Advances in Pure Mathematics, 2012, 2, 109-113
http://dx.doi.org/10.4236/apm.2012.22015 Published Online March 2012 (http://www.SciRP.org/journal/apm)
Uniformly Stable Positive Monotonic Solution of a
Nonlocal Cauchy Problem
A. M. A. El-Sayed1, E. M. Hamdallah1, Kh. W. Elkadeky2
1Faculty of Science, Alexandria University, Alexandria, Egypt
2Faculty of Science, Garyounis University, Benghazi, Libya
Email: {amasayed, emanhamdalla}@hotmail.com, k-welkadeky@yahoo.com
Received October 9, 2011; revised December 7, 2011; accepted December 30, 2011
ABSTRACT
In this paper, we study the existence of a uniformly stable positive monotonic solution for the nonlocal Cauchy problem
 

= ,, 0,
x
tft
xtt T

=1
jj
j
bx
with the nonlocal condition where
1
= ,x
m
0,0, .aT


j
Keywords: Nonlocal Cauchy Problem; Local and Global Existence Nondecreasing Positive Solution; Continuous
Dependence; Lyapunov Uniformly Stability
1. Introduction
Problems with non-local conditions have been extensi-
vely studied by several authors in the last two decades.
The reader is referred to (see [1-14] and [15-18]) and re-
ferences therein.
Here we are concerned with the nonlocal Cauchy pro-
blem

= ,, 0,,
x
tftx
tt T
=1
0.
mm
j
jj
b




(1)



1
=1
= , 0,0,, and
jj j
bxxa T


(2)
Let
X
be the class of all continuous functions de-
fined on
0,, <TT with the norm

[0, ]
sup
tT
=, .
x
xtx X
Let be the class of all continuous functions de-
fined on
Y
0,, <tT T with the equivalent norm


0
[0, ]
sup Nt t
tT
=, ,
x
extxY
,, and mN

where is positive
arbitrary.
0
=max, =1,2,
j
tj
Here we firstly study, in
X
, the local existence of the
solution of the problem (1)-(2) and the continuous de-
pendence of the parameter
x
, will be proved.
Secondly, we study, in , the global existence and
Lyapunov uniform stability of the solution of the pro-
blem (1)-(2).
2. Integral Equation Representation
Consider the nonlocal Cauchy problem (1)-(2).
Y
Let :0,
TR R
 is continuous and satisfies
the Lipschitz condition
,,, >0,
for all ,
ftxftykxyk
xy R

 



100
=1
= ,d ,, d
mt
j
j
j
(3)
Lemma 2.1. The solution of the nonlocal Cauchy
problem (1)-(2) can be expressed by the integral equation
tBxbfsxssfsxs s





x
(4)
1
=1
=
m
j
j
Bb
 

0
=0 , d
t
. where
Proof. Integrating the Equation (1), we obtain
x
.tx fsxss
=
(5)
t
Let
j
in (5), we obtain
 

0
=0, d,
j
j
x
xfsxss

 

0
=1=1 =1
= 0 , d.
mmm
j
jj jj
jjj
bxbxbfsx ss

 

10
=1
0= ,d
mj
j
j
(6)
and
(7)
Substitute from (2) into (7), we obtain
.Bxbfsxs s



(8)
x
C
opyright © 2012 SciRes. APM
A. M. A. EL-SAYED ET AL.
110
Substitute from (8) into (5), we obtain
 

100
=1
= ,d
mt
j
j
j


,d.
x
tBxb fsxss





fsxss
Corolla ry 2 .1. The solution of the integral Equation (4)
is nondecreasing.
Proof. Let
x
be a solution of the integral Equation
(4), then for we have
12
<,tt




d, d
, d
 




1
11
00
=1
2
100
=1
2
=,
< ,d
= ,
mt
j
j
j
mt
j
j
j
x
tBx bfsxss
Bxbfsxss
xt




fsxss
fsxs s
which proves that the solution
x
of the integral Equa-
tion (4) is nondecreasing.
Corolla ry 2. 2. Let
f
be satisfies (3). The solution of
the integral Equation (4) is positive for
,taT.
Proof. Let
x
be a solution of the integral Equation
(4), and , for
1>0x
, taT


d, <
j
, we have


00
, d ,
t
j
f
sxssf sx

s st




00
=1 =1
, d ,d.
mm
t
j
jj
jj
bfsxssbfsxss


and
Multiplying by
1
=1
=
m
j
j
Bb






00
=1 =1
0
, d , d
= , d
mm
t
j
jj
jj
t
Bbfsxs sBb fsxs s
fsxs s


, we obtain
and the solution
x
of the integral Equation (4) is po-
sitive for
,taT. This complete the proof.
3. Local Existence of Solution
Theorem 3.1. Let
f
be satisfies the Lipschitz condition.
If
1
=1
<1 m
j
j
Tk Bb
then the nonlocal Cauchy
problem (1)-(2) has a unique nondecreasing positive so-
lution.
Proof. Define the operator :0, 0,TC TC T
 



