Energy and Power Engineering, 2010, 6-9
doi:10.4236/epe.2010.21002 Published Online February 2010 (http://www.scirp.org/journal/epe)
Copyright © 2010 SciRes EPE
Gamma Ray Shielding from Saudi White Sand
Hefne JAMEEL, Al-Dayel OMAR, Al-horayess OKLA, Bagazi ALI, Al-Ajyan TURKI
King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
Email: oaldayel@kacst.edu.sa
Abstract: This study is a comparison of gamma ray linear attenuation coefficient of two typs of shielding
materials made of Saudi white and red sand. Each shield was consisted of one part of cement two parts of
sand in addition to water. Different thicknesses were tested. The concentrations of all elements in each shield
material were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The results obtained
from the ICP-MS were used in MCNP4B (Monte Carlo N-Particle Transport Computer Code System) [1] to
calculate the attenuation coefficient. The theoretical (MCNP4B) and the experimental calculations were
found to be in a good agreement. In the casw of the largest thickness used, 28cm, the gamma ray intensity
passing through the white sand shield was approximately half of the intensity obtained through the red sand
shield. The average lin ear attenuation coefficients were found to be 0.17cm-1 and 0.15cm-1 for white and red
sand shields respectively. The study shows that white sand is better for attenuating gamma ray compared to
the red sand.
Keywords: white & red sand, MCNP4B, ICP-MS, gamma ray, attenuation coefficient
1. Introduction
Gamma shielding is more effectively performed by ma-
terials with high atomic mass number and high density
[2]. One such material is lead [3], which has a disadvan-
tage of its low melting point. Iron is used for higher and
lower energies. Iron is selected based on structural, tem-
perature, and economic considerations. Water can be
used but it is a poor absorber of gamma radiation, thus
large amounts are required. Concrete is a good gamma
attenuator as a general shield material. Concrete is strong,
inexpensive, and adaptable to different types of construc-
tion.
The major objective of this work is to compare the
gamma ray shields made of Saudi red and white sand.
Saudi Arabia has a huge amount of these two kinds of
sand. The white sand concrete is much better in all char-
acteristics than the red one. An extensive study has
documented that the white sand blocks is harder than red
sand blocks [4].
It is one of our national issues to look into the possib le
improvement in gamma attenuation by using the white
sand concrete to extend the commercial values of this
kind of sand.
2. Shielding Preparation
Two kinds of shielding materials made of Saudi white
and red sand. Each shield was consisted in two parts of
sand to one parts of cement in addition to water. In order
to obtain good workability an d allow development of the
maximum strength possible, the shielding ingredients
must be thoroughly mixed. The mixing was done by
machine. A typical mixer (a paddle mixer with tilting
drum) was used. Mixing time was around five minutes.
A shorter mixing time may result in nonuniformity, poor
workability, low water retention and less desired air
content. A too long mixing time may adversely affect the
air content of shield made with air-entraining cement [5].
A 30x30 cm molds were made of plastic with different
heights (thicknesses). Different thicknesses were made 4,
8 and 16cm. Using these three shielding, different thick-
nesses were tested 4, 8, 12(4+8), 16, 20(4+16), 24(8+16)
and 28(4+8+16) cm.
3. Experiment Setup
The experiment was arranged as shown in Figure 1,
where the studying shield was mounted in the middle
of distance between the gamma source and the detector.
The gamma radiation emitted from the source (137Cs
with activity around 102 mCi) was collimated using
lead blocks so that the radiation beam was guided to
the detector through about 55cm2 windows in the lead
shield.
The distances between the source, the detector and the
studying shield were selected so th at the dead time of th e
detector was in the range of 0.52 to 3.58%.
The attenuation coefficient was calculated using the
relation:
x
eII
0
H. JAMEEL ET AL.
Copyright © 2010 SciRes EPE
7
where: I is the measured attenu ated gamma ray intensity,
Io is measured initial intensity (no studying shield), µ is
attenuation coefficient factor and x is the shield thick-
ness.
The gamma ray spectrum was acquired for a real time
of 420 sec for each measurement which was reasonably
enough to obtain a good pulse height distribution. Counts
under the peak (0.661 Mev) spectrum area were used to
calculate the attenuation coefficient factor of both study-
ing shields (see Table 1).
Figure 1. Experiment setup
Table 1. The counts rate obtained from the experiment
RED Shield
Thick.
(cm)
Area under the
peak (R1)
Area under the
peak (R2)
Average
(R1+R2)/2 Coeff
0 244757 245089 244923
4 136996 136771 136883.5 0.145
8 74181 74230 74205.5 0.1493
12 41793 41728 41760.5 0.1474
16 22764 22307 22535.5 0.1491
20 12592 12643 12617.5 0.1483
24 6846 6893 6869.5 0.1489
28 3857 3824 3840.5 0.1484
Attenuation Coefficient Average 0.1481
White Shield
0 244757 245089 244923
4 121246 120933 121089.5 0.1761
8 65292 65431 65361.5 0.1651
12 32166 32318 32242 0.169
16 17249 17144 17196.5 0.1660
20 8526 8602 8564 0.1677
24 4463 4464 4463.5 0.1669
28 2157 2277 2217 0.1680
Attenuation Coefficient Average 0.1685
4. Theor etically
A simulation of the experiment was done using
MCNP4B. The geometry was described as shown in
Figure 1. The source was described as a point source
137Cs with one energy 0.661 Mev. The source was as-
sumed as an isotropic. Point detectors were used to find
out the gamma intensity at the detector window.
