2000) On Infinitesimally Deformed Algebra and Fractal Space-Time Theory. Chaos, Solitons & Fractals, 11, 1759-1761.
    https://doi.org/10.1016/S0960-0779(99)00082-X

  389. 389. Tomaschitz, R. (1997) Chaos in the Galactic Dynamics. Fractals, 5, 215-220.
    https://doi.org/10.1142/S0218348X97000206

  390. 390. Castro, C. (2000) The String Uncertainty Relations Follow from the New Relativity Principle. Foundations of Physics, 30, 1301-1316.
    https://doi.org/10.1023/A:1003640606529

  391. 391. Christianto, V. (2003) The Cantorian Super Fluid Vortex Hypothesis. Apeiron, 10, 231.

  392. 392. Colotin, M., Niculescu, O., Bibire, T.D., Gottlieb, I., Nica, P. and Agop, M. (2009) Fractal Fluids of Conductive Type Behavior through Scale Relativity Theory. Romanian Reports in Physics, 61, 387-394.

  393. 393. Dariescu, C., Dariescu, M.A. and Murariu, G. (2007) TE Modes in Einstein’s Universe. Chaos, Solitons & Fractals, 34, 1030-1036.
    https://doi.org/10.1016/j.chaos.2006.04.070

  394. 394. Agop, M., Jarcau, M. and Stroe, A. (2005) El Naschie’s Instanton by Means of the Schwarzschild’s Gravitational Field. Chaos, Solitons & Fractals, 25, 781-790.
    https://doi.org/10.1016/j.chaos.2004.12.036

  395. 395. Lorenzi, M.G., Francaviglia, M. and Iovane, G. (2008) The Golden Mean Revisited: From Fidia to the Structure of “Kosmos”. APLIMAT-Journal of Applied Mathematics, 1, 109-119.

  396. 396. He, J.H., Liu, Y., Mo, L.F., Wan, Y.Q. and Xu, L. (2008) Electrospunnanofibres and Their Applications. iSmithers, Shawbury, Shrewsbury, Shropshire, UK.

  397. 397. Yildiz, A., De, U.C. and Cetinkaya, A. (2013) On Some Classes of N (k)-Quasi Einstein Manifolds. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 83, 239-245.
    https://doi.org/10.1007/s40010-013-0071-y

  398. 398. Sidharth, B.G. (2002) The Nature of Quantum Space-Time and the Cantorian E (∞) Proposal. Chaos, Solitons & Fractals, 14, 1325-1330.
    https://doi.org/10.1016/S0960-0779(02)00085-1

  399. 399. Ord, G.N. and Gualtieri, J.A. (1998) Information Loss in the Continuum Limit and Schrödinger’s Equation in an Electromagnetic Field. Biosystems, 46, 21-28.
    https://doi.org/10.1016/S0303-2647(97)00077-4

  400. 400. Zhong, T. and He, J.H. (2013) Elnaschie’s Resolution of the Mystery of Missing Dark Energy of the Cosmos via Quantum Field Theory in Curved Spacetime. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 46-49.

  401. 401. Dariescu, C. and Dariescu, M.A. (2007) TE-Compatible Maxwell Fields in Spatially Closed Friedman-Robertson-Walker Universe. Chaos, Solitons & Fractals, 32, 8-14.
    https://doi.org/10.1016/j.chaos.2006.05.042

  402. 402. Sidharth, B.G. (2002) Dimension and Metric. Chaos, Solitons & Fractals, 14, 525-527.
    https://doi.org/10.1016/S0960-0779(01)00197-7

  403. 403. Agop, M., Oprea, I., Sandu, C., Vlad, R., Buzea, C.G. and Matsuzawa, H. (2000) Some Properties of the World Crystal in Fractal Spacetime Theory. Australian Journal of Physics, 53, 231-240.

  404. 404. Castro, C. and Granik, A. (2000) On M Theory, Quantum Paradoxes and the New Relativity. arXiv Preprint Physics/0002019.