100
=1
= ,d ,d
mt
j
j
j
TxtBxbfsxssfs xss





by
.
(9)
x
Let ,0,yC T


















00 00
=1
00
=,d,d,d ,d
= ,,d,, d,
mm
tt
jj
jj
jj
mt
j
fsxs sfsxs sBbfsys sfsys s
Bbfsxs fsyssfsxs fsys s

 


 

, then
 
=1
TxtTytBb
=1
j
j
 
  
  
00
=1
00
=1
=1 =1
d d
dd
sup sup
1
t
j
j
t
j
jtI tI
j
mm
jj
jj
bxsysskx sy ss
kB bxtytskxtyts
kTBbxy kTxykTBbxyKxy

 








m
j
m
TxtTytk B
but if
=1
=1 <1,
m
j
j
KkTB b



then we get
,TxTyK xy 
which proves that the map
:0, 0,TC TC T
is con-
traction.
Applying the Banach contraction fixed point theorem
we deduce that the integral Equation (4) has a unique
solution
0,
x
CT.
To complete the proof, we prove that the integral
Equation (4) satisfies nonlocal problem (1)-(2).
Differentiating (4), we get

=, .
x
tftxt
=
(10)
t
Let
j
in (4), we obtain





10
=1
0
= ,d
, d,
mj
jj
j
j
Bxbfsxs s
fsxs s
x


1
= .
mx
then
=1
jj
j
bx
Copyright © 2012 SciRes. APM
A. M. A. EL-SAYED ET AL. 111
This implies that there exist a unique nondecreasing
positive solution
0,
x
CT of the nonlocal Cauchy
problem (1)-(2), This complete the proof.
4. Continuous Dependence of the Solution
Consider the nonlocal Cauchy problem




1
=1
= ,,
= , and
m
jj j
j
xtftxt t
Pbx x



0, ,
0,0, .
T
a T
1
x
if
Definition 4.1. The solution of the nonlocal Cauchy
problem (1)-(2) continuously dependence on
 
11
>0, ()>0, suchthat <,
then <
xx
xt xt
 
 
x
where t
P
is the solution of the nonlocal Cauchy pro-
blem .
Now we have the following theorem
Theorem 4.1. The solution of the nonlocal Cauchy
problem (1)-(2) continuously dependence on 1
x
.
,
Proof. Let
x
txt
P
 








11 00
=1 =1
0
=, d,d
,, d
mm
jj
jj
jj
t
are the solutions of (1)-(2) and
respectively.
Then we can get


x
txtBxxBbfsxssBbfsxss
fsxs fsxs s

 



 









  

11 00
=1
00
=1
11 0
=1
,, d ,,d
d d
sup sup
d
sup
mt
j
j
j
mt
j
jtI tI
j
mj
jtI tI
j
11
txtBxxBbf sxsf sxssf sxsf sxss
BxkBbxsxsskxsxss
BxxkBbxtxts k


 
 
 


 



x

x
0d
sup t
xt xts
11 11
=1
j
j=1
1
mm
j
x
xBx xkTBbxxkTxxBx xk
 
 
TBbj xx

 



1
11
.
mm x x
 
 
>0
11
=1 =1
11 11
j j
j j
kTB bxxBxxxxkTB bB  
 
 
 
 
 


Therefore, for
such that

11
< xx,
we can find

1
=1
=1 1m
j
j
kT BbB

such that xx

, which complete the proof theo-
rem.
5. Global Exist ence of Solution
Theorem 5.1. Let
f
be satisfies the Lipschitz condition,
then the nonlocal Cauchy problem (1)-(2) has a unique
nondecreasing positive solution.
Proof. Define the operator 00
:, ,TCtT CtT by
the Equation (9).
x
Let 0
,,yCtT
 










000 0
=,d ,d , d , d
d,
mm
tt
jj
j
TxtTytBbfsxs sfsxs sBbjfsyssfsyss
s s

 

 
 
