Journal of Modern Physics
Vol.07 No.15(2016), Article ID:71854,23 pages
10.4236/jmp.2016.715175

Completing Einstein’s Spacetime

M. S. El Naschie

Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt

Copyright © 2016 by author and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Received: November 1, 2016; Accepted: November 6, 2016; Published: November 9, 2016

ABSTRACT

The four-dimensional character of Einstein’s spacetime is generally accepted in mainstream physics as beyond reasonable doubt correct. However the real problem is when we require scale invariance and that this spacetime be four-dimensional on all scales. It is true that on our classical scale, the 4D decouples into 3D plus one time dimension and that on very large scale only the curvature of spacetime becomes noticeable. However the critical problem is that such spacetime must remain 4D no matter how small the scale we are probing is. This is something of crucial importance for quantum physics. The present work addresses this basic, natural and logical requirement and shows how many contradictory results and shortcomings of relativity and quantum gravity could be eliminated when we “complete” Einstein’s spacetime in such a geometrical gauge invariant way. Concurrently the work serves also as a review of the vast Literature on E-Infinity theory used here.

Keywords:

E-Infinity, Cantorian Spacetime, Self-Similarity, M-Theory, Kaluza-Klein Space, Fuzzy Kähler Manifolds, Continued Fraction, Isomorphic Length, Geometrical Gauge Invariance

1. Introduction

The present work is a quite comprehensive review of E-Infinity theory [1] - [60] in high energy physics and cosmology which addresses a fundamental question in the very nature of the geometry and topology of spacetime [60] - [402] . Spacetime is four-dimensional manifold with three spatial and one time dimension [403] [404] [405] [406] . There is nothing very surprising nor deviating from our everyday experience in this picture which goes back to the beginning of modern physics [407] - [419] . In other words, Einstein’s spacetime is truly conventional except for two minor details, which on closer examination turns out to be truly profound. The deceptively simple twist is that in Einstein’s theory space and time are linked together to a spacetime and that at large scales spacetime acquires a curvature linking mass and gravity with the geometry of the Universe [4] - [80] [403] - [410] .

The starting point of our criticism of Einstein’s preceding conception, which we accept in principle, is again a deceptively simple one. Our point is that Einstein did not dwell on the nature of spacetime at the very small scales [406] . On the other hand at very small scales our inability to give a watertight definition for what a point is becoming critical while the very small scale is also where quantum mechanics becomes very important in fact indispensable for high energy physics let alone quantum gravity [1] [13] [411] . Our solution in the present work is equally disarmingly straightforward. We simply insist that Einstein’s spacetime remain self-affine to four-dimensional manifold on all scales down to a point like “infinitesimally” small spacetime “point” which naturally cannot be a classical point but rather a “Cantorian” point. This means a point which upon “magnification” i.e. upon increasing the resolution of our “observation” turns ours to be not a point but an entire Cantor set with uncountably infinitely many points and so on ad infinitum [1] - [50] . The analysis to be presented in the next section shows that the requirement of “geometrical” gauge invariance [1] - [80] [406] [412] of Einstein’s D - 4 leads to a new fractal-like dimension where. From there we proceed to show how this result connects with Witten’s M-Theory spacetime [158] [413] as well as explaining the mystery of the Dark Energy and Dark Matter of the Cosmos [4] - [70] [158] .

2. Analysis. Geometrical Gauge Invariance

The simple picture of self-similar fractal-like space which we will propose here is all what we need [1] - [10] . Thus to ensure a quasi-geometrical gauge invariance [412] , [415] is all what is required to convert Einstein’s 4D spacetime to a 4D spacetime on all scales. Our analytical tool to do that is the marvelous classical mathematical “technique” known in the literature as continued fraction. This means that our space should be 4D inside 4D and so on like an infinite arrangement of Russian Dolls [3] each with D = 4 so that at the end we find that our dimension is given by

(1)

Summing this infinite “series” one finds a little surprise namely that our new total dimension is equal to 4 plus the golden mean to the power of three. In other words D is [1] - [158]

(2)

The same neat result could be obtained using the bijection formula of E-Infinity theory [1] - [10] or more conventionally using Von Neumann-Connes’ dimensional function of Non-commutative geometry [414] .

An important and revealing property of the new spacetime is that union and intersection of “wave” and “particle” lead to the same result which is the quintessence of the wave-particle duality of quantum mechanics [403] [409] . Thus with the wave given by while the particle is characterized by one finds the un-normed probability to be [1] - [80] [158]

(3)

and similarly

(4)

In other words we find the classical indistinguishability or fuzziness condition of Cantorian quantum physics to be validated and reflected into the Hausdorff dimension which fully explains the paradoxical outcome of the famous two-slit experiment with quantum particles. Next we examine the relevance of the present result for Witten’s M-Theory [158] [207] [413] as well as the major cosmological riddle of Dark Energy and Dark Matter [10] - [80] [158] .

3. Witten’s M-Theory, Dark Energy and the Isomorphic Length of Super-Symmetric Penrose Tiling Universe

It may come to some as an unexpected surprise initiating some deep thinking that can lead to a fractal version of the D = 11 of the wizard of Theoretical Physics E. Witten [413] [416] and particularly his M-theory and the five brane in eleven dimensions model. To find Witten’s D from it needs to be golden mean scaled twice. That way we find [1] - [20] [158]

(5)

Amazingly this is exactly equivalent to making D = 11 a geometrically gauge invariant spacetime exactly as we did with Einstein’s D = 4 spacetime to obtain. Thus using the same continued fraction procedure we find:

(6)

where is nothing but Hardy’s quantum entanglement of two quantum particles [82] . The preceding connection to Hardy’s quantum entanglement [41] leads us to speculate on whether could be used in determining the ordinary and thus the dark energy density of the cosmos [28] - [90] . It turns out that this hunch is correct and we will attempt to explain it in what follows.

4. The Dark Energy Density of the Universe

We recall that a simple dimension is a basically bosonic space which needs a spin half degree of freedom to accommodate fermions. Consequently is the fermionic counterpart of. It just happened to be a dimension identical to the fractal Kaluza-Klein space D = 5 [45] [92] . A few minutes of clear thinking would easily convince us that a space which is super symmetric must possess a dimension which results from the intersection of the bosonic spacetime with the fermionic space That means

(7)

where.

Consequently the isomorphic length of this super symmetric space is exactly equal to that of the fractal version of Witten’s M-theory [158] .

(8)

Now we know that the Einstein spacetime D = 4 is isotropic and consequently the isomorphic diameter is unity and therefore the isometric radius i.e. isomorphic length is one half. Inserting in E (Einstein), one finds [158]

(9)

Consequently the Dark Energy density of the Universe must be [22] - [85] :

(10)

This means the measurable ordinary energy of the Universe is about 4.5% while the corresponding Dark Energy density is a staggering 95.5% in full agreement with cosmic measurements and observations as well as all our previous analyses [4] - [90] .

It is remarkable and noteworthy to register in the present context the agreement between the present derivation and the K3-Kähler topology [16] [417] used in deriving the same result namely

(11)

and

(12)

5. Discussion and Conclusion

Again and again the Golden Mean appears unexpectedly in theoretical quantum physics at crucial points [11] such as the probability of quantum entanglement for two particles as well as the dimensional function of a non-commutative Penrose-Connes Universe [1] [3] [414] . The present work shows that this particular phenomenon is intimately linked to the completion of Einstein’s space time via extending it to a gauge invariant manifold with rather than D = 4 where is the said golden mean. The simplest way to calculate this is to use the classical marvelous simple mathematical procedure of continuous fraction. In this way we can neatly show in analogous way that the dimension of the fractal universe of Kaluza-Klein theory is rather than D = 5 and similarly D for a fractal M-theory is rather than D = 11 [158] . From there we arrive to the accurate ordinary and dark energy density of the universe in a relatively short way indeed. In addition equipped with the preceding insight the remarkable connection of our result to the topology of K3-Kähler and Conway’s isomorphic length on one side and our gauge invariant Einstein’s spacetime on the other was amply demonstrated and instructively used in the same context namely that of Dark Energy density of the Universe [22] - [90] .

Cite this paper

El Naschie, M.S. (2016) Completing Einstein’s Spacetime. Journal of Modern Physics, 7, 1972-1994. http://dx.doi.org/10.4236/jmp.2016.715175

References

  1. 1. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 19, 209-236.
    http://dx.doi.org/10.1016/S0960-0779(03)00278-9

  2. 2. El Naschie, M.S. (1995) Chaos, Solitons & Fractals, 4, 1235-1247.