Samples from the studying shield were tested to meas-
ure the densities (see Table 2), and to find out the con-
centrations of the elements in the studying shield materi-
als. ICP-MS was used to find the concentrations of the
elements in the white and red shield materials.
5. Use of ICP-MS for Elemental Determina-
tion of the Studying Shield
Accurately weighed portion (0.2–0.3g) of the dried sam-
ple was transferred to a TEFLON digestion tube (120mL)
and 10.0 mL of the acid mixture (HNO3/HF/HCl, 3:1:1)
was introduced. The tube was sealed and the sample was
digested inside a microwave oven (Milestone ETHOS
1600) following a heating program shown in Table 3.
After being cooled to ambient temperature, the tube was
opened; the inside of the lid was rins ed with distilled and
de-ionized water (DIW) and the mixture heated on a hot-
plate (120) for 30 min. to drive off HF and HCl. The
resulting digest was filtered in a graduated plastic tube
using 1% HNO3 for washing and made up to 30.0mL
mark. For ICP-MS measurement the clear digest so ob-
tained was diluted 10 times incorporating 10 μgL-1 solu-
tion of 103Rh. In general, samples were prepared in a
batch of six including a blank (HNO3/HF/HCl) digest
[6–8].
Table 2. Density measurements for both shields materials
Red
Weight gm Volume cm3 Density g/ cm3
15.6493 8 1.9561625
11.7517 6 1.958616667
19.7258 10 1.97258
Average 1.962453056
White
Weight gm Volume cm3 Density g/ cm3
18.3513 8.5 2.158976471
12.1144 6 2.019066667
11.1688 5 2.23376
Average 2.137267712
Table 3. Microwave heating program used for dissolution of
the concrete samples
Step 1 2 3 4
Power (W) 250 400 650 250
Time (min) 10 10 10 10
Detector
Lead collimator
Gamma ray source
2.1 m2.1 m
Studying Shield
H. JAMEEL ET AL.
Copyright © 2010 SciRes EPE
8
High purity water (DIW) (Specific resistivity 18 M.
cm-1) obtained from a Millipore Milli-Q water purifica-
tion system was used throughout the work. HNO3, HF
and HCl used for sample digestion were of Suprapure
grade with certified impurity contents were purchased
from Merck, Germany. A multi-element standard (Merck
-VI) containing 30 elements with certified concentration
values or laboratory made multi-element standard (6-
elements) was used as the external standard during ICP-
MS measurements. The Standard Reference Material
(SRM), IAEA-SOIL-7 was purchased from the Interna-
tional Atomic Energy Agency, Vienna. It was used for
quality assurance conformation.
The analysis is performed by a Perkin-Elmer Sciex In-
struments multi-element ICP-MS spectrometer, type
ELAN6100, equipped with a standard torch, cross flow
nebulizer and Ni sampler and skimmer cones.
The ELAN provides a unique semi quantitative
method called Total Quant. This technique enables one
to determine the concentration of up to 81 elements in a
sample in a single measurement. Determination can be
performed without using a series of standards, the use of
standards is recommended to adjust the ELAN for im-
proved accuracy. Calibration is achieved using just a few
elements distributed throughout the mass range of inter-
est. The calibration process is used to update internal
response data that correlates measured ion intensities to
the concen trations of elements in a solution. In th is work
a multi elements standards supplied by Perkin -Elmer was
used to calibrate the system. The semi quantitative
analysis results of the white shield and the read shield are
shown in Table 4.
The moisture content of the white sand shield and the
read sand shield was measured using moisture analyzer
MA50 system from Sartorius. It was found to be 2.4%
and 1.95% respectively.
6. Results and Discussion
The MCNP4B was run for enough time to approach an
error less than 5%. A waiting factor, which equal to one,
was used in the MCNP4B. The output of MCNP4B and
the results from the measurements were shown in Table 5.
Figure 2 shows the count rate vies shielding th ickness for
both types of shielding made from red and white sand,
experimentally and theoretically.
The attenuation co efficient for the two kinds of shield-
ing were calculated and then plotted as a function of the
shield thickness for each case. (See Figure 3).
The results show a clear improvement in the gamma
attenuation coefficient in the case of white sand.
During the preparation of the shield it was observed
that water is floated on the surface of the red shield mold.