, then







=1 =1
00
=1
= ,, d ,,
jj
mt
j
j
j
Bbfsxs fsys sfsxs fsy


  
0
00
=1
dd
mtt
j
j
TxtTyt kBbxsysskxsyss 

 
 



0
000
00
=1
|| dd
mtt
Nt tNt t
j
j
TxtTytkBbexsyskexsyss
 
 

Nt t
e

Copyright © 2012 SciRes. APM
A. M. A. EL-SAYED ET AL.
112

 
()( )( )
0
000 0
0
=1
()() ()
00 0
0
=1
|()()| d
|()()| d
mt
Nt tNt tNstNst
j
j
tNt tNstNst
m
j
j
eTxtTytkBbee xsyss
keexs yss
kBb x y
  
 
 


 



0
00
0
=1
0
=1 =1
dd
1
|
1
tt
Nt sNt s
Nt tNtNt
m
j
k
m m
Nt tNt Nt
j
j j
eskxyes
ee e
kBbx ykxy
NN
kk
Bbeee xyB
NN
 
 
 





 










1
j
bxy




where
=1
=1.
m
j
j
b



N1<
k
KB
N
Choose large enough such that
K
, then
, TxTyK xy
therefor the map
00
Applying the Banach contraction fixed point theorem
we deduce that the integral Equation (4) has a unique
solution
:,TCt ,T CtT
is contraction.
0,
x
Ct T


=, .
.
To complete the proof, we prove that the integral
Equation (4) satisfies nonlocal problem (1)-(2).
Differentiating (4), we get

x
tftxt
=
(11)
Let
j
t
in (4), we obtain



10
=1
0
=
,
mj
jj
j
j


, d
d,
x
Bxb
fsxs
fsxs s
s


1
= .
jj
bx x
then
=1
m
j
This implies that there exist a unique nondecreasing
positive solution
0
x
,CtT

of the nonlocal Cauchy
problem (1)-(2), This complete the proof.
6. Lyapunov Uniform Stability of the
Solution
Consider here the nonlocal Cauchy problem




0
10
=1
= ,, ,,
= , and 0,,.
m
jj j
j
xtftxt t tT
Pbxxa tT


Definition 6.1. The solution of the nonlocal Cauchy
problem (1)-(2) is uniform stable, if
>0, >0,

 such that

11
<, then <.xx xtxt



x
where t
P
is the solution of the nonlocal Cauchy pro-
blem .
Now we have the following theorem
Theorem 6.1. The solution of the nonlocal Cauchy
problem (1)-(2) is uniformly stable.
, Proof. Let
x
txt
P
 








11 000
=1 =1
=,d,d ,, d
mm
t
jj
jj
jj
are the solutions of (1)-(2) and
respectively.
Then we can get
txtBxxB bfsxssB bfsxssfsxsfsxss

 


 
 
x








  
11 00
=1
0
11 00
=1
,,d,,d
d d
mt
j
j
j
mtt
j
j
txtBxxBbfsxsf sxssf sxsf sxss
Bx xkBbxsxsskxsxs s
 
 


 

x

 
 
 
 

0
00 000
11 0
=1
000
d
d
mt
t tNt tNs tNs t
j
j
Nt tNs tNs t
BxxkBbeextxts
keextxts
 
 


 
0
Nt t N
t
extxte
 

Copyright © 2012 SciRes. APM
A. M. A. EL-SAYED ET AL. 113
 



0
11 00
=1
0
11
=1
0
11
=1
11
=1
d
1
1
mtt
Nt s
j
j
Nt t
d
1
Nt s
N
tNt
m
j
j
mNt tNt Nt
j
j
m
j
j
x
xBxxkBbxxeskxx
ee
BxxkBbx xkx
k
BxxBb eee
N
k
Bx xBb
N


 


e s
e
x
NN
x x




 







 


 

 

xx

1
11
11
=1
m
j
j
k
x
xB Bb
N
 xx


 