  3. 3. El Naschie, M.S. (2009) Chaos, Solitons & Fractals, 41, 2635-2646.
    http://dx.doi.org/10.1016/j.chaos.2008.09.059

  4. 4. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 579-605.
    http://dx.doi.org/10.1016/j.chaos.2006.03.030

  5. 5. El Naschie, M.S. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 407-409.
    http://dx.doi.org/10.1515/ijnsns.2006.7.4.407

  6. 6. El Naschie, M.S. (2007) International Journal of Nonlinear Sciences and Numerical Simulation, 8, 11-20.
    http://dx.doi.org/10.1515/ijnsns.2007.8.1.11

  7. 7. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 1-5.
    http://dx.doi.org/10.1016/j.chaos.2004.09.001

  8. 8. El Naschie, M.S. (1998) Chaos, Solitons & Fractals, 9, 931-933.
    http://dx.doi.org/10.1016/S0960-0779(98)00077-0

  9. 9. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 27, 843-849.
    http://dx.doi.org/10.1016/j.chaos.2005.06.002

  10. 10. El Naschie, M.S. (1997) Chaos, Solitons & Fractals, 8, 131-133.
    http://dx.doi.org/10.1016/S0960-0779(96)00128-2

  11. 11. El Naschie, M.S. (1994) Chaos, Solitons & Fractals, 4, 177-179.
    http://dx.doi.org/10.1016/0960-0779(94)90141-4

  12. 12. El Naschie, M.S. (1996) Chaos, Solitons & Fractals, 7, 499-518.
    http://dx.doi.org/10.1016/0960-0779(96)00007-0

  13. 13. El Naschie, M.S. (2014) International Journal of Astronomy and Astrophysics, 4, 80-90.
    http://dx.doi.org/10.4236/ijaa.2014.41009

  14. 14. Nottale, L. (1996) Chaos, Solitons & Fractals, 7, 877-938.
    http://dx.doi.org/10.1016/0960-0779(96)00002-1

  15. 15. Marek-Crnjac, L., El Naschie, M.S. and He, J.H. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 78-88.
    http://dx.doi.org/10.4236/ijmnta.2013.21A010

  16. 16. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 969-977.
    http://dx.doi.org/10.1016/j.chaos.2005.02.028

  17. 17. El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 23-26.
    http://dx.doi.org/10.4236/jqis.2013.31006

  18. 18. El Naschie, M.S. (2013) International Journal of Astronomy and Astrophysics, 3, 205-211. http://dx.doi.org/10.4236/ijaa.2013.33024

  19. 19. El Naschie, M.S. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 331-333.

  20. 20. El Naschie, M.S. (2013) International Journal of Astronomy and Astrophysics, 3, 483-493. http://dx.doi.org/10.4236/ijaa.2013.34056

  21. 21. He, J.H. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 343-346.
    http://dx.doi.org/10.1515/IJNSNS.2005.6.4.343

  22. 22. El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 43-54.
    http://dx.doi.org/10.4236/ijmnta.2013.21005

  23. 23. El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 121-126.
    http://dx.doi.org/10.4236/jqis.2013.34016

  24. 24. He, J.H. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 93-94.
    http://dx.doi.org/10.1515/IJNSNS.2005.6.2.93

  25. 25. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 20, 917-923.
    http://dx.doi.org/10.1016/j.chaos.2003.11.001

  26. 26. El Naschie, M.S. (2013) Journal of Modern Physics, 4, 591-596.
    http://dx.doi.org/10.4236/jmp.2013.45084

  27. 27. El Naschie, M. (2014) World Journal of Mechanics, 4, Article ID: 47445.

  28. 28. Sigalotti, L.D.G. and Mejias, A. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 467-472.
    http://dx.doi.org/10.1515/IJNSNS.2006.7.4.467

  29. 29. El Naschie, M.S. (1995) Chaos, Solitons & Fractals, 5, 1031-1032.
    http://dx.doi.org/10.1016/0960-0779(95)00044-5

  30. 30. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 876-881.
    http://dx.doi.org/10.1016/j.chaos.2005.12.027

  31. 31. El Naschie, M.S. (2014) American Journal of Astronomy & Astrophysics, 2, 72-77.
    http://dx.doi.org/10.11648/j.ajaa.20140206.13

  32. 32. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 19, 1339-1344.
    http://dx.doi.org/10.1016/j.chaos.2003.08.009

  33. 33. El Naschie, M.S. and Helal, A. (2013) International Journal of Astronomy and Astrophysics, 3, 318-343.
    http://dx.doi.org/10.4236/ijaa.2013.33037

  34. 34. Iovane, G. (2005) Chaos, Solitons & Fractals, 23, 351-360.
    http://dx.doi.org/10.1016/j.chaos.2004.05.032

  35. 35. El Naschie, M.S. (2014) American Journal of Astronomy & Astrophysics, 2, 34-37.
    http://dx.doi.org/10.11648/j.ajaa.20140203.12

  36. 36. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 31, 537-547.
    http://dx.doi.org/10.1016/j.chaos.2006.07.001

  37. 37. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 525-531.
    http://dx.doi.org/10.1016/j.chaos.2005.04.123

  38. 38. El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 107-121.
    http://dx.doi.org/10.4236/ijmnta.2013.22014

  39. 39. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 21, 249-260.
    http://dx.doi.org/10.1016/j.chaos.2003.12.001

  40. 40. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 20, 437-450.
    http://dx.doi.org/10.1016/j.chaos.2003.09.029

  41. 41. El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, Article ID: 32831.

  42. 42. El Naschie, M.S. (2015) The Open Astronomy Journal, 8, 1-17.
    http://dx.doi.org/10.2174/1874381101508010001

  43. 43. El Naschie, M.S. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 129-132.
    http://dx.doi.org/10.1515/IJNSNS.2006.7.2.129

  44. 44. El Naschie, M.S. (2014) World Journal of Nuclear Science and Technology, 4, 216.
    http://dx.doi.org/10.4236/wjnst.2014.44027

  45. 45. El Naschie, M.S. (2013) Journal of Modern Physics, 4, Article ID: 32975.

  46. 46. Tang, W., Li, Y., Kong, H.Y. and El Naschie, M.S. (2014) Bubbfil Nanotechnology, 1, 3-12.

  47. 47. Iovane, G. and Benedetto, E. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 357-370.
    http://dx.doi.org/10.1515/IJNSNS.2005.6.4.357

  48. 48. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 22, 1-11.
    http://dx.doi.org/10.1016/j.chaos.2004.01.015

  49. 49. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 22, 495-511.
    http://dx.doi.org/10.1016/j.chaos.2004.02.028

  50. 50. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 27, 297-330.
    http://dx.doi.org/10.1016/j.chaos.2005.04.116

  51. 51. Iovane, G. (2005) Chaos, Solitons & Fractals, 25, 775-779.
    http://dx.doi.org/10.1016/j.chaos.2005.02.024

  52. 52. El Naschie, M.S. and Marek-Crnjac, L. (2012) International Journal of Modern Nonlinear Theory and Application, 1, 118-124.
    http://dx.doi.org/10.4236/ijmnta.2012.14018

  53. 53. El Naschie, M.S. (2000) Chaos, Solitons & Fractals, 11, 1149-1162.
    http://dx.doi.org/10.1016/S0960-0779(99)00185-X

  54. 54. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 622-628.
    http://dx.doi.org/10.1016/j.chaos.2006.04.042

  55. 55. El Naschie, M.S. (2013) Journal of Modern Physics and Applications, 2014, 2.

  56. 56. El Naschie, M.S. (2013) Journal of Modern Physics, 4, 1417-1428.
    http://dx.doi.org/10.4236/jmp.2013.410170

  57. 57. El Naschie, M.S. (2013) Journal of Modern Physics, 4, 354-356.
    http://dx.doi.org/10.4236/jmp.2013.43049

  58. 58. El Naschie, M.S. (2003) Chaos, Solitons & Fractals, 16, 353-366.
    http://dx.doi.org/10.1016/S0960-0779(02)00440-X

  59. 59. El Naschie, M.S. (2014) Journal of Quantum Information Science, 4, 284-291.
    http://dx.doi.org/10.4236/jqis.2014.44023

  60. 60. El Naschie, M.S. (1993) Journal of the Franklin Institute, 330, 199-211.
    http://dx.doi.org/10.1016/0016-0032(93)90030-X

  61. 61. El Naschie, M.S. (2003) Chaos, Solitons & Fractals, 18, 401-420.
    http://dx.doi.org/10.1016/S0960-0779(03)00098-5

  62. 62. El-Ahmady, A.E. (2007) Chaos, Solitons & Fractals, 31, 1272-1278.
    http://dx.doi.org/10.1016/j.chaos.2005.10.112

  63. 63. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 447-457.
    http://dx.doi.org/10.1016/j.chaos.2004.09.071

  64. 64. El Naschie, M.S. (2014) World Journal of Condensed Matter Physics, 4, 74-77.
    http://dx.doi.org/10.4236/wjcmp.2014.42011

  65. 65. El Naschie, M.S. (2014) Problems of Nonlinear Analysis in Engineering Systems, 20, 79-98.

  66. 66. El Naschie, M.S. (2014) Journal of Quantum Information Science, 4, 83-91.
    http://dx.doi.org/10.4236/jqis.2014.42008

  67. 67. Helal, M.A., Marek-Crnjac, L. and He, J.H. (2013) Open Journal of Microphysics, 3, 141-145. http://dx.doi.org/10.4236/ojm.2013.34020

  68. 68. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 32, 911-915.
    http://dx.doi.org/10.1016/j.chaos.2006.08.014

  69. 69. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 202-211.
    http://dx.doi.org/10.1016/j.chaos.2007.05.006

  70. 70. El Naschie, M.S. (2014) Open Journal of Fluid Dynamics, 4, 15-17.

  71. 71. El Naschie, M.S. (2016) Quantum Matter, 5, 1-4.
    http://dx.doi.org/10.1166/qm.2016.1247

  72. 72. El Naschie, M.S. (2015) Advances in Pure Mathematics, 5, 560-570.
    http://dx.doi.org/10.4236/apm.2015.59052

  73. 73. El Naschie, M.S. (2007) International Journal of Nonlinear Sciences and Numerical Simulation, 8, 445-450.
    http://dx.doi.org/10.1515/IJNSNS.2007.8.3.445

  74. 74. Marek-Crnjac, L. and He, J. (2013) International Journal of Astronomy and Astrophysics, 3, 464-471.
    http://dx.doi.org/10.4236/ijaa.2013.34053

  75. 75. El Naschie, M.S. (1997) COBE Satellite Measurement, Cantorian Space and Cosmic Strings. Chaos, Solitons & Fractals, 8, 847-850.
    http://dx.doi.org/10.1016/S0960-0779(97)00084-2

  76. 76. El Naschie, M.S. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 97-100.
    http://dx.doi.org/10.1515/ijnsns.2006.7.1.97

  77. 77. El Naschie, M.S. (2015) World Journal of Condensed Matter Physics, 5, 249-260.
    http://dx.doi.org/10.4236/wjcmp.2015.54026

  78. 78. El Naschie, M.S. (2014) Journal of Modern Physics, 5, 743-750.