Also from the moisture measurements, it was found that
Table 4. Elemental composition of red sand shield and white
sand shield
Ele. White shield
% Red shield
% Ele White shield
% Red shield
%
C 0.002 0.003 Cr 0.002 0.001
Na 0.0467 0.053 Mn 0.008 0.007
Mg 0.094 0.087 Fe 0.329 0.316
Al 0.239 0.12 Sr 0.025 0.017
S 0.101 0.056 Ba 0.003 0.003
K 0.173 0.221 Ce 3.344 1.006
Ca 4.33 2.179 H 0.371 0.317
Ti 0.002 0.001 O 49.88 52.17
V 0.003 0.002 Si 41.05 43.44
Table 5. The attenuation coefficients for both red and white
shield
Red
Thick. (cm)Peak area MCNP4B Attenuation
Meas. MCNP
0 244923 1.96E-07
4 136883.5 1.04E-07 0.1455 0.1596
8 74205.5 5.52E-08 0.1493 0.1584
12 41760.5 2.95E-08 0.1474 0.1579
16 22535.5 1.59E-08 0.1491 0.1572
20 12617.5 8.50E-09 0.1483 0.1569
24 6869.5 4.62E-09 0.1489 0.1562
28 3840.5 2.50E-09 0.1484 0.1558
Ave. 0.1481 0.1574
White
0 244923 1.96E-07
4 121089.5 9.81E-08 0.1761 0.1733
8 65361.5 4.97E-08 0.1651 0.1717
12 32242 2.52E-08 0.169 0.1709
16 17196.5 1.29E-08 0.166 0.1703
20 8564 6.55E-09 0.1677 0.1699
24 4463.5 3.43E-09 0.1669 0.1687
28 2217 1.74E-09 0.168 0.1688
Ave. 0.1684 0.1705
Figure 2. The obtained count rates experimentally and
theoretically.
4812 1620 24 28
Thickness(cm)
0
20
40
60
80
100
120
140
160 counts rate measured
0
2
4
6
8
10
12
MCNP output (1E-8)
red
mcnp red
white
mcnp white
H. JAMEEL ET AL.
Copyright © 2010 SciRes EPE
9
Figure 3. The calculated attenuation coefficients experi-
mentally and theoretically
the white sand shield is higher than the red sand shield
on moisture contents; this mean water was absorbed
more in the white sand than in the red sand. More water
causes the increasing of the reaction between the cement
and the sand, and reducing the temperature, which re-
duce the amount of cracking inside the shield [5]. This
causes the shield solidity. This may explain the im-
provement of the gamma attenuation coefficient of the
white shield [9].
The theoretical (MCNP) and the experimental calcula-
tion were found to be in good agreement. At the largest
thickness, 28cm, the gamma ray intensity passing throu-
gh the white sand shield was approximately half of the
intensity obtained in the case of the red sand shield. The
average linear attenuation coefficient for the shield made
of white sand is 0.17cm-1 and that from red sand is
0.15cm-1.
7. Conclusions
The study concludes that white sand is better for attenu-
ating gamma ray compared to the red sand especially for
large thickness.
The theoretical (MCNP) and the experimental calcula-
tion were in good agreement with each other.
We recommend ed using the white sand in the concrete
shield to attenuate gamma ray.
REFERENCES
[1] RSICC Computer Code Collection, “CCC-660 Monte
Carlo N-Particle Transport code system”.
[2] R. Nunez-Lagos and A. Virto, Applied Radiation and
Isotopes, Vol. 47, No. 9–10, pp. 1011, 1996.
[3] G. Braoudakis, et al., Nuclear Instruments and Methods,
Vol. A, No. 403, pp. 449, 1998.
[4] M. Amin, O. Alharby, A. Alabdulaly, A. Alsary, S. Alsi d,
and M. Edres, “The properties and application of white
sand in Riyadh area, report,” KACST, 1997.
[5] R. C. Smith, T. L. Honkala, and C. K. Andres, Masonry:
Materials Design Construction, 1979.
[6] R. Faciani, E. Novare, M. Marchesini ,and M. Gucciardi,
“Multi-element analysis of soil and sediment by ICP- MS
after a microwave assisted digestion method,” J. Anal. At.
Spectroscopy, No. 15, pp. 561–565, 2000.
[7] V. Balaram, “Characterization of trace elements in envi-
ronmental samples by ICP-MS,” AT. Spectroscopy, No.
14, pp. 174–179, 1993.
[8] J. Szakova, P. Tlustos, J. Balik, D. Pavlikova, and V.
Vanek, “The sequential analytical procedure as a tool for
evaluation of As, Cd and Zn mobility in soil,” Fresenius,
Journal of Analytical Chemistry, No. 363, pp. 594–595
1999.
[9] A. El-Sayed, “Calculation of cross-section for fast neutro ns
and gamma-rays in concrete shields,” Journal Annals of
Nuclear Energy, Vol. 29, No. 16, 1977–1988, 2002.
4812 16 20 24 28
Thickness(cm)
0
0.05
0.1
0.15
0.2 Attenuation coefficient (cm-1)
red att
mcnp red att
white att
mcnp wh att