Therefore,

11
<,xx
<,xx
which com-
plete the proof of theorem.
REFERENCES
[1] B. Ahmad and J. J. Nieto, “Existence of Solution for Non-
local Boundary Value Problems of Higher-Order Nonlin-
ear Fractional Differential Equations,” Abstract and Ap-
plied Analysis, Vol. 2009, 2009, pp. 1-9.
doi:10.1155/2009/494720
[2] M. Benchohra, J. J. Nieto and A. Ouahab, “Second-Order
Boundary Value Problem with Integral Boundary Condi-
tions,” Boundary Value Problems, Vol. 2011, 2011, pp.
1-9. doi:10.1155/2011/260309
[3] A. Boucherif, “First-Order Differential Inclusions with
Nonlocal Initial Conditions,” Applied Mathematics Letters,
Vol. 15, No. 4, 2002, pp. 409-414.
doi:10.1016/S0893-9659(01)00151-3
[4] A. Boucherif, “Nonlocal Cauchy Problems for First-Order
Multivalued Differential Equations,” Electronic Journal of
Differential Equations, Vol. 2002, No. 47, 2002, pp. 1-9.
[5] A. Boucherif and R. Precup, “On The Nonlocal Initial
Value Problem for First Order Differential Equations,”
Fixed Point Theory, Vol. 4, No 2, 2003, pp. 205-212.
[6] M. Benchohra, E. P. Gatsori and S. K. Ntouyas, “Exis-
tence Results for Seme-Linear Integrodifferential Inclu-
sions with Nonlocal Conditions,” Rocky Mountain Jour-
nal of Mathematics, Vol. 34, No. 3, 2004, pp. 833-848.
doi:10.1216/rmjm/1181069830
[7] Y. K. Chang and J. J. Nieto, “Existence of Solutions for
Impulsive Neutral Integro-Differential Inclsions with Non-
local Initial Conditions via Fractional Operators, Numeri-
cal Functional Analysis and Optimization, Vol. 30, No. 3-
4, 2009, pp. 227-244. doi:10.1080/01630560902841146
[8] R. F. Curtain and A. J. Pritchard, “Functional Analysis in
Modern Applied Mathematics,” Academic Press, New York,
1977.
[9] A. M. A. El-Sayed and Sh. A. Abd El-Salam, “On the
Stability of a Fractional-Order Differential Equation with
Nonlocal Initial Conditin,” Electronic Journal of Differ-
ential Equations, Vol. 2009, No. 29, 2008, pp. 1-8.
[10] A. M. A. El-Sayed and Kh. W. Elkadeky, “Caratheodory
Theorem for a Nonlocal Problem of the Differential Equa-
tion
=,
x
ftx
,” Alexandria Journal of Mathematics,
Vol. 1, No. 2, 2010, pp. 8-14.
[11] A. M. A. El-Sayed and Kh. W. Elkadeky, “Solutions of a
Class of Nonlocal Problems for the Differential Inclusion
,
x
tF
txt
,” Applied Mathematics and Informa-
tion Sciences, Vol. 5, No. 2, 2011, pp. 413-421.
[12] A. M. A. El-Sayed, E. M. Hamdallah and Kh. W. El-
kadeky, “Solutions of a Class of Deviated-Advanced Non-
local Problem for the Differential Inclusion
,
x
tFtxt,” Abstract and Applied Analysis, Vol. 2011,
2011, pp. 1-9.
doi:10.1155/2011/476392
[13] E. Gatsoi, S. K. Ntouyas and Y. G. Sficas, “On a Nonlo-
cal Cauchy Problem for Differential Inclusions,” Abstract
and Applied Analysis, Vol. 2004, 2004, pp. 425-434.
doi:10.1155/S108533750430610X
[14] K. Goebel and W. A. Kirk, “Topics in Metric Fixed Point
Theory,” Cambridge University Press, Cambridge, 1990.
doi:10.1017/CBO9780511526152
[15] A. Lasota and Z. Opial, “An Application of the Kaku-
tani-Ky-Fan Theorem in the Theory of Ordinary Differ-
ential Equations,” Bull. Acad. Polon. Sci. Ser. Sci. Math.
Astoronom. Phys, Vol. 13, 1955, pp. 781-786.
[16] R. Ma, “Existence and Uniqueness of Solutions to First-
Order Three-Point Boundary Value Problems,” Applied
Mathematics Letters, Vol. 15, No. 2 2002, pp. 211-216.
doi:10.1016/S0893-9659(01)00120-3
[17] S. K. Ntouyas, “Nonlocal Initial and Boundary Value
Problems: A Survey,” In: A. Canada, P. Drabek and A.
Fonda, Eds., Hand Book of Differential Equations, Vol. II
Elsevier, New York, 2005.
[18] A. Vlez-Santiago, “Quasi-Linear Boundary Value Problems
with Generalized Nonlocal Boundary Conditions, Nonlinear
Analysis,” Theory, Methods an d App licatio ns, Vol. 74, 2011,
pp. 4601-4621. doi:10.1016/j.na.2011.03.064
Copyright © 2012 SciRes. APM