  79. 79. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 257-261.
    http://dx.doi.org/10.1016/j.chaos.2004.12.024

  80. 80. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 759-764.
    http://dx.doi.org/10.1016/j.chaos.2004.12.010

  81. 81. El Naschie, M.S. (1998) Chaos, Solitons & Fractals, 9, 913-919.
    http://dx.doi.org/10.1016/S0960-0779(97)00165-3

  82. 82. El Naschie, M.S. (2013) Journal of Modern Physics and Applications, 2, 88-96.

  83. 83. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 941-946.
    http://dx.doi.org/10.1016/j.chaos.2004.10.001

  84. 84. El Naschie, M.S. (2014) International Journal of Astronomy and Astrophysics, 4, 332-339.
    http://dx.doi.org/10.4236/ijaa.2014.42027

  85. 85. El Naschie, M.S. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 119-128.
    http://dx.doi.org/10.1515/IJNSNS.2006.7.2.119

  86. 86. El Naschie, M.S. (1998) International Journal of Theoretical Physics, 37, 2935-2951.
    http://dx.doi.org/10.1023/A:1026679628582

  87. 87. El Naschie, M.S. (2013) Open Journal of Microphysics, 3, 64-70.
    http://dx.doi.org/10.4236/ojm.2013.33012

  88. 88. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 320-322.
    http://dx.doi.org/10.1016/j.chaos.2007.06.110

  89. 89. Iovane, G. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 155-162.
    http://dx.doi.org/10.1515/IJNSNS.2006.7.2.155

  90. 90. El Naschie, M.S. (2014) Open Journal of Philosophy, 4, 157-159.
    http://dx.doi.org/10.4236/ojpp.2014.42022

  91. 91. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 32, 427-430.
    http://dx.doi.org/10.1016/j.chaos.2006.09.016

  92. 92. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 37, 16-22.
    http://dx.doi.org/10.1016/j.chaos.2007.09.079

  93. 93. El Naschie, M.S. (2015) Open Journal of Applied Sciences, 5, 313-324.
    http://dx.doi.org/10.4236/ojapps.2015.57032

  94. 94. He, J.H. (2007) International Journal of Nonlinear Sciences and Numerical Simulation, 8, 1-4.
    http://dx.doi.org/10.1515/IJNSNS.2007.8.1.1

  95. 95. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 19, 689-697.
    http://dx.doi.org/10.1016/S0960-0779(03)00337-0

  96. 96. El Naschie, M.S. (2014) Journal of Applied Mathematics and Physics, 2, 634-638.
    http://dx.doi.org/10.4236/jamp.2014.27069

  97. 97. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 23, 1091-1098.
    http://dx.doi.org/10.1016/j.chaos.2004.08.001

  98. 98. He, J.H. (2006) Chaos, Solitons & Fractals, 28, 285-289.
    http://dx.doi.org/10.1016/j.chaos.2005.08.001

  99. 99. He, J.H. and Marek-Crnjac, L. (2013) IJMNTA, 2, 55-59.

  100. 100. El Naschie, M.S. (1998) Biosystems, 46, 41-46.
    http://dx.doi.org/10.1016/S0303-2647(97)00079-8

  101. 101. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 23, 1521-1525.
    http://dx.doi.org/10.1016/j.chaos.2004.09.003

  102. 102. El Naschie, M.S. (2001) Chaos, Solitons & Fractals, 12, 969-988.
    http://dx.doi.org/10.1016/S0960-0779(00)00263-0

  103. 103. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 1025-1033.
    http://dx.doi.org/10.1016/j.chaos.2006.05.088

  104. 104. El Naschie, M.S. (2013) Journal of Physics, 2, 18-23.

  105. 105. El Naschie, M.S., Marek-Crnjac, L., Helal, M.A. and He, J.H. (2014) Applied Mathematics, 5, 1780-1790.

  106. 106. Sigalotti, L.D.G. and Mejias, A. (2006) Chaos, Solitons & Fractals, 30, 521-524.
    http://dx.doi.org/10.1016/j.chaos.2006.03.005

  107. 107. Castro, C., El-Naschie, M.S. and Granik, A. (2000) Why We Live in 3+ 1 Dimensions. CERN Document Server. (No. hep-th/0004152).

  108. 108. Crnjac, L.M. and El Naschie, M.S. (2013) Journal of Modern Physics, 4, 31-38.

  109. 109. El Naschie, M.S. (2016) Journal of Quantum Information Science, 6, 1-9.
    http://dx.doi.org/10.4236/jqis.2016.61001

  110. 110. El Naschie, M.S. (1993) Chaos, Solitons & Fractals, 3, 89-98.
    http://dx.doi.org/10.1016/0960-0779(93)90042-Y

  111. 111. El Naschie, M.S. (1995) Computers & Mathematics with Applications, 29, 103-110.
    http://dx.doi.org/10.1016/0898-1221(95)00062-4

  112. 112. El Naschie, M.S. (2003) Chaos, Solitons & Fractals, 16, 637-649.
    http://dx.doi.org/10.1016/S0960-0779(02)00489-7

  113. 113. El Naschie, M.S. (2014) Journal of Electromagnetic Analysis and Applications, 6, 233-237.
    http://dx.doi.org/10.4236/jemaa.2014.69023

  114. 114. El Naschie, M.S. (2013) American Journal of Modern Physics, 2, 357-361.
    http://dx.doi.org/10.11648/j.ajmp.20130206.23

  115. 115. El Naschie, M.S. (2015) Natural Science, 7, 210-225.
    http://dx.doi.org/10.4236/ns.2015.74024

  116. 116. Castro, C. (2000) Chaos, Solitons & Fractals, 11, 1663-1670.
    http://dx.doi.org/10.1016/S0960-0779(00)00018-7

  117. 117. El Naschie, M.S. (2014) International Journal of Modern Nonlinear Theory and Application, 3, 1-5.
    http://dx.doi.org/10.4236/ijmnta.2014.31001

  118. 118. El Naschie, M.S. (2004) International Journal of Modern Physics E, 13, 835-849.
    http://dx.doi.org/10.1142/S0218301304002429

  119. 119. El Naschie, M.S. (2000) Chaos, Solitons & Fractals, 11, 1459-1469.
    http://dx.doi.org/10.1016/S0960-0779(99)00194-0

  120. 120. El Naschie, M.S. (2014) Journal of Applied Mathematics and Physics, 2, 803-806.
    http://dx.doi.org/10.4236/jamp.2014.28088

  121. 121. El Naschie, M.S. (2001) Chaos, Solitons & Fractals, 12, 539-549.
    http://dx.doi.org/10.1016/S0960-0779(00)00187-9

  122. 122. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 23, 711-726.
    http://dx.doi.org/10.1016/j.chaos.2004.06.048

  123. 123. El Naschie, M.S. (2015) Journal of Modern Physics, 6, 1321-1333.
    http://dx.doi.org/10.4236/jmp.2015.69137

  124. 124. Iovane, G. and Giordano, P. (2007) Chaos, Solitons & Fractals, 32, 896-910.
    http://dx.doi.org/10.1016/j.chaos.2005.11.097

  125. 125. He, J. H., Liu, Y., Xu, L. and Yu, J.Y. (2007) Chaos, Solitons & Fractals, 32, 1096-1100.
    http://dx.doi.org/10.1016/j.chaos.2006.07.045

  126. 126. Chen, W. (2006) Chaos, Solitons & Fractals, 28, 923-929.
    http://dx.doi.org/10.1016/j.chaos.2005.08.199

  127. 127. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 803-807.
    http://dx.doi.org/10.1016/j.chaos.2006.01.012

  128. 128. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 37, 662-668.
    http://dx.doi.org/10.1016/j.chaos.2008.01.018

  129. 129. El Naschie, M.S. (2015) World Journal of Nano Science and Engineering, 5, 57-67.
    http://dx.doi.org/10.4236/wjnse.2015.53008

  130. 130. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 899-905.
    http://dx.doi.org/10.1016/j.chaos.2004.11.003

  131. 131. El Naschie, M.S. (2015) Open Journal of Philosophy, 5, 123-130.
    http://dx.doi.org/10.4236/ojpp.2015.51014

  132. 132. El Naschie, M.S. (2014) Journal of Modern Physics and Applications, 2014, 6.

  133. 133. Marek-Crnjac, L. and El Naschie, M.S. (2013) Applied Mathematics, 4, 22-29.
    http://dx.doi.org/10.4236/am.2013.411A2005

  134. 134. Nottale, L. (1999) Chaos, Solitons & Fractals, 10, 459-468.
    http://dx.doi.org/10.1016/S0960-0779(98)00195-7

  135. 135. El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 167-169.
    http://dx.doi.org/10.4236/ijmnta.2013.23023

  136. 136. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 935-939.
    http://dx.doi.org/10.1016/j.chaos.2005.02.029

  137. 137. He, J.H. (2007) Chaos, Solitons & Fractals, 32, 1645-1648.
    http://dx.doi.org/10.1016/j.chaos.2006.08.015

  138. 138. Gottlieb, I., Agop, M., Ciobanu, G. and Stroe, A. (2006) Chaos, Solitons & Fractals, 30, 380-398.
    http://dx.doi.org/10.1016/j.chaos.2005.11.018

  139. 139. El Naschie, M.S. (2015) American Journal of Nano Research and Application, 3, 66-70.

  140. 140. Gottlieb, I., Agop, M. and Jarcǎu, M. (2004) Chaos, Solitons & Fractals, 19, 705-730.
    http://dx.doi.org/10.1016/S0960-0779(03)00244-3

  141. 141. El Naschie, M.S. (2009) Chaos, Solitons & Fractals, 41, 2725-2732.
    http://dx.doi.org/10.1016/j.chaos.2008.10.001

  142. 142. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 36, 1-17.
    http://dx.doi.org/10.1016/j.chaos.2007.08.058

  143. 143. El Naschie, M.S. (2001) Chaos, Solitons & Fractals, 12, 741-746.
    http://dx.doi.org/10.1016/S0960-0779(00)00193-4

  144. 144. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 1-6.
    http://dx.doi.org/10.1016/j.chaos.2005.02.031

  145. 145. El Naschie, M.S. and Rossler, O.E. (1994) Chaos, Solitons & Fractals, 4, 307-309.
    http://dx.doi.org/10.1016/0960-0779(94)90049-3

  146. 146. Nottale, L. (1995) Chaos, Solitons & Fractals, 6, 399-410.
    http://dx.doi.org/10.1016/0960-0779(95)80047-K

  147. 147. Marek-Crnjac, L. (2009) Chaos, Solitons & Fractals, 41, 2697-2705.
    http://dx.doi.org/10.1016/j.chaos.2008.10.007

  148. 148. Marek-Crnjac, L. (2015) Natural Science, 7, 581.
    http://dx.doi.org/10.4236/ns.2015.713058

  149. 149. He, J.H. (2014) International Journal of Theoretical Physics, 53, 3698-3718.
    http://dx.doi.org/10.1007/s10773-014-2123-8

  150. 150. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 665-670.
    http://dx.doi.org/10.1016/j.chaos.2005.01.018

  151. 151. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 23, 1511-1514.
    http://dx.doi.org/10.1016/j.chaos.2004.08.008

  152. 152. Agop, M., Griga, V., Ciobanu, B., Ciubotariu, C., Buzea, C.G., Stan, C. and Buzea, C. (1998) Chaos, Solitons & Fractals, 9, 1143-1181.
    http://dx.doi.org/10.1016/S0960-0779(98)80005-2

  153. 153. Giordano, P., Iovane, G. and Laserra, E. (2007) Chaos, Solitons & Fractals, 31, 1108-1117.
    http://dx.doi.org/10.1016/j.chaos.2006.03.114

  154. 154. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 29-32.
    http://dx.doi.org/10.1016/j.chaos.2004.09.002

  155. 155. He, J.H. (2007) Chaos, Solitons & Fractals, 31, 782-786.
    http://dx.doi.org/10.1016/j.chaos.2006.04.041

  156. 156. Iovane, G., Giordano, P. and Salerno, S. (2005) Chaos, Solitons & Fractals, 24, 423-441.
    http://dx.doi.org/10.1016/j.chaos.2004.09.068

  157. 157. El Naschie, M.S. (2003) Chaos, Solitons & Fractals, 18, 635-641.
    http://dx.doi.org/10.1016/S0960-0779(03)00007-9

  158. 158. El Naschie, M.S. (2016) International Journal of Astronomy and Astrophysics, 6, 135.
    http://dx.doi.org/10.4236/ijaa.2016.62011

  159. 159. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 268-273.
    http://dx.doi.org/10.1016/j.chaos.2007.07.036

  160. 160. El Naschie, M.S. (2015) World Journal of Nano Science and Engineering, 5, 26.
    http://dx.doi.org/10.4236/wjnse.2015.51004

  161. 161. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 37, 346-359.
    http://dx.doi.org/10.1016/j.chaos.2007.10.021

  162. 162. El Naschie, M.S. (2015) Open Journal of Philosophy, 5, 319.
    http://dx.doi.org/10.4236/ojpp.2015.56040

  163. 163. El Naschie, M.S. (2015) International Journal of Astronomy and Astrophysics, 5, 243.
    http://dx.doi.org/10.4236/ijaa.2015.54027

  164. 164. Rössler, O.E. (1996) Chaos, Solitons & Fractals, 7, 845-852.
    http://dx.doi.org/10.1016/0960-0779(95)00117-4

  165. 165. Nottale, L. (1998) Chaos, Solitons & Fractals, 9, 1051-1061.
    http://dx.doi.org/10.1016/S0960-0779(97)00190-2

  166. 166. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 531-533.
    http://dx.doi.org/10.1016/j.chaos.2005.01.001

  167. 167. Iovane, G. (2006) Chaos, Solitons & Fractals, 29, 1-22.
    http://dx.doi.org/10.1016/j.chaos.2005.10.045

  168. 168. Czajko, J. (2000) Chaos, Solitons & Fractals, 11, 1983-1992.
    http://dx.doi.org/10.1016/S0960-0779(99)00091-0

  169. 169. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 673-676.
    http://dx.doi.org/10.1016/j.chaos.2005.02.030

  170. 170. Nottale, L. (1994) Chaos, Solitons & Fractals, 4, 361-388.
    http://dx.doi.org/10.1016/0960-0779(94)90051-5

  171. 171. El Naschie, M.S. (2015) Open Journal of Microphysics, 5, 11.
    http://dx.doi.org/10.4236/ojm.2015.52002

  172. 172. El Naschie, M.S. (2004) Nonlinear Sci. Lett.A, 2, 1-8.

  173. 173. Iovane, G. (2006) Chaos, Solitons & Fractals, 28, 857-878.
    http://dx.doi.org/10.1016/j.chaos.2005.08.074

  174. 174. El Naschie, M.S. (1992) Chaos, Solitons & Fractals, 2, 91-94.
    http://dx.doi.org/10.1016/0960-0779(92)90050-W

  175. 175. Iovane, G., Gargiulo, G. and Zappale, E. (2006) Chaos, Solitons & Fractals, 27, 588-598.
    http://dx.doi.org/10.1016/j.chaos.2005.05.015

  176. 176. El Naschie, M.S. (1998) Chaos, Solitons & Fractals, 9, 1445-1471.
    http://dx.doi.org/10.1016/S0960-0779(98)00120-9

  177. 177. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 28, 1366-1371.
    http://dx.doi.org/10.1016/j.chaos.2005.11.001

  178. 178. El Naschie, M.S. (2015) Journal of Modern Physics, 6, 384.
    http://dx.doi.org/10.4236/jmp.2015.64042

  179. 179. Elnaschie, M.S. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 335-342.
    http://dx.doi.org/10.1515/IJNSNS.2005.6.4.335

  180. 180. Iovane, G., Chinnici, M. and Tortoriello, F.S. (2008) Chaos, Solitons & Fractals, 35, 645-658.
    http://dx.doi.org/10.1016/j.chaos.2007.07.051

  181. 181. El Naschie, M.S. (2015) World Journal of Nano Science and Engineering, 5, 49.
    http://dx.doi.org/10.4236/wjnse.2015.52007

  182. 182. El Naschie, M.S. (2014) Advances in Pure Mathematics, 4, 641.
    http://dx.doi.org/10.4236/apm.2014.412073

  183. 183. Selvam, A.M. and Fadnavis, S. (1999) Chaos, Solitons & Fractals, 10, 1321-1334.
    http://dx.doi.org/10.1016/S0960-0779(98)00150-7

  184. 184. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 30, 636-641.
    http://dx.doi.org/10.1016/j.chaos.2006.04.044

  185. 185. He, J.H. (2006) Chaos, Solitons & Fractals, 30, 506-511.
    http://dx.doi.org/10.1016/j.chaos.2005.11.033

  186. 186. Marek-Crnjac, L. (2013) American Journal of Modern Physics, 2, 255-263.
    http://dx.doi.org/10.11648/j.ajmp.20130205.14

  187. 187. El-Ahmady, A.E. and Rafat, H. (2006) Chaos, Solitons & Fractals, 30, 836-844.
    http://dx.doi.org/10.1016/j.chaos.2005.05.033

  188. 188. El Naschie, M.S. (2016) Natural Science, 8, 152.
    http://dx.doi.org/10.4236/ns.2016.83018

  189. 189. Selvam, A.M. and Fadnavis, S. (1999) Chaos, Solitons & Fractals, 10, 1577-1582.
    http://dx.doi.org/10.1016/S0960-0779(98)00209-4

  190. 190. He, J.H. and Marek-Crnjac, L. (2013) Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 130-137.

  191. 191. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 99-103.
    http://dx.doi.org/10.1016/j.chaos.2007.05.005

  192. 192. El Naschie, M.S. (2007) International Journal of Nonlinear Sciences and Numerical Simulation, 8, 195-198.
    http://dx.doi.org/10.1515/ijnsns.2007.8.2.195

  193. 193. El Naschie, M.S. (2009) Chaos, Solitons & Fractals, 41, 869-874.
    http://dx.doi.org/10.1016/j.chaos.2008.04.013

  194. 194. El Naschie, M.S. (1994) Chaos, Solitons & Fractals, 4, 1235-1247.
    http://dx.doi.org/10.1016/0960-0779(94)90034-5

  195. 195. Özgür, C. (2008) Chaos, Solitons & Fractals, 38, 1373-1377.
    http://dx.doi.org/10.1016/j.chaos.2008.03.016

  196. 196. He, J.H. (2007) Chaos, Solitons & Fractals, 34, 727-729.
    http://dx.doi.org/10.1016/j.chaos.2006.04.052

  197. 197. Castro, C. (2001) Chaos, Solitons & Fractals, 12, 101-104.
    http://dx.doi.org/10.1016/S0960-0779(00)00196-X

  198. 198. Rami, E.N.A. (2009) Chaos, Solitons & Fractals, 42, 84-88.
    http://dx.doi.org/10.1016/j.chaos.2008.10.031

  199. 199. Babchin, A.J. and El Naschie, M.S. (2015) World Journal of Condensed Matter Physics, 6, 1.
    http://dx.doi.org/10.4236/wjcmp.2016.61001

  200. 200. He, J.H. (2008) Chaos, Solitons & Fractals, 36, 542-545.
    http://dx.doi.org/10.1016/j.chaos.2007.07.093

  201. 201. Nagasawa, M. (1996) Chaos, Solitons & Fractals, 7, 631-643.
    http://dx.doi.org/10.1016/0960-0779(95)00115-8

  202. 202. Iovane, G., Giordano, P. and Laserra, E. (2004) Chaos, Solitons & Fractals, 22, 975-983.
    http://dx.doi.org/10.1016/j.chaos.2004.04.019

  203. 203. El Naschie, M.S. (2015) Natural Science, 7, 287.
    http://dx.doi.org/10.4236/ns.2015.76032

  204. 204. Ord, G.N. (1997) Chaos, Solitons & Fractals, 8, 727-741.
    http://dx.doi.org/10.1016/S0960-0779(96)00059-8

  205. 205. Agop, M., Paun, V. and Harabagiu, A. (2008) Chaos, Solitons & Fractals, 37, 1269-1278.
    http://dx.doi.org/10.1016/j.chaos.2008.01.006

  206. 206. El Naschie, M.S., Marek-Crnjac, L., He, J.H. and Helal, M.A. (2013) Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 3-10.

  207. 207. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 247-254.
    http://dx.doi.org/10.1016/j.chaos.2005.01.016

  208. 208. Nottale, L. (2005) Chaos, Solitons & Fractals, 25, 797-803.
    http://dx.doi.org/10.1016/j.chaos.2004.11.071

  209. 209. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 32, 893-895.
    http://dx.doi.org/10.1016/j.chaos.2006.09.055

  210. 210. Saniga, M. (2001) Chaos, Solitons & Fractals, 12, 2127-2142.
    http://dx.doi.org/10.1016/S0960-0779(00)00183-1

  211. 211. El Naschie, M.S. (1995) Quantum Measurement, Information, Diffusion and Cantorian Geodesies. Quantum Mechanics, Diffusion and Chaotic Fractals, Pergamon Press, Oxford.

  212. 212. Mejias, A., Sigalotti, L.D.G., Sira, E. and De Felice, F. (2004) Chaos, Solitons & Fractals, 19, 773-777.
    http://dx.doi.org/10.1016/S0960-0779(03)00273-X

  213. 213. Munceleanu, G.V., Paun, V.P., Casian-Botez, I. and Agop, M. (2011) International Journal of Bifurcation and Chaos, 21, 603-618.
    http://dx.doi.org/10.1142/S021812741102888X

  214. 214. Ho, M.E.N. and Giuseppe Vitiello, M.W. (2015) Global Journal of Science Frontier Research, 15, No. 1-A.

  215. 215. El Naschie, M.S. (2003) Chaos, Solitons & Fractals, 17, 989-1001.
    http://dx.doi.org/10.1016/S0960-0779(03)00006-7

  216. 216. El Naschie, M.S. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 1-6.
    http://dx.doi.org/10.1515/IJNSNS.2006.7.1.1

  217. 217. Castro, C., Granik, A. and El Naschie, M.S. (2000) Why We Live in 3 Dimensions. arXiv preprint hep-th/0004152.

  218. 218. Selvam, A.M. (2005) A General Systems Theory for Chaos, Quantum Mechanics and Gravity for Dynamical Systems of All Space-Time Scales. arXiv preprint physics/0503028.

  219. 219. Iovane, G. and Benedetto, E. (2006) Chaos, Solitons & Fractals, 30, 269-277.
    http://dx.doi.org/10.1016/j.chaos.2005.11.005

  220. 220. Goldfain, E. (2005) Chaos, Solitons & Fractals, 23, 701-710.
    http://dx.doi.org/10.1016/j.chaos.2004.05.020

  221. 221. El Naschie, M.S. (2016) Journal of Modern Physics, 7, 729.
    http://dx.doi.org/10.4236/jmp.2016.78069

  222. 222. El Naschie, Μ.S. (2007) International Journal of Nonlinear Sciences and Numerical Simulation, 8, 5-10.
    http://dx.doi.org/10.1515/IJNSNS.2007.8.1.5

  223. 223. El Naschie, M.S. (2009) Chaos, Solitons & Fractals, 41, 2787-2789.
    http://dx.doi.org/10.1016/j.chaos.2008.10.011

  224. 224. El Naschie, M.S. (2016) World Journal of Condensed Matter Physics, 6, 63.
    http://dx.doi.org/10.4236/wjcmp.2016.62009

  225. 225. El Naschie, M.S. (2015) American Journal of Nano Research and Applications, 3, 33-40.

  226. 226. El Naschie, M.S. (2000) Chaos, Solitons & Fractals, 11, 2391-2395.
    http://dx.doi.org/10.1016/S0960-0779(99)00209-X

  227. 227. Stakhov, A. and Rozin, B. (2005) Chaos, Solitons & Fractals, 26, 677-684.
    http://dx.doi.org/10.1016/j.chaos.2005.01.057

  228. 228. He, J.H. (2009) Chaos, Solitons & Fractals, 42, 2754-2759.
    http://dx.doi.org/10.1016/j.chaos.2009.03.182

  229. 229. El Naschie, M.S. (2016) International Journal of Astronomy and Astrophysics, 6, 56.
    http://dx.doi.org/10.4236/ijaa.2016.61005

  230. 230. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 545-548.
    http://dx.doi.org/10.1016/j.chaos.2005.01.009

  231. 231. Sidharth, B.G. (2003) Chaos, Solitons & Fractals, 18, 197-201.
    http://dx.doi.org/10.1016/S0960-0779(02)00632-X

  232. 232. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 22, 1199-1209.
    http://dx.doi.org/10.1016/j.chaos.2004.04.026

  233. 233. El Naschie, M.S. (1999) Chaos, Solitons & Fractals, 10, 1955-1965.
    http://dx.doi.org/10.1016/S0960-0779(99)00030-2

  234. 234. Dariescu, M.A., Dariescu, C. and Pîrghie, A.C. (2009) Chaos, Solitons & Fractals, 42, 247-252. http://dx.doi.org/10.1016/j.chaos.2008.11.021

  235. 235. Maker, D. (1999) Chaos, Solitons & Fractals, 10, 31-42.
    http://dx.doi.org/10.1016/S0960-0779(98)00108-8

  236. 236. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 38, 1051-1053.
    http://dx.doi.org/10.1016/j.chaos.2008.06.001

  237. 237. Iovane, G., Laserra, E. and Giordano, P. (2004) Chaos, Solitons & Fractals, 22, 521-528.
    http://dx.doi.org/10.1016/j.chaos.2004.02.026

  238. 238. He, J.H. and Xu, L. (2009) Chaos, Solitons & Fractals, 39, 2119-2124.
    http://dx.doi.org/10.1016/j.chaos.2007.06.088

  239. 239. Naschie, M.E. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 477-482.
    http://dx.doi.org/10.1515/IJNSNS.2006.7.4.477

  240. 240. Auffray, J.P. (2014) Journal of Modern Physics, 5, 1427.
    http://dx.doi.org/10.4236/jmp.2014.515144

  241. 241. El Naschie, M.S. (2015) Journal of Quantum Information Science, 5, 24.
    http://dx.doi.org/10.4236/jqis.2015.51004

  242. 242. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 871-875.
    http://dx.doi.org/10.1016/j.chaos.2006.01.005

  243. 243. El Naschie, M.S. (2006) Chaos, Solitons & Fractals, 29, 871-875.
    http://dx.doi.org/10.1016/j.chaos.2006.01.005

  244. 244. El Naschie, M.S. (2016) Journal of Quantum Information Science, 6, 57.
    http://dx.doi.org/10.4236/jqis.2016.62007

  245. 245. El-Ahmady, A.E. and Al-Hesiny, E. (2011) The International Journal of Nonlinear Science, 11, 451-458.

  246. 246. Iovane, G. (2004) Chaos, Solitons & Fractals, 20, 657-667.
    http://dx.doi.org/10.1016/j.chaos.2003.09.036

  247. 247. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 26, 303-311.
    http://dx.doi.org/10.1016/j.chaos.2005.03.004

  248. 248. El Naschie, M.S. (2015) Natural Science, 7, 483.
    http://dx.doi.org/10.4236/ns.2015.710049

  249. 249. Marek-Crnjac, L. (2003) Chaos, Solitons & Fractals, 18, 125-133.
    http://dx.doi.org/10.1016/S0960-0779(02)00587-8

  250. 250. Marek-Crnjac, L. (2009) Chaos, Solitons & Fractals, 42, 1796-1799.
    http://dx.doi.org/10.1016/j.chaos.2009.03.094

  251. 251. Özgür, C. (2009) Chaos, Solitons & Fractals, 40, 1156-1161.
    http://dx.doi.org/10.1016/j.chaos.2007.08.070

  252. 252. Sidharth, B.G. (2002) Chaos, Solitons & Fractals, 13, 189-193.
    http://dx.doi.org/10.1016/S0960-0779(00)00269-1

  253. 253. Iovane, G. (2006) Chaos, Solitons & Fractals, 27, 618-629.
    http://dx.doi.org/10.1016/j.chaos.2005.04.093

  254. 254. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 664-667.
    http://dx.doi.org/10.1016/j.chaos.2007.07.082

  255. 255. Tanaka, Y., Mizuno, Y. and Kado, T. (2005) Chaos, Solitons & Fractals, 24, 407-422.
    http://dx.doi.org/10.1016/j.chaos.2004.09.034

  256. 256. Auffray, J.P. (2015) Journal of Modern Physics, 6, 536.
    http://dx.doi.org/10.4236/jmp.2015.65058

  257. 257. Martienssen, W. (2005) Chaos, Solitons & Fractals, 25, 805-806.
    http://dx.doi.org/10.1016/j.chaos.2005.02.001

  258. 258. Agop, M. and Vasilica, M. (2006) Chaos, Solitons & Fractals, 30, 318-323.
    http://dx.doi.org/10.1016/j.chaos.2006.01.105

  259. 259. Chen, Q. and Shi, Z. (2008) Chaos, Solitons & Fractals, 35, 323-332.
    http://dx.doi.org/10.1016/j.chaos.2007.06.065

  260. 260. Qiu, H. and Su, W. (2007) Chaos, Solitons & Fractals, 33, 1625-1634.
    http://dx.doi.org/10.1016/j.chaos.2006.03.024

  261. 261. Nottale, L. (2001) Revue de synthèse, 122, 11-25.
    http://dx.doi.org/10.1007/BF02990499

  262. 262. El Naschie, M.S. (2003) Chaos, Solitons & Fractals, 17, 631-638.
    http://dx.doi.org/10.1016/S0960-0779(02)00630-6

  263. 263. Vrobel, S. (2011) Why a Watched Kettle Never Boils.

  264. 264. Gottlieb, I., Ciobanu, G. and Buzea, C.G. (2003) Chaos, Solitons & Fractals, 17, 789-796.
    http://dx.doi.org/10.1016/S0960-0779(02)00484-8

  265. 265. He, J.H. (2009) Chaos, Solitons & Fractals, 41, 2533-2537.
    http://dx.doi.org/10.1016/j.chaos.2008.09.027

  266. 266. Argyris, J., Ciubotariu, C.I. and Weingaertner, W.E. (2000) Chaos, Solitons & Fractals, 11, 1671-1719.
    http://dx.doi.org/10.1016/S0960-0779(99)00065-X

  267. 267. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 34, 1377-1381.
    http://dx.doi.org/10.1016/j.chaos.2007.02.016

  268. 268. Agop, M. and Craciun, P. (2006) Chaos, Solitons & Fractals, 30, 30-40.
    http://dx.doi.org/10.1016/j.chaos.2006.01.006

  269. 269. Agop, M., Ioannou, P.D. and Buzea, C.G. (2002) Chaos, Solitons & Fractals, 13, 1137-1165.
    http://dx.doi.org/10.1016/S0960-0779(01)00123-0

  270. 270. Sidharth, B.G. (2001) A Reconciliation of Electromagnetism and Gravitation. arXiv preprint physics/0110040.

  271. 271. El-Nabulsi, A.R. (2009) Chaos, Solitons & Fractals, 42, 2924-2933.
    http://dx.doi.org/10.1016/j.chaos.2009.04.004

  272. 272. Weiss, H. and Weiss, V. (2003) Chaos, Solitons & Fractals, 18, 643-652.
    http://dx.doi.org/10.1016/S0960-0779(03)00026-2

  273. 273. Wu, G.C. and He, J.H. (2009) Chaos, Solitons & Fractals, 42, 781-783.
    http://dx.doi.org/10.1016/j.chaos.2009.02.007

  274. 274. Czajko, J. (2004) Chaos, Solitons & Fractals, 21, 261-271.
    http://dx.doi.org/10.1016/j.chaos.2003.12.046

  275. 275. Sidharth, B.G. (2002) Chaos, Solitons & Fractals, 13, 617-620.
    http://dx.doi.org/10.1016/S0960-0779(01)00017-0

  276. 276. De, A., De, U.C. and Gazi, A.K. (2011) Communications of the Korean Mathematical Society, 26, 623-634.
    http://dx.doi.org/10.4134/CKMS.2011.26.4.623

  277. 277. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 36, 521-525.
    http://dx.doi.org/10.1016/j.chaos.2007.09.004

  278. 278. Sidharth, B.G. (2000) Chaos, Solitons & Fractals, 11, 1045-1046.
    http://dx.doi.org/10.1016/S0960-0779(98)00331-2

  279. 279. El Naschie, M.S. (2001) Chaos, Solitons & Fractals, 12, 1361-1368.
    http://dx.doi.org/10.1016/S0960-0779(01)00008-X

  280. 280. Iovane, G., Laserra, E. and Tortoriello, F.S. (2004) Chaos, Solitons & Fractals, 20, 415-426.
    http://dx.doi.org/10.1016/j.chaos.2003.08.004

  281. 281. Saniga, M. (2002) Chaos, Solitons & Fractals, 13, 807-814.
    http://dx.doi.org/10.1016/S0960-0779(01)00056-X

  282. 282. Nottale, L. (2001) Chaos, Solitons & Fractals, 12, 1577-1583.
    http://dx.doi.org/10.1016/S0960-0779(01)00015-7

  283. 283. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 37, 6-8.
    http://dx.doi.org/10.1016/j.chaos.2007.09.057

  284. 284. El Naschie, M.S., Olsen, S. and He, J.H. (2013) Fractal Spacetime and Noncommutative Geometry, 3, 11-20.

  285. 285. El Naschie, M.S. (1997) Chaos, Solitons & Fractals, 8, vii-x.
    http://dx.doi.org/10.1016/S0960-0779(97)88695-X

  286. 286. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 20, 649-654.
    http://dx.doi.org/10.1016/j.chaos.2003.10.010

  287. 287. Xu, L. and Zhong, T. (2011) Nonlinear Science Letters B, 1, 10-11.

  288. 288. Giordano, P. (2006) International Journal of Nonlinear Sciences and Numerical Simulation, 7, 451-460.
    http://dx.doi.org/10.1515/IJNSNS.2006.7.4.451

  289. 289. Nozari, K. and Mehdipour, S.H. (2009) Chaos, Solitons & Fractals, 39, 956-970.
    http://dx.doi.org/10.1016/j.chaos.2007.02.018

  290. 290. Benedetto, E. (2009) International Journal of Theoretical Physics, 48, 1603-1621.
    http://dx.doi.org/10.1007/s10773-009-9933-0

  291. 291. El Naschie, M.S. (2007) Chaos, Solitons & Fractals, 31, 521-526.
    http://dx.doi.org/10.1016/j.chaos.2006.06.028

  292. 292. Zmeskal, O., Nezadal, M. and Buchnicek, M. (2003) Chaos, Solitons & Fractals, 17, 113-119.
    http://dx.doi.org/10.1016/S0960-0779(02)00412-5

  293. 293. Castro, C. (2000) On the Four Dimensional Conformal Anomaly, Fractal Spacetime and the Fine Structure Constant. arXiv preprint physics/0010072.

  294. 294. Marek-Crnjac, L. (2008) Chaos, Solitons & Fractals, 37, 1279-1288.
    http://dx.doi.org/10.1016/j.chaos.2008.01.021

  295. 295. Özgür, C. (2009) Chaos, Solitons & Fractals, 39, 2457-2464.
    http://dx.doi.org/10.1016/j.chaos.2007.07.018

  296. 296. Sidharth, B.G. (2001) Chaos, Solitons & Fractals, 12, 2143-2147.
    http://dx.doi.org/10.1016/S0960-0779(00)00181-8

  297. 297. Fred, Y.Y. (2009) Chaos, Solitons & Fractals, 42, 89-93.
    http://dx.doi.org/10.1016/j.chaos.2008.10.030

  298. 298. Colotin, M., Pompilian, G.O., Nica, P., Gurlui, S., Paun, V. and Agop, M. (2009) Acta Physica Polonica-Series A General Physics, 116, 157.
    http://dx.doi.org/10.12693/APhysPolA.116.157

  299. 299. Rossler, O. E., Fröhlich, D., Movassagh, R. and Moore, A. (2007) Chaos, Solitons & Fractals, 33, 770-775.
    http://dx.doi.org/10.1016/j.chaos.2006.06.046

  300. 300. El Naschie, M.S. (2004) Chaos, Solitons & Fractals, 20, 455-458.
    http://dx.doi.org/10.1016/j.chaos.2003.10.008

  301. 301. Agop, M., Ioannou, P.D., Nica, P., Buzea, C.G. and Jarcau, M. (2003) Chaos, Solitons & Fractals, 18, 1-16.
    http://dx.doi.org/10.1016/S0960-0779(02)00633-1

  302. 302. Agop, M., Ciobanu, G. and Zaharia, L. (2003) Chaos, Solitons & Fractals, 15, 445-453.
    http://dx.doi.org/10.1016/S0960-0779(02)00139-X

  303. 303. Rami, E.N.A. (2009) Chaos, Solitons & Fractals, 41, 2262-2270.
    http://dx.doi.org/10.1016/j.chaos.2008.08.033

  304. 304. Zmeskal, O., Vala, M., Weiter, M. and Stefkova, P. (2009) Chaos, Solitons & Fractals, 42, 1878-1892.
    http://dx.doi.org/10.1016/j.chaos.2009.03.106

  305. 305. Iovane, G., Bellucci, S. and Benedetto, E. (2008) Chaos, Solitons & Fractals, 37, 49-59.
    http://dx.doi.org/10.1016/j.chaos.2007.09.022

  306. 306. Goldfain, E. (2005) International Journal of Nonlinear Sciences and Numerical Simulation, 6, 351-356.
    http://dx.doi.org/10.1515/ijnsns.2005.6.4.351

  307. 307. de Felice, F., Sigalotti, L.D.G. and Mejias, A. (2004) Chaos, Solitons & Fractals, 21, 573-578.
    http://dx.doi.org/10.1016/j.chaos.2003.12.091

  308. 308. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 23, 1941-1943.
    http://dx.doi.org/10.1016/j.chaos.2004.08.005

  309. 309. Elokaby, A. (2009) Chaos, Solitons & Fractals, 41, 1616-1618.
    http://dx.doi.org/10.1016/j.chaos.2008.07.003

  310. 310. Nottale, L. (2000) Scale Relativity, Fractal Space-Time and Morphogenesis of Structures. In: Diebner, H., Druckrey, T. and Weibel, P., Eds., Sciences of the Interface, Proceedings of International Symposium in honor of O. Rössler, ZKM Karlruhe, Genista, Tübingen, p. 38.

  311. 311. Agop, M., Ioannou, P.D., Buzea, C. and Nica, P. (2003) Chaos, Solitons & Fractals, 16, 321-338.
    http://dx.doi.org/10.1016/S0960-0779(02)00413-7

  312. 312. Rami, E.N.A. (2009) Chaos, Solitons & Fractals, 42, 377-384.
    http://dx.doi.org/10.1016/j.chaos.2008.12.008

  313. 313. El Naschie, M.S. (2000) Chaos, Solitons & Fractals, 11, 2397-2408.
    http://dx.doi.org/10.1016/S0960-0779(00)00108-9

  314. 314. El Naschie, M.S. and He, J.H. (2013) Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 106-119.

  315. 315. Dickau, J.J. (2009) Chaos, Solitons & Fractals, 41, 2103-2105.
    http://dx.doi.org/10.1016/j.chaos.2008.07.056

  316. 316. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 684-687.
    http://dx.doi.org/10.1016/j.chaos.2007.07.084

  317. 317. Tomaschitz, R. (1997) International Journal of Bifurcation and Chaos, 7, 1847-1853.
    http://dx.doi.org/10.1142/S0218127497001412

  318. 318. Ho, M.W. (2014) Journal of the Institute of Science in Society, 62, 40-43.

  319. 319. Sidharth, B.G. (2003) Chaos, Solitons & Fractals, 15, 593-595.
    http://dx.doi.org/10.1016/S0960-0779(02)00159-5

  320. 320. Ćirić, L.B., Jesić, S.N. and Ume, J.S. (2008) Chaos, Solitons & Fractals, 37, 781-791.
    http://dx.doi.org/10.1016/j.chaos.2006.09.093

  321. 321. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 659-663.
    http://dx.doi.org/10.1016/j.chaos.2004.11.002

  322. 322. Yildiz, A., De, U. C. and Cetinkaya, A. (2011) N (k)-Quasi Einstein Manifolds Satisfying Certain Curvature Conditions. Dumlupinar University Research Fund (No: 2011-25).

  323. 323. Sidharth, B.G. (2002) Chaos, Solitons & Fractals, 13, 1369-1370.
    http://dx.doi.org/10.1016/S0960-0779(01)00114-X

  324. 324. Tanaka, Y. (2005) Chaos, Solitons & Fractals, 23, 33-41.
    http://dx.doi.org/10.1016/j.chaos.2004.03.031

  325. 325. Nagasawa, M. (1997) Chaos, Solitons & Fractals, 8, 1773-1792.
    http://dx.doi.org/10.1016/S0960-0779(97)00036-2

  326. 326. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 7-12.
    http://dx.doi.org/10.1016/j.chaos.2007.06.023

  327. 327. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 37, 1289-1291.
    http://dx.doi.org/10.1016/j.chaos.2008.02.002

  328. 328. El Naschie, M.S. (2009) Chaos, Solitons & Fractals, 41, 1340-1343.
    http://dx.doi.org/10.1016/j.chaos.2008.05.015

  329. 329. Iovane, G. and Salerno, S. (2005) WSEAS Transactions on Mathematics, 4, 184.

  330. 330. Liu, S.D., Liu, S.K., Fu, Z.T., Ren, K. and Guo, Y. (2003) Chaos, Solitons & Fractals, 15, 627-630.
    http://dx.doi.org/10.1016/S0960-0779(02)00138-8

  331. 331. Yang, C.D. (2008) Chaos, Solitons & Fractals, 38, 316-331.
    http://dx.doi.org/10.1016/j.chaos.2008.01.019

  332. 332. El Naschie, M.S., Olsen, S., He, J.H., Nada, S., Marek-Crnjac, L. and Helal, A. (2012) International Journal of Modern Nonlinear Theory and Application, 1, Article ID: 23087.

  333. 333. Marek-Crnjac, L. (2006) Chaos, Solitons & Fractals, 27, 575-579.
    http://dx.doi.org/10.1016/j.chaos.2005.04.099

  334. 334. Pavlos, G.P., Iliopoulos, A.C., Karakatsanis, L.P., Tsoutsouras, V.G. and Pavlos, E.G. (2011) Complexity Theory and Physical Unification: From Microscopic to Macroscopic Level. Chaos Theory: Modeling, Simulation and Applications. World Scientific Publishing, 297-308.
    http://dx.doi.org/10.1142/9789814350341_0035

  335. 335. El Naschie, M.S. (1993) Chaos, Solitons & Fractals, 3, 481-488.
    http://dx.doi.org/10.1016/0960-0779(93)90032-V

  336. 336. Gottlieb, I. and Agop, M. (2007) Chaos, Solitons & Fractals, 34, 1025-1029.
    http://dx.doi.org/10.1016/j.chaos.2006.03.108

  337. 337. El Naschie, M.S. (2013) Electromagnetic and Gravitational Origin of Dark Energy in Kaluza-Klein D= 5 Spacetime. PIERS Proceeding, Stockholm, Sweden, 91-97.

  338. 338. Sigalotti, L.D.G. and Rendón, O. (2007) Chaos, Solitons & Fractals, 32, 1611-1614.
    http://dx.doi.org/10.1016/j.chaos.2006.08.034

  339. 339. Ord, G.N. (1996) Journal of Physics A: Mathematical and General, 29, L123.
    http://dx.doi.org/10.1088/0305-4470/29/5/007

  340. 340. Saniga, M. (2005) Chaos, Solitons & Fractals, 23, 645-650.
    http://dx.doi.org/10.1016/j.chaos.2004.05.018

  341. 341. El Naschie, M.S. (2016) American Journal of Computational Mathematics, 6, 185.
    http://dx.doi.org/10.4236/ajcm.2016.63020

  342. 342. El Naschie, M.S. (1996) Chaos, Solitons & Fractals, 7, 1501-1506.
    http://dx.doi.org/10.1016/0960-0779(96)80001-B

  343. 343. Rossler, O.E. and Kuypers, H. (2005) Chaos, Solitons & Fractals, 25, 897-899.
    http://dx.doi.org/10.1016/j.chaos.2004.11.097

  344. 344. El Naschie, M.S. (2016) Advances in Pure Mathematics, 6, 446.
    http://dx.doi.org/10.4236/apm.2016.66032

  345. 345. El Naschie, M.S. (2013) Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 35-38.

  346. 346. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 38, 609-611.
    http://dx.doi.org/10.1016/j.chaos.2008.04.015

  347. 347. He, J.H., Zhong, T., Xu, L., Marek-Crnjac, L., Nada, S.I. and Helal, M.A. (2011) Nonlinear Science Letters B, 1, 15-24.

  348. 348. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 35, 303-307.
    http://dx.doi.org/10.1016/j.chaos.2007.07.025

  349. 349. Agop, M. and Enache, V. (2007) Chaos, Solitons & Fractals, 32, 296-301.
    http://dx.doi.org/10.1016/j.chaos.2006.04.068

  350. 350. Ho, M.W. (2014) Golden Geometry of E-Infinity Fractal Spacetime. The Story of Phi, Part 5.

  351. 351. Agop, M. and Craciun, P. (2006) Chaos, Solitons & Fractals, 30, 441-452.
    http://dx.doi.org/10.1016/j.chaos.2005.12.048

  352. 352. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 36, 1200-1204.
    http://dx.doi.org/10.1016/j.chaos.2007.09.039

  353. 353. Marek-Crnjac, L. (2012) Quantum Gravity in Cantorian Space-Time. INTECH Open Access Publisher. http://dx.doi.org/10.5772/37232

  354. 354. El Naschie, M.S. (2003) Chaos, Solitons & Fractals, 17, 797-807.
    http://dx.doi.org/10.1016/S0960-0779(02)00684-7

  355. 355. El Naschie, M.S. (2014) Natural Science, 6, 1259.
    http://dx.doi.org/10.4236/ns.2014.616115

  356. 356. Agop, M. and Gottlieb, I. (2006) Journal of Mathematical Physics, 47, 53503-53503.
    http://dx.doi.org/10.1063/1.2196747

  357. 357. Giné, J. (2008) Chaos, Solitons & Fractals, 35, 1-6.
    http://dx.doi.org/10.1016/j.chaos.2007.06.097

  358. 358. Auffray, J.P. (2015) Journal of Modern Physics, 6, 1478.
    http://dx.doi.org/10.4236/jmp.2015.611152

  359. 359. Agop, M., Ioannou, P.D., Nica, P., Galusca, G. and Stefan, M. (2005) Chaos, Solitons & Fractals, 23, 1497-1509.
    http://dx.doi.org/10.1016/S0960-0779(04)00439-4

  360. 360. He, J.H. and Huang, Z. (2006) Chaos, Solitons & Fractals, 27, 1108-1114.
    http://dx.doi.org/10.1016/j.chaos.2005.04.082

  361. 361. Iovane, G. (2007) Chaos, Solitons & Fractals, 31, 1041-1053.
    http://dx.doi.org/10.1016/j.chaos.2006.03.109

  362. 362. Argyris, J., Ciubotariu, C. and Andreadis, I. (1998) Chaos, Solitons & Fractals, 9, 1651-1701. http://dx.doi.org/10.1016/S0960-0779(97)00193-8

  363. 363. Agop, M., Ioannou, P.D., Luchian, D., Nica, P., Radu, C. and Condurache, D. (2004) Chaos, Solitons & Fractals, 21, 515-536.
    http://dx.doi.org/10.1016/j.chaos.2003.12.053

  364. 364. Rossler, O.E., Fröhlich, D., Kleiner, N., Pfaff, M. and Argyris, J. (2004) Chaos, Solitons & Fractals, 20, 205-208.
    http://dx.doi.org/10.1016/S0960-0779(03)00358-8

  365. 365. Agop, M., Ioannou, P.D., Coman, P., Ciobanu, B. and Nica, P. (2001) Chaos, Solitons & Fractals, 12, 1947-1982.
    http://dx.doi.org/10.1016/S0960-0779(00)00161-2

  366. 366. Mukhamedov, A.M. (2007) Chaos, Solitons & Fractals, 33, 717-724.
    http://dx.doi.org/10.1016/j.chaos.2006.11.016

  367. 367. Harabagiu, A., Niculescu, O., Colotin, M., Bibire, T.D., Gottlieb, I. and Agop, M. (2009) Romanian Reports in Physics, 61, 395-400.

  368. 368. Ord, G.N. (1999) Chaos, Solitons & Fractals, 10, 499-512.
    http://dx.doi.org/10.1016/S0960-0779(98)00255-0

  369. 369. Castro, C. and Granik, A. (2000) Chaos, Solitons & Fractals, 11, 2167-2178.
    http://dx.doi.org/10.1016/S0960-0779(00)00027-8

  370. 370. Castro, C. (2002) Chaos, Solitons & Fractals, 13, 203-207.
    http://dx.doi.org/10.1016/S0960-0779(00)00268-X

  371. 371. Ahmed, N. (2004) Chaos, Solitons & Fractals, 21, 773-781.
    http://dx.doi.org/10.1016/j.chaos.2004.01.013

  372. 372. Sidharth, B.G. (2001) Chaos, Solitons & Fractals, 12, 2357-2361.
    http://dx.doi.org/10.1016/S0960-0779(00)00182-X

  373. 373. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 36, 819-822.
    http://dx.doi.org/10.1016/j.chaos.2007.09.020

  374. 374. El Naschie, M.S. (2008) Chaos, Solitons & Fractals, 36, 819-822.
    http://dx.doi.org/10.1016/j.chaos.2007.09.020

  375. 375. El Naschie, M.S. (2008) Freudental Magic Square and Its Dimensional Implication for and High Energy Physics. Chaos, Solitons & Fractals, 36, 546-549.
    http://dx.doi.org/10.1016/j.chaos.2007.09.017

  376. 376. Fred, Y.Y. (2009) Chaos, Solitons & Fractals, 41, 2301-2305.
    http://dx.doi.org/10.1016/j.chaos.2008.09.004

  377. 377. El-Okaby, A.A. (2008) Chaos, Solitons & Fractals, 38, 1305-1317.
    http://dx.doi.org/10.1016/j.chaos.2008.02.034

  378. 378. Sidharth, B. and Altaisky, M.V. (Eds.) (2012) Frontiers of Fundamental Physics 4. Springer Science & Business Media.

  379. 379. Buzea, C.G., Agop, M., Galusca, G., Vizureanu, P. and Ionita, I. (2007) Chaos, Solitons & Fractals, 34, 1060-1074.
    http://dx.doi.org/10.1016/j.chaos.2006.03.122

  380. 380. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 23, 683-688.
    http://dx.doi.org/10.1016/j.chaos.2004.06.032

  381. 381. El Naschie, M.S. (2005) A Note on Various Supersymmetric Extensions of the Standard Model of High-Energy Particles and E-Infinity Theory. Chaos, Solitons & Fractals, 23, 683-688. http://dx.doi.org/10.1016/j.chaos.2004.06.032

  382. 382. Ahmed, E. and Hegazi, A.S. (2000) Chaos, Solitons & Fractals, 11, 1759-1761.
    http://dx.doi.org/10.1016/S0960-0779(99)00082-X

  383. 383. Tomaschitz, R. (1997) Fractals, 5, 215-220.
    http://dx.doi.org/10.1142/S0218348X97000206

  384. 384. Castro, C. (2000) Foundations of Physics, 30, 1301-1316.
    http://dx.doi.org/10.1023/A:1003640606529

  385. 385. Christianto, V. (2003) Apeiron, 10, 231.

  386. 386. Colotin, M., Niculescu, O., Bibire, T.D., Gottlieb, I., Nica, P. and Agop, M. (2009) Romanian Reports in Physics, 61, 387-394.

  387. 387. Dariescu, C., Dariescu, M.A. and Murariu, G. (2007) Chaos, Solitons & Fractals, 34, 1030-1036.
    http://dx.doi.org/10.1016/j.chaos.2006.04.070

  388. 388. Agop, M., Jarcau, M. and Stroe, A. (2005) Chaos, Solitons & Fractals, 25, 781-790.
    http://dx.doi.org/10.1016/j.chaos.2004.12.036

  389. 389. Lorenzi, M.G., Francaviglia, M. and Iovane, G. (2008) APLIMAT-Journal of Applied Mathematics, 1, 109-119.

  390. 390. He, J.H., Liu, Y., Mo, L.F., Wan, Y.Q. and Xu, L. (2008) Electrospun Nanofibres and Their Applications. iSmithers, Shawbury, Shrewsbury, Shropshire, UK.

  391. 391. Yildiz, A., De, U.C. and Cetinkaya, A. (2013) Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 83, 239-245.
    http://dx.doi.org/10.1007/s40010-013-0071-y

  392. 392. Sidharth, B.G. (2002) Chaos, Solitons & Fractals, 14, 1325-1330.
    http://dx.doi.org/10.1016/S0960-0779(02)00085-1

  393. 393. Ord, G.N. and Gualtieri, J.A. (1998) Biosystems, 46, 21-28.
    http://dx.doi.org/10.1016/S0303-2647(97)00077-4

  394. 394. Zhong, T. and He, J.H. (2013) Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 46-49.

  395. 395. Dariescu, C. and Dariescu, M.A. (2007) Chaos, Solitons & Fractals, 32, 8-14.
    http://dx.doi.org/10.1016/j.chaos.2006.05.042

  396. 396. Sidharth, B.G. (2002) Chaos, Solitons & Fractals, 14, 525-527.
    http://dx.doi.org/10.1016/S0960-0779(01)00197-7

  397. 397. Agop, M., Oprea, I., Sandu, C., Vlad, R., Buzea, C.G. and Matsuzawa, H. (2000) Some Properties of the World Crystal in Fractal Spacetime Theory. Australian Journal of Physics, 53, 231-240.

  398. 398. Castro, C. and Granik, A. (2000) On M Theory, Quantum Paradoxes and the New Relativity. arXiv preprint physics/0002019.

  399. 399. El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 25, 911-913.
    http://dx.doi.org/10.1016/j.chaos.2004.12.002

  400. 400. Meissner, W. (1996) Chaos, Solitons & Fractals, 7, 697-709.
    http://dx.doi.org/10.1016/0960-0779(94)00220-7

  401. 401. Buzea, C.G., Rusu, I., Bulancea, V., Badarau, G., Paun, V.P. and Agop, M. (2010) Physics Letters A, 374, 2757-2765.
    http://dx.doi.org/10.1016/j.physleta.2010.04.044

  402. 402. Cristescu, C.P., Mereu, B., Stan, C. and Agop, M. (2009) Chaos, Solitons & Fractals, 40, 975-980.
    http://dx.doi.org/10.1016/j.chaos.2007.08.054

  403. 403. Penrose, R. (2004) The Road to Reality. A Complete Guide to the Laws of the Universe. Jonathan Cape, London.

  404. 404. Green, B. (2004) The Fabric of the Cosmos. Penguin Books, London.

  405. 405. Hawkings, S and Ellis, G. (1973) The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge.
    http://dx.doi.org/10.1017/CBO9780511524646

  406. 406. ‘tHooft, G. (1997) In Search of the Ultimate Building Blocks. Cambridge University Press, Cambridge.

  407. 407. Davies, P. (Editor) (1989) The New Physics. Cambridge University Press, Cambridge.

  408. 408. Halpern, P. (2004) The Great Beyond. John Wiley, New Jersey.

  409. 409. Zeilinger, A. (2003) Einstein’s Schleier. C. H. Beck Verlog, Munchen.

  410. 410. Crowell, L.B. (2005) Quantum Fluctuations of Spacetime. World Scientific, Singapore.
    http://dx.doi.org/10.1142/5952

  411. 411. Smolin, L. (2000) Three Roads to Quantum Gravity. Weidenfeld and Nicolson, London.

  412. 412. ‘tHooft, G. (1994) Under the Spell of the Gauge Principle. World Scientific, Singapore.

  413. 413. Kaku, M. (2000) Strings, Conformal Fields and M-Theory. Springer, New York.
    http://dx.doi.org/10.1007/978-1-4612-0503-6

  414. 414. Connes, A. (1994) Non-Commutative Geometry. Academic Press, San Diego.

  415. 415. Becker, K., Becker, M. and Schwarz, J. (2007) String Theory and M-Theory. Cambridge University Press, Cambridge.

  416. 416. Green, M., Schwarz, J. and Witten, E. (1987) Superstring Theory. Vol. I and II. Cambridge University Press, Cambridge.

  417. 417. El Naschie, M.S. (2016) Journal of Modern Physics, 7, 1953-1962.
    http://dx.doi.org/10.4236/jmp.2016.714173

  418. 418. Weinberg, S. (1995) The Quantum Theory of Fields. Vol. I. Cambridge University Press, Cambridge.
    http://dx.doi.org/10.1017/CBO9781139644167

  419. 419. Oriti, D. (Editor) (2009) Approaches to Quantum Gravity. Cambridge University Press, Cambridge.