  405. 405. El Naschie, M.S. (2005) Kaluza-Klein and Felix Klein: The Stringy Relationship with the Portrait of the Artist as a Young Man. Chaos, Solitons & Fractals, 25, 911-913.
    https://doi.org/10.1016/j.chaos.2004.12.002

  406. 406. Meissner, W. (1996) On a Realistic Interpretation of Spontaneous Decay Processes. Chaos, Solitons & Fractals, 7, 697-709.
    https://doi.org/10.1016/0960-0779(94)00220-7

  407. 407. Buzea, C.G., Rusu, I., Bulancea, V., Badarau, G., Paun, V.P. and Agop, M. (2010) The Time Dependent Ginzburg-Landau Equation in Fractal Space-Time. Physics Letters A, 374, 2757-2765.
    https://doi.org/10.1016/j.physleta.2010.04.044

  408. 408. Cristescu, C.P., Mereu, B., Stan, C. and Agop, M. (2009) Feigenbaum Scenario in the Dynamics of a Metal-Oxide Semiconductor Heterostructure under Harmonic Perturbation. Golden Mean Criticality. Chaos, Solitons & Fractals, 40, 975-980.
    https://doi.org/10.1016/j.chaos.2007.08.054

  409. 409. Penrose, R. (2004) The Road to Reality. A Complete Guide to the Laws of the Universe. Jonathan Cape, London.

  410. 410. Green, B. (2004) The Fabric of the Cosmos. Penguin Books, London.

  411. 411. Hawkings, S and Ellis, G. (1973) The Large Scale Structure of Space-time. Cambridge University Press, Cambridge.
    https://doi.org/10.1017/CBO9780511524646

  412. 412. ‘tHooft, G. (1997) In Search of the Ultimate Building Blocks. Cambridge University Press, Cambridge.

  413. 413. Davies, P. (1989) The New Physics. Cambridge University Press, Cambridge.

  414. 414. Halpern, P. (2004) The Great Beyond. John Wiley, New Jersey.

  415. 415. Zeilinger, A. (2003) Einstein’s Schleier. C. H. Beck Verlog, Munchen-Germany.

  416. 416. Crowell, L.B. (2005) Quantum Fluctuations of Spacetime. World Scientific, Singapore.
    https://doi.org/10.1142/5952

  417. 417. Smolin, L. (2000) Three Roads to Quantum Gravity. Weidenfeld and Nicolson, London.

  418. 418. ‘tHooft, G. (1994) Under the Spell of the Gauge Principle. World Scientific, Singapore.

  419. 419. Kaku, M. (2000) Strings, Conformal fields and M-Theory. Springer, New York.
    https://doi.org/10.1007/978-1-4612-0503-6

  420. 420. Connes, A. (1994) Non-Commutative Geometry. Academic Press, San Diego.

  421. 421. Becker, K., Becker, M. and Schwarz, J. (2007) String Theory and M-Theory. Cambridge University Press, Cambridge.

  422. 422. Green, M., Schwarz, J. and Witten, E. (1987) Superstring Theory. Vol. I and II. Cambridge University Press, Cambridge.

  423. 423. El Naschie, M.S. (2016) Kähler Dark Matter, Dark Energy Cosmic Density and Their Coupling. Journal of Modern Physics, in Press.
    https://doi.org/10.4236/jmp.2016.714173

  424. 424. Weinberg, S. (1995) The Quantum Theory of Fields. Vol. I, Cambridge University Press, Cambridge.
    https://doi.org/10.1017/CBO9781139644167

  425. 425. Oriti, D. (Editor) (2009) Approaches to Quantum Gravity. Cambridge University Press, Cambridge.

  426. 426. El Naschie, M.S. (2016) Completing Einstein’s Spacetime. Journal of Modern Physics, 7, 1972.
    https://doi.org/10.4236/jmp.2016.715175

  427. 427. El Naschie, M.S. (2016) The Speed of the Passing of Time as Yet Another Facet of Cosmic Dark Energy. Journal of Modern Physics, 7, 2103.
    https://doi.org/10.4236/jmp.2016.715184

  428. 428. Roukema, B.F. (2012) Topological Acceleration in Relativistic Cosmology. arXiv Preprint arXiv:1212.5426.

  429. 429. Ostrowski, J.J., Roukema, B.F. and Bulinski, Z.P. (2012) A Relativistic Model of the Topological Acceleration Effect. Classical and Quantum Gravity, 29, 165006.
    https://doi.org/10.1088/0264-9381/29/16/165006

  430. 430. Mark, J.J. (2012) Zeno’s Paradoxes; the Illusion of Motion. Ancient History Encyclopedia.
    http://www.ancient.eu/article